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Boron from net charge 
acceptor to donor and its effect 
on hydrogen uptake by novel 
Mg‑B‑electrochemically 
synthesized reduced graphene 
oxide
Marla V. V. Satya Aditya, Srikanta Panda & Sankara Sarma V. Tatiparti*

Hydrogen uptake (H‑uptake) is studied in ball milled Mg‑B‑electrochemically synthesized 
reduced graphene oxide (erGO) nanocomposites at PH2 ≈ 15 bar, ~ 320 °C. B/C (weight ratio): 
0, ~ 0.09, ~ 0.36, ~ 0.90 are synthesized maintaining erGO≈10wt %. B occupies octahedral interstices 
within Mg unit cell—revealed by electron density maps. Persistent charge donations from Mg and B 
to C appear as Mg‑C (~ 283.2 eV), B‑C (~ 283.3–283.9 eV) interactions in C‑1s core X‑ray photoelectron 
spectroscopy (XPS) at all B/C. At B/C > 0.09, charge reception by B from Mg yields Mg‑B interaction. 
This net charge acceptor role of B renders it electron‑rich and does not alter Mg unit cell size 
significantly. Despite charge donation to both C and B, the Mg charge is <  + 2, resulting in long 
incubation times (> 5 h) at B/C > 0.09. At B/C≈0.09 the minimal Mg‑B interaction renders B a charge 
donor, resulting in Mg‑B repulsion and Mg unit cell expansion. Mg‑C peak shift to lower binding 
energies (C‑1s XPS), decreases incubation time to ~ 2.25 h and enhances H‑uptake kinetics. Various 
atomic interactions influence the reduction of incubation time in H‑uptake and increase its kinetics in 
the order: (Mg → C; B → C)B/C≈0.09, B: donor > (Mg → C)B/C=0 > (ternary Mg → B → C)B/C>0.09, B: acceptor.

Magnesium (hydride) is a promising material for hydrogen storage due to its high gravimetric capacity (~ 7.6 
wt %) and its abundance (as oxide)1. However, its poor kinetics of hydrogen uptake (H-uptake) and release pose 
significant challenges for its use as on-board hydrogen storage material for automobile  applications2,3. H-uptake 
by Mg suffers from the presence of incubation time during which Mg cannot absorb any  hydrogen4. For exam-
ple, Mg failed to hydrogenate at PH2 = 10 bar and 300 °C4. At 400 °C, H-uptake started only after 30 min of the 
commencement of the  experiment4.

Nanosizing and catalyst addition can enhance the H-uptake/release kinetics  significantly5,6. In a study, 
decreasing the particle size of  MgH2 to ~ 12 nm by ball milling resulted in a four-fold decrease in the H-uptake/
release time at PH2 ≈ 0.1 bar and ~ 350 °C7. For on-board hydrogen storage applications, the weight of the mate-
rial needs to be kept minimal. The light weight, 2-dimensional carbon based materials such as reduced graphene 
oxide (rGO) are widely studied as catalysts, supports and confining  agents8. They can enhance kinetics, and 
inhibit the agglomeration and surface oxidation of the nanosized Mg(H2)  particles9. In a recent study, Liu et al.10 
reported that 5 wt % of rGO can result in the desorption of ~ 6.3 wt% hydrogen from  MgH2 in 80 min. Boron (B), 
which is even lighter than C, can also catalyze H-release in Mg-based materials. However, mostly, its catalytic 
effects have been realized only indirectly. For example, Mg(BH4)2 renders H-release in stages with the formation 
of an intermediate compound  (MgB12H12) and accelerates the desorption process upon in-situ  MgB2  formation11. 
This in-situ formation of  MgB2 occurs even during desorption from hydride mixtures such as  LiBH4-MgH2 and 
catalyzes H-release by  MgH2

12. Theoretical studies on B inclusion in  MgH2 reported lattice changes and increase 
in H–H  distance13. Binary Mg-B, B-rGO and Mg-rGO systems were studied in the  past9,10,14–16. B-doped graphene 
improves enthalpy of H-release in  MgH2

17. Nevertheless, the investigations on Mg(H2)-B-rGO ternary system 
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are in their early stages, particularly during H-uptake. Moreover, the charge transfer role of B and its impact on 
the hydrogen storage by Mg-rGO system are not well known from literature.

Most of the studies on hydrogen storage by  MgH2-based materials are focussed on H-release rather than 
H-uptake. Some scientific reasons for this are (i) uncertainty involved in experimentally identifying the lattice 
positions of H, any elemental additions etc. in the crystalline hydrogen-hosts upon H-uptake; this further renders 
(ii) the investigation of various atomic interactions among the components difficult; (iii) such uncertainties in 
structural investigations can lead to erroneous estimation of enthalpy and entropy changes. This is particularly 
true in the case of composite systems such as Mg(H2)-B-rGO, where both Mg and C (from rGO) can, synergis-
tically, form bonds with  H9,18. Our earlier study on H-uptake and release by Mg-rGO demonstrates that along 
with Mg, C also forms bond with H due to charge (electron) transfer from Mg to  C18. Practically, the H-uptake 
studies are less appealing than their H-release counterparts for reporting, since H-uptake involves long incuba-
tion  times4. Nevertheless, hydrogen storage involves both H-uptake and release and the studies on the former 
are indispensable.

In the present study H-uptake by the novel Mg-B-erGO nanocomposites at PH2 ≈ 15 bar and ~ 320 °C is 
reported. The erGO is a novel electrochemically synthesized rGO, which we reported in our recent study, that 
contains fewer functional groups than rGO prepared by the modified Hummer’s  method19. Here, Mg, B and erGO 
are ball milled together at various B/C weight ratios (0, ~ 0.09, ~ 0.36 and ~ 0.90) maintaining ~ 10 wt % of erGO 
in the nanocomposites. Several interactions among Mg, B and C, involving charge transfer, develop upon ball 
milling. Interestingly, a “critical” B/C ratio (~ 0.09) is identified. Below this ratio B is a charge (electron) donor 
to C. Above this ratio B accepts charge from Mg and also donates to C, acting as a net charge acceptor. When 
B is charge donor, a decrease in the incubation time is observed for H-uptake from ~ 3.25 h in the absence of B 
to ~ 2.25 h (i.e. a drop of ~ 31%) upon slight addition of B (B/C ≈ 0.09). Various fundamental scientific questions 
are answered: (i) How and why does B affect the Mg unit cell? (ii) How and why do interactions among Mg, B 
and C develop? (iii) Why does B switch the role from charge donor to net acceptor upon increasing its content? 
(iv) What is the impact of this role-switching by B on the H-uptake by the Mg-B-erGO nanocomposites? Our 
claims are supported by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) (C-1s, Mg-2p and 
B-1s spectra) and the novel electron density maps, the technique which we used  elsewhere20.

Results
Incubation time during H‑uptake. The H-uptake by all the Mg-B-erGO nanocomposites at PH2 ≈ 15 bar 
and ~ 320 °C is plotted as wt % hydrogen in Mg versus time in Fig. 1. For all the nanocomposites, an incubation 
time corresponding to negligible H-uptake was seen before initiation of hydrogen absorption. These incubation 
times are plotted versus B/C ratio in the inset of Fig. 1. The incubation time decreases from ~ 3.25 h in B/C = 0 
to ~ 2.25 h with a slight addition of B (B/C≈0.09). Surprisingly, with further addition of B the nanocomposites 
exhibit increased incubation time (inset, Fig. 1). This clearly indicates the existence of a critical B/C ratio around 
0.09 at which the incubation time reaches a minimum. Moreover, following the incubation time all the H-uptake 
curves are sigmoidal in nature, prior to reaching saturation levels at ~ 6 wt %. The rate of H-uptake is the highest 
for B/C≈0.09. The nanocomposite with B/C ≈ 0.90 has the lowest rate of uptake and the longest incubation time. 
Figure 1 suggests that B influences the incubation time and the kinetics of H-uptake by these nanocomposites.

Phase analysis. The X-ray diffraction (XRD) patterns of the ball milled nanocomposites are shown in Sup-
plementary Fig. S1. The XRD pattern of the erGO is shown in Supplementary Fig. S2. The XRD patterns of the 
nanocomposites indicate the presence of hexagonal close packed (hcp) Mg. The crystallite size of Mg in all the 

Figure 1.  H-uptake (wt %) versus time (h) in ball milled Mg-B-erGO nanocomposites at various B/C ratios 
obtained at ~ 15 bar, ~ 320 °C. Inset shows the incubation time (h) plotted against B/C ratio.
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ball milled nanocomposites is ~ 24 nm from Scherrer  equation21. The patterns prior to background correction 
also show the possible presence of amorphous magnesium oxide along with the peaks corresponding to MgO, 
indicating oxidation of  Mg9. One source of this oxygen could be from the functional groups present in erGO 
sheets, which could release while ball  milling22. This oxygen could react with Mg and form oxide. Also, any 
possible mild exposure to air while transporting the nanocomposites could also have resulted in the formation 
of magnesium oxide. The phase percentages of Mg and MgO (crystalline) were estimated from XRD patterns 
through Rietveld refinement using FullProf suite (version: 7.20)23 and listed in Supplementary Table S1. The 
detailed procedure of Rietveld refinement is given in Supplementary Information. The fit curves, the residual fit 
errors are shown in Supplementary Fig. S3. The structure factors along with their uncertainties are reported in 
Supplementary Tables S2–S5.

Structural changes in Mg unit cell. Figure 2 shows the lattice parameters of the Mg unit cell, estimated 
from XRD patterns through Rietveld refinement (see Supplementary Fig. S3 and Tables S2–S5) using FullProf 
suite (version: 7.20)23. Prior to analyzing the obtained lattice parameters, the structural integrity of the crystal 
for all the nanocomposites was verified and ensured by noting that the c/a ratio is close to the theoretical value 
of 1.623 for an hcp  crystal24. Both a and c increase with an increase in the B/C ratio from 0 to ~ 0.09, indicating 
the Mg lattice expansion. These lattice parameters of B/C ≈ 0.09 are a real tendency, as suggested by the error 
bars and the structural integrity (c/a value) of the Mg unit cell at this composition. With further increase in B/C 
to ~ 0.36 and ~ 0.90 both a and c decrease, resulting in shrinkage of Mg lattice.

Local environment in Mg unit cell. The local environment in the Mg unit cell is estimated by develop-
ing the electron density  maps25 for the (1/3 0 –1/3 0) plane intersecting the atom ‘Mg1’ as shown in Fig. 3a. The 
colour-coded scales adjacent to the maps in Fig. 3a represent the electron density ρ(r) (= number of electrons/
volume (Å−3)) values. It is to be noted that the positive value in these scales correspond to the presence of 
electrons and the negative values correspond to their absence. All the maps in Fig. 3a show that the maximum 
electron density is present in the regions, where the Mg atoms are located. This indicates the concentration of the 
maximum number of electrons around Mg. A careful observation of Fig. 3a suggests that the charge distribution 
around Mg is not similar in all the nanocomposites. This can be seen by the asphericity of the electron density 
distribution around Mg (p/q, Fig. 3a). The asphericity is estimated as the ratio of the distance along b to that 
along c from the center of Mg up to the outermost position, where the positive electron density can be observed. 
The estimated asphericities are ~ 1.17, ~ 1. 09, ~ 1.11 and ~ 1.21 for B/Cs of 0, ~ 0.09, ~ 0.36 and ~ 0.90, respectively. 
Therefore, the electron density distribution is nearly uniform (asphericity closer to 1) for the nanocomposites of 
B/C ≈ 0.09. The aspherical charge distribution suggests  covalency20. Figure 3b shows the relative electron density 
at the octahedral interstices in the (0001) basal plane of the Mg unit cell (‘Octahedral interstices’, Fig. 3b), nor-
malized with respect to the maximum electron density found around Mg (i.e. ρOctahedral/ρmax). The corresponding 
electron density maps are shown in Supplementary Fig. S4. It is known that the dopants can occupy these sites 
when incorporated in the Mg unit  cell26. A negative value of this relative electron density indicates the absence 
of electrons. The relative electron densities of the nanocomposites with B/C of 0, ~ 0.36 and ~ 0.90 are negative, 
mutually comparable. The nanocomposite with B/C ≈ 0.09 has the least relative electron density; whereas, it is 
the highest for B/C ≈ 0.36. This suggests that among all the nanocomposites the octahedral sites in B/C ≈ 0.09 are 
least populated sites for electrons, suggesting a possible presence of a positively charged species.

Chemical interactions. The core C-1s and Mg-2p X-ray photoelectron spectra (XPS) of all the nanocom-
posites are shown in Fig. 4a,b, respectively. The experimental data obtained from XPS were deconvoluted using 
Gaussian profile by employing an XPS-specific deconvolution procedure to estimate the atomic  interactions27,28. 
In C-1s spectra, the peaks at the binding energies ~ 283.2 eV, ~ 283.3–283.9 eV, ~ 284.6 eV, ~ 285.7 eV, ~ 286.6 
eV, and ~ 290 eV correspond to Mg-C18, B-C29,30, C–C  sp2, C–OH, C–O–C31–33 and C-2p π → π*  transition9,34, 

Figure 2.  Lattice parameters of Mg (hcp) versus B/C ratio in ball milled Mg-B-erGO nanocomposites.
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respectively. The alcohol (–OH) and epoxy (C–O–C) functional groups arise during the synthesis of erGO (C-1s 
spectrum of erGO, Supplementary Fig. S5). The possible presence of COOH and C=O groups was also tested 
by considering them along with –OH and C–O–C groups in various combinations while deconvoluting the 
C-1s spectra. However, only those fits which contain only –OH and C–O–C groups were converged. The results 
of various such deconvolution exercises are presented in Supplementary Tables S6–S9. Moreover, as the erGO 
is synthesized using  (NH4)2SO4 (see ‘Methods’ section), it is less likely for these groups to be present in erGO. 
Hence, it is believed that the COOH and C=O groups are absent in erGO. The XPS-specific deconvolution 
 method28 resulted in acceptable FWHMs for both Mg-C and B-C peaks. For B-C peaks these FWHMs are 
0.91, 1.00 and 0.70 eV for B/C ≈ 0.09, 0.36 and 0.90, respectively. In all the C-1s spectra the intensities of the 
Mg-C peaks are lower than those of the C–C  sp2 peaks. From Fig.  4a, the Mg-C interactions in B/C = 0 are 
seen at ~ 283.2 eV. The deconvoluted spectrum of B/C ≈ 0.09 shows the B-C peak at ~ 283.4  eV29. With further 
increase in B/C to ~ 0.36 and ~ 0.90, the B-C and Mg-C peaks shifted towards higher binding energies. Interest-

Figure 3.  (a) Electron density maps corresponding to Mg (1/3 0 –1/3 0) plane and asphericity (p/q) of charge 
distribution around Mg1 atom at various B/C ratios; (b) Normalized electron density (ρOctahedral/ρmax) at 
octahedral sites in Mg (0001) plane plotted against B/C ratio for ball milled Mg-B-erGO nanocomposites.
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ingly, the C-1s spectrum of B/C≈0.90 possesses weaker B-C signal with lower FWHM as compared to that in the 
other spectra. The C-2p π → π* transition peak is visible in all the nanocomposites.

The peaks corresponding to metallic Mg and MgO are seen in all the compositions in Mg-2p spectra (Fig. 4b). 
The peaks of metallic Mg are expected within the binding energy range ~ 47.5–49.5  eV35. The charge of Mg in 
MgO (< + 2) causes an increase in binding energy, as the net number of electrons in the Mg valence shell in MgO 
are lower than those in metallic  Mg36. The binding energy values of MgO in the present study lie within ~ 49–51 
eV, consistent with  literature37. The Mg-B peaks are seen in all the compositions and appear between ~ 51.3 
and 53.2  eV38,39. With increase in B in the nanocomposites, the Mg-B peaks become stronger and shift towards 
lower binding energies in the above mentioned range (Fig. 4b). Interestingly, at B/C≈0.90 the binding energy 
of the Mg-B peak is around 51.3 eV. This is closer to the binding energy of Mg-B peak in  MgB2

38
. The presence 

of both B-C (Fig. 4a) and Mg-B (Fig. 4b) peaks from XPS suggests that B has simultaneous interactions with 
both C and Mg.

Discussion
The results suggest a critical B/C ratio around ~ 0.09, at which the incubation time during hydrogen uptake by 
the Mg-B-erGO nanocomposites is the least and increases above or below this ratio (Fig. 1). This critical B/C can 
be refined by selecting compositions around B/C≈0.09. The crystallographic (Fig. 2) and local environmental 
(Figs. 3 and 4) changes with the addition of B are used to understand the reasons behind the reduced incuba-
tion time. The presence of Mg, B and C renders the scenario complex by developing binary Mg-C, Mg-B, B-C 
and possible ternary Mg-B-C interactions upon ball milling. These interactions can affect the incubation time 
during H-uptake.

In the nanocomposite where B is absent (B/C = 0), the covalency of Mg as suggested by the aspherical charge 
 distribution40 (p/q, Fig. 3a) indicates that there is an interaction between Mg and the surroundings. Further, the 
negative relative electron density in the octahedral interstices of the (0001) basal plane in Mg in B/C = 0 (Fig. 3b, 
Supplementary Fig. S4) shows the deficiency of electrons at this site. This suggests that there is no electron 
donation from Mg to this octahedral site. Therefore, it is reasonable to conclude that Mg donates electrons to 
C, which appears as ‘Mg-C’ peak in C-1s XPS spectrum (Fig. 4a). This electron donation from Mg to C can be 
reinforced by the fact that the electron affinity of Mg (~ 0 kJ  mol−1) is lower than that of C (~ 153.9 kJ  mol−1)41. 
Any local changes in the chemical environment can cause deviation from these values. In our earlier work, we 

Figure 4.  (a) C-1s core XPS spectra deconvoluted into Mg-C, B-C,  sp2 hybridized C–C, C–OH, C–O–C and 
C-2p π → π* transition peaks; (b) Mg-2p spectra deconvoluted into metallic Mg, MgO and Mg-B for all the ball 
milled Mg-B-erGO nanocomposites.
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demonstrated that the Mg-C interaction causes an increase of charge on carbon atoms leading to a change of 
hybridization in C from  sp2 to  sp3, resulting in the C-H bond aiding in H-uptake18.

A slight addition of B in B/C ≈ 0.09 decreases incubation time and enhances H-uptake kinetics (Fig. 1). This 
improvement is due to the structural and local environmental changes introduced by B. Upon addition of B, a 
significant expansion of the Mg unit cell can be seen from the lattice parameters in Fig. 2. Normally, the repulsive 
forces between two entities within a unit cell can cause its  expansion42. In the present scenario, it can be expected 
that B is incorporated within the Mg unit cell and possesses a positive charge. The incorporation of B is suggested 
by the larger negative electron density compared to B/C = 0, i.e. lack of electrons, at the octahedral interstices 
in the (0001) Mg basal plane for B/C≈0.09 (Fig. 3b, Supplementary Fig. S4). In other words, the charge in these 
regions is more positive in B/C≈0.09 compared with that in B/C = 0. Most likely, B is present in these octahedral 
 interstices43, while maintaining structural integrity, and possesses positive charge. The likely reason for the posi-
tive charge over B is the charge transfer from B to Mg and/or to C. However, the charge transfer from B to Mg 
is mostly not possible as the electron affinity of elemental B is ~ 28.9 kJ  mol−1 and that of Mg is ~ 0 kJ  mol−141. 
Therefore, most likely, the charge transfer takes place from B to C, giving rise to B-C interaction as suggested by 
B-C peak at ~ 283.4 eV in C-1s spectrum (B/C ≈ 0.09, Fig. 4a). The absence of any peaks in B-1s core spectra for 
all the nanocomposites (Supplementary Fig. S6) shows that B substitution at C (~ 189.1 eV) and  B4C (~ 187.7 
eV),  C2-BO (~ 191.4 eV), C-BO2 (~ 191.8 eV) are  absent44. This is true despite the considerable concentrations 
of B in the nanocomposites (Supplementary Table S10). This clearly indicates that the B-C interactions seen in 
C-1s spectra (Fig. 4a) are not due to any strong bond formation between B and C. The presence of both Mg-C 
and B-C interactions in B/C≈0.09 show that both Mg and B are charge donors to C.

Upon increasing the B content in the nanocomposites to B/C ≈ 0.36 and 0.90 both the incubation time and 
the kinetics of H-uptake are deteriorated (Fig. 1). Interestingly, the lattice parameters in B/C ≈ 0.36 are close to 
those of B/C = 0 (Fig. 2) and have decreased further in B/C ≈ 0.90. The possible reasons for the restoration of 
the Mg unit cell to its original size are: (i) B is not present within the Mg unit cell at these compositions; (ii) B 
is present within the unit cell and shrinks its size to almost the original value by developing possible additional 
interactions. However, it is likely that B is incorporated in the Mg unit cell even at compositions higher than in 
B/C ≈ 0.09 (Fig. 3(b)). Therefore, the first reason is not plausible. Hence, the possible presence of B in the Mg 
unit cell is maintaining its size closer to its pristine counterpart (B/C = 0). From Fig. 3a, the charge distribution 
around Mg atom clearly shows that the asphericity increases (with respect to that at B/C ≈ 0.09) at B/C ≈ 0.36 and 
reaches the highest at B/C ≈ 0.90. This shows that the various interactions in B/C ≈ 0.36 and 0.90 are happening 
to a different extent compared with the other nanocomposites.

The different extents of the atomic interactions in B/C ≈ 0.36 and 0.90 are evident from the increase in the 
Mg-C and B-C binding energies with respect to those in B/C ≈ 0.09 from the C-1s spectra (Fig. 4a). The Mg-C 
and B-C peak positions increased from ∼ 282.9 and ∼ 283.4 eV (B/C ≈ 0.09) to ∼ 283.3 and ∼ 283.6 eV (B/C ≈ 
0.36), respectively. Since the B-C peaks possess acceptable FWHMs (0.91 and 1.00 eV for B/C ≈ 0.09 and 0.36, 
respectively) these peak shifts in B-C are mostly realistic trends. This increase in the binding energies clearly 
indicates that a lower charge is received by C from both Mg and  B36. An important question here is that: why 
does the charge reception by C decrease despite the charge donation by both Mg and B? The changes in the 
interactions of C with Mg and B also introduce observable interactions between Mg and B in B/C ≈ 0.36. The 
Mg-2p spectrum for this composition shows the presence of Mg-B peak at ~ 52.2 eV, corresponding to the charge 
transfer from Mg to  B38 (Fig. 4b). This Mg-B peak in B/C ≈ 0.09 is very feeble, rendering the relative charge 
transfer from Mg to  B38 in B/C ≈ 0.36 very significant. The combined analysis of C-1s and Mg-2p spectra (Fig. 4) 
clearly indicates that Mg is donating charge to both C and B. As a result of this, the net charge received by C from 
Mg can decrease (Fig. 4a). Similarly, as B shares its valence electrons with Mg, more likely a lower net charge is 
received by C from B (Fig. 4a). The presence of both Mg-B and B-C interactions can render B a charge acceptor 
(from Mg) and a donor (to C), respectively. However, the relative electron richness at octahedral sites (B/C ≈ 
0.36, Fig. 3b), which B is likely occupying, suggests that B is negatively charged making it a net charge acceptor. 
The results indicate that ternary Mg-B-C interactions develop in B/C ≈ 0.36. Similar trends in the interactions 
are observed in the case of B/C ≈ 0.90 (Fig. 4).

The nanocomposite with B/C ≈ 0.90 exhibits asphericity close to that of B/C = 0 (Fig. 3a). Its ρOctahedral/ρmax 
value is negative and similar to that of B/C = 0 (Fig. 3b, Supplementary Fig. S4). Despite these similarities, it shows 
longer incubation time (Fig. 1) for H-uptake. This suggests that, possibly, further different level of interactions 
are present in this nanocomposite, as implied by the lowest unit cell volume in this case (Fig. 2). From Fig. 4a, 
the Mg-C and B-C peaks for B/C of 0 (only Mg-C), ∼ 0.09 and ∼ 0.36 are shifted to lower binding energies com-
pared with those in B/C ≈ 0.90 suggesting stronger interactions. The Mg-B peak is located at ~ 51.3 eV (Fig. 4b). 
Interestingly, this is the position where the similar peak in  MgB2 is  expected45. Moreover, B is expected to be 
located in the octahedral interstices in Mg unit cell (hcp) in B/C ≈ 0.90 (Fig. 3a), which are the cites where B is 
located in  MgB2 (also hcp)46. However, the XRD pattern (Supplementary Fig. S1) does not show any  MgB2 peaks 
[ICSD code: 26675]. Probably, the composition B/C ≈ 0.90 is just about favorable for the formation of  MgB2. 
The possible presence of  MgB2 in B/C≈0.90 is also supported by the lowest unit cell volume (Fig. 2), the highest 
asphericity/covalency (Fig. 3a), the presence of the highest Mg-C and B-C binding energies (Fig. 4a) and a peak 
corresponding to  MgB2 (51.3 eV) in Mg-2p spectra (Fig. 4b). However, additional characterization is needed to 
substantiate the presence of  MgB2 in this nanocomposite.

The analysis from the present study is used to propose a mechanism in terms of the structural and local 
environmental changes in the Mg-B-erGO nanocomposites that help in reducing the incubation time during 
their H-uptake. This mechanism is schematically shown in Fig. 5. Among the investigated compositions, those 
at B/C > 0.09 develop ternary Mg-B-C atomic interactions, where C from erGO receives charge from both Mg 
and B (Mg-C, B-C in Fig. 4a). Interestingly, B also receives charge from Mg developing Mg-B interactions 
(Fig. 4b). Such a charge reception renders B negative making it a net charge acceptor. This is evidenced by the, 
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relatively, electron-rich octahedral interstices in Mg unit cell, where there is a likelihood of B’s presence (Fig. 3b, 
Supplementary Fig. S4). The attraction between the negatively charged B and Mg helps in maintaining the Mg 
unit cell size in B/C≈0.36 almost the same as that in B/C = 0 (Fig. 2). Despite the charge donation to both C and 
B, the charge on Mg is <  + 2 rendering it difficult to bond with H (dotted line between H and Mg, Fig. 5). This 
results in the longer incubation times at B/C > 0.09 (Fig. 1). In the case of B/C ≈ 0.90 the longest incubation time 
can be attributed to the possible presence of  MgB2. However, this needs to be confirmed with further analysis.

At B/C ≈ 0.09, B acts as a charge donor to C (B-C, Fig. 4a). The possible presence of the positively charged B 
in the octahedral interstices of Mg unit cell (ρOctahedral/ρmax, Fig. 3b, Supplementary Fig. S4) repels Mg (‘repulsion’, 
Fig. 5) and causes the lattice expansion (Fig. 2). Here, Mg is more positive relative to that at B/C > 0.09 due to the 
lower binding energy of Mg-C (Fig. 4a) rendering Mg-H bond stronger (solid line between H and Mg, Fig. 5) 
than in B/C > 0.09. The more positive Mg can bond strongly with H and can reduce the incubation time (Fig. 1)18.

The present study shows that various interactions among Mg, B and C in the Mg-B-erGO nanocompos-
ites influence the reduction of incubation time and increase in the H-uptake kinetics in the order: (Mg → C; 
B → C)B/C≈0.09, B: donor > (Mg → C)B/C=0 > (ternary Mg → B → C)B/C>0.09, B: acceptor.

Methods
Electrochemically reduced graphene oxide (erGO) was synthesized by electrochemical exfoliation of graphite rod 
(Φ: 305 mm, CAS: 40765, Alfa Aesar) using CHI 660E electrochemical work station in 0.1 M  (NH4)2SO4 aqueous 
electrolyte. Platinum mesh and Ag/AgCl (3 M KCl) were used as counter and reference electrodes, respectively. 
Potentiostatic exfoliation at 3 V for 3 h resulted in exfoliation of graphene sheets from the surface of graphite 
rod because of  (SO4)2- ion  intercalation47.

Magnesium (Sigma Aldrich; ~ 44 µm; > 99%), amorphous boron powder (Sigma Aldrich; ≤ 1 µm; > 95%) 
were used along with erGO for synthesizing Mg-B-erGO nanocomposites. Four different nanocomposites with 
B/C weight ratios of 0, ~ 0.09, ~ 0.36 and ~ 0.90 were synthesized. The corresponding B/Mg weight ratios are 
0, ~ 0.01, ~ 0.04 and ~ 0.10, respectively. The erGO is ~ 10 wt % with respect to the total weight of the nanocom-
posite. All the samples in the present study are referred with respect to their B/C weight ratios to understand the 

Figure 5.  Various interactions among Mg, B, C at B/C > 0.09 and ~ 0.09 in Mg-B-erGO nanocomposites after 
ball milling and while H-uptake.
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synergetic effect of the catalysts B and C on H-uptake by Mg. All the materials were handled in argon atmos-
phere using MBraun Unilab Plus 4-port glovebox maintaining oxygen  (O2) and moisture  (H2O) levels at < 0.1 
ppm. The Mg-B-erGO nanocomposites were synthesized through ball milling at 450 rpm for 20 h by loading 
Mg, B and erGO in appropriate compositions into a 45 ml tungsten carbide (WC) vessel containing WC balls 
maintaining a ball to powder weight ratio of 40:1. A Fritsch pulverisette 7, premium line planetary micro mill 
was employed for ball milling.

Following ball milling the nanocomposites were loaded and sealed in a hydrogenation reactor inside glove-
box. Subsequently, the reactor was brought out for H-uptake experiments in a Sievert’s type apparatus. Prior to 
H-uptake, the reactor was purged with Ar. The reactor containing the powder was heated up to ~ 320 °C under 
vacuum. Eventually, hydrogen gas (99.999%) was permitted in to the reactor at ~ 15 bar and ~ 320 °C. Isothermal 
H-uptake experiments were conducted on these Mg-B-erGO nanocomposites at these conditions up to satura-
tion. The quantity of H-uptake by the powders was estimated using ideal gas  law20.

The phase analysis on these nanocomposite powders was performed by X-ray diffraction (XRD) employing 
PANalytical EMPYREAN goniometer. Cu Kα radiation (wave length: 1.5406 Å) was used for the same. The 
baseline correction was performed on the obtained data and the phases were indexed using the standard ICSD 
references. The ICSD database codes used for indexing Mg, MgO and rGO phases are 76748, 104845 and 31170, 
respectively.

The XRD patterns of the nanocomposites were subjected to Rietveld refinement using FullProf suite (ver-
sion: 7.20) to estimate phase percentages and to obtain crystallographic data of  phases23 shown in Supplemen-
tary Fig. S3 and Tables S2–S5. Baseline for the experimentally obtained data was corrected using winPLOTR 
 program48. After baseline correction, the data was refined using Pseudo-Voigt  function49 (Supplementary Eq. 
S8). The lattice parameters (a, b, c, α, β, γ) of hcp Mg, FWHM (U, V, W, IG), shape (η0, X) and asymmetry were 
refined to obtain the best fit with the experimental data for Mg and MgO phases (Supplementary Eqs. S4, S9). 
For refining the lattice parameters, the initial values of a = 3.2093 Å, b = 3.2093 Å and c = 5.2103 Å were fed as 
input into EdPCR application of the FullProf suite prior to Rietveld refinement. The electron density maps are 
used to estimate the local environment within the crystal lattice. Electron density maps for Mg unit cell were 
developed using GFourier Program (version: 4.06) through Maximum Entropy Method (MEM)25. Through MEM 
the electron density ρ(r) was calculated by Fourier transformation of structure factors obtained after Rietveld 
 refinement50 (Supplementary Eq. S11).

X-ray photoelectron spectroscopy (XPS) was performed on the nanocomposites employing Axis Supra Pho-
toelectron spectrometer (Kratos Analytical) using Al Kα source. The powders were ultrasonicated in toluene for 
uniform dispersion following which they were drop casted onto Al foil and exposed to XPS source maintaining 20 
eV pass energy. The obtained high resolution XPS spectra for various orbitals were deconvoluted using Gaussian 
function employing an XPS-specific deconvolution method for estimating the chemical  bonds28.

Received: 16 November 2020; Accepted: 11 May 2021
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