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Influence of wind energy utilization 
potential in urban suburbs: a case 
study of Hohhot
Wang Wenxin1,2,3, Chen Kexin2,3, Bai Yang2,3, Xu Yun2,3 & Wang Jianwen1,3*

Given the increasing trend of using wind energy in cities, the utilization of distributed wind energy in 
cities has been widely concerned by researchers. The related research on the micro-site selection of 
wind turbines, a sub-project of the Task27 project of the International energy agency, was continued in 
this paper. The wind speed data of an observation station near Hohhot, Inner Mongolia, with a range 
of 10–19 m were collected. The evaluation included wind direction, Weibull parameter characteristics, 
and turbulence intensity. The potential energy output in 10 different heights was estimated using 
commercial horizontal and vertical axis wind turbines of the same power. Results showed that the 
following: the three-parameter Weibull distribution model can well describe the statistical properties 
of the wind speed in this site. The wind speed distribution model constructed from extrapolation 
parameters reflects the wind speed statistical properties out of detection positions to a certain extent. 
The wind energy density of the vertical axis wind turbine is slightly lower than that of the horizontal 
axis wind turbine. Furthermore, more power can be generated from March to May.

The development and utilization of wind energy are an important measure to alleviate the energy shortage and 
adjust the energy structure. The latest data released by International Energy Agency indicate that the annual 
growth rate of global offshore wind power is nearly 30% from 2010 to 2018, and that of onshore wind power is 
nearly 10%1. In 2018, China’s offshore wind power installed capacity increased by 1.6 GW, while the onshore wind 
power installed capacity expanded from 14 GW in 2017 to 19 GW; it now enters the forefront of the  market2. 
However, the current onshore wind power generation cannot fully reach the level expected by the sustainable 
development plan. By 2030, an annual increase of 12% of the power generation should be guaranteed, and more 
powerful measures are needed to actively develop wind energy. Many researchers choose the indicators in the 
process of the microscopic location as the focus to research the change rules of urban wind environment, the 
distribution models, through numerical simulation, field test and statistical methods. The causes of strong turbu-
lence and wind resource assessment optimization, to summarize research framework, wind resource assessment 
method, and to achieve practical experience data of multiple location by numerical simulation, field tests and 
statistical inductive  method3–9.

An accurate description of wind speed and direction is the premise for the accuracy of micro-site selection in 
urban environments. The use of probability statistics is generally accepted as a method for characterizing wind 
speed and direction. Some probability and statistical models and their variants are widely used in the study of 
wind speed statistical characteristics. Since then, new methods of model modification, parameter estimation, and 
goodness test have been proposed and have shown good applicability in describing local wind  resources10–19. In 
1951,  Weibull20 explained the powder distribution in detail and established three-parameter Weibull distribution 
model, including the location parameter, on the basis of double-parameter Weibull distribution. The model was 
used to analyze a large amount of data. The results showed that the three-parameter Weibull distribution model 
had good applicability for small sample test. In the wind load calculation of buildings, the Weibull distribution 
function was first applied to the statistical expression of  wind21. The Weibull distribution function was then 
introduced to wind resource assessment. Researchers worldwide have studied the relevance and accuracy of the 
Weibull distribution to determine the probabilistic statistical characteristics of wind  speed22–32. Some scholars 
changed the Weibull function model to match the actual wind speed, such as the upper-truncated Weibull 
 distribution33 and inverse Weibull  distribution34. For the Weibull distribution model alone, the two- and three-
parameter Weibull models have different performances in describing the wind environment, and the applicability 
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of the two has been the focus of research and discussion. Stewart and  Essenwanger35 compared the applicability 
of the two- and three-parameter Weibull models in describing wind speed frequency based on data from more 
than 40 stations near the ground. They concluded that the three-parameter Weibull models are more flexible 
and appropriate than the two-parameter model. Piotr  Wais36 believed that the three-parameter Weibull distribu-
tion is seldom applied in the wind power industry, which may lead to the underestimation of the distribution 
model’s role in wind resource estimation to some extent. Given the lack of comparison with other probability 
models and detailed analysis in space and time, the role of the three parameters in wind energy evaluation may 
be ignored to a certain extent. Van Der  Auwera37 estimated the wind power density in accordance with the three-
parameter Weibull distribution and analyzed parameters at different heights.  Emeis38 studied the wind speed 
data of 20–140 m measured by Sodar at different landforms and mountain peaks in Germany and researched the 
parameter variations at different heights. In 1988, through theoretical derivation,  Huwenzhong39 estimated the 
approximate formula of parameters and its precision in the Weibull distribution function from the mean wind 
speed and its standard deviation. In 1996,  Wang40 proposed a hybrid frequency model that was consistent with 
wind speeds in inland areas, and its accuracy was better than that of the two-parameter Weibull model. However, 
the maturity of the Weibull wind frequency probability model is mainly reflected in the applicable evaluation of 
large wind turbines in large areas on land and at sea. Actual data and methods to discuss the evaluation of wind 
energy in urban areas are lacking.

In the Task27 project conducted by the international energy agency, researchers from various countries 
paid close attention to the micro-site selection of wind turbines in complex urban built environments. In Inner 
Mongolia University of Technology, Wang et al. carried out a series of work on urban wind energy utilization 
topics, such as urban boundary layer and microscopic site selection, rooftop wind turbine utilization, turbulence 
model of building wind environment, and the effect of obstacles on turbulence. The three following aspects were 
considered. First, the accuracy of different turbulence models in building wind environment numerical simula-
tion was  compared41. The numerical analysis method of wind turbine micro-site selection in urban buildings 
was  summarized42, discussed, and  analyzed43. The specific installation height of wind turbine at different types 
of  roofs44 was also discussed and analyzed. Second, a new method for numerical research and analysis of micro-
site selection of rooftop wind turbine based on the urban atmospheric boundary layer theory was  proposed45. 
The power of special rooftop wind turbine for buildings in the city was predicted. Third, the influence of non-
architectural factors in the urban turbulent environment, such as the disturbance effect of different inflow angles, 
wind profile, surface roughness, and hedge wall, on the micro-site selection of the wind turbine was further 
studied. The effect of flow field characteristics was also  simulated46.

Site selection analysis is carried out for specific urban environmental areas to enrich the measured data of 
urban wind energy. Based on the work of the research team, this study continues the research topic of Task27 on 
wind energy potential and urban wind energy. The mechanism of wind energy use in Inner Mongolia Autono-
mous Region is explored. The key laboratory of renewable energy base, which was built by the ZephIR sonde 
and laser radar wind mast perennial ground meteorological observation system, is optimized. ZephIR laser 
radar is the main test method and data source used. It allows 11 Locations near the ground to be vertically 
observed the features of the wind speed and turbulence characteristics. The Weibull probability model is used 
to fit the cumulative probability distribution function of each height. Least square method is used to estimate 
the shape, scale, and position parameters. Finally, the wind energy density of the entire year and each month is 
calculated, and the turbulent environment around the observation site is analyzed. According to the parameters 
of wind turbine micro-site selection, some suggestions are introduced for the selection of urban near-surface 
and micro-wind turbine to provide a favorable reference for related projects and research on the utilization of 
wind energy in the future.

Methodology
Urban wind profile. The wind profile formula, Eq. (1) of exponential law, was proposed by Hellman in the 
1820s. After continuous  improvement47, it could further describe the atmospheric boundary layer within the 
range of 30–300  m48:

where Vh is the average velocity at the height hg, m/s; Vg is the average velocity at the reference height hg, m/s; 
a is the wind speed profile index or wind shear index, which is determined by the surface roughness height.

For the urban terrain with relatively dense and low-rise buildings, some Japanese scholars further proposed 
that the urban rough sub-layer conforms to the logarithmic wind  profile49. Its expression is presented in Eq. (2):

where: v* is the friction velocity, m/s; h0 is the aerodynamic roughness height of the ground, m; h is the vertical 
height of the research point from the ground, m; k is the Carmen constant, generally 0.4.

Wind speed distribution. In general, the Weibull distribution function applied to statistical analysis of 
wind speed mainly includes two and three-parameter models. The two-parameter model is shown in Eq. (3):
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where v is the wind speed, v > , 0, k > , 0; and c > 0. The dimensionless factor k determines the shape of the curve 
and is called the shape factor. Parameter c is the scale parameter. The three-parameter Weibull distribution func-
tion adds the position parameter v, which considers the value of zero wind speed and determines the starting 
position of the distribution curve. Equation (4) presents the distribution function model:

Parameter estimation methods include moment estimation and maximum likelihood estimation. Consid-
ering the precision of parameter estimation and the complexity of calculation, this study uses the nonlinear 
regression equation to construct the probability function model of three-parameter Weibull distribution. The 
values of parameters u, k, and c are estimated by the least square method. The parameter estimation process is 
described as follows.

First, the probability distribution function in Eq. (4) is transformed into the cumulative probability density 
function Eq. (5):

Equation (6) is obtained by substituting Eq. (5) into the term and solving the logarithms of both sides of the 
equation.

Ln(v-u) in Eq. (6) is regarded as X, ln[-ln(1-F(v))] as Y, and the corresponding residual terms and coefficients 
are regarded as parameter sets. According to the principle of least square, the estimated values of parameters k, 
c, and u of the original function F(v) are obtained using Eqs. (7), (8), and (9)50–52, respectively, as shown below:

Turbulence intensity (TI). TI represents the turbulence development intensity and the ratio of the stand-
ard deviation of wind speed to the average wind speed. Under the same set of measurements and the specified 
period, a TI of 10 min is calculated using Eq. (10)37:

TI is a measure of turbulence that fluctuates with the value of wind speed. It is one of the important param-
eters that determine the safety level or design standard of wind turbines, and it is also an important part of wind 
resource assessment in wind farms. The assessment results directly affect the selection of wind turbines.

According to IEC 61400-1 (2019 edition), TI is divided into four grades A+ , A, B, and C (Table 1) to deter-
mine the classification of wind turbines.

Wind power density. From the subjective perspective of wind energy utilization, the key to determining 
the wind energy potential of a city is the amount of kinetic energy, which can be converted from the wind speed. 
See Eq. (11) for the power calculation equation:
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Table 1.  Turbulence intensity class.

Turbulence intensity class Values

A+ (designates the category for very high turbulence characteristics) 0.18

A (designates the category for higher turbulence characteristics) 0.16

B (designates the category for medium turbulence characteristics) 0.14

C (designates the category for lower turbulence characteristics) 0.12
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According to Eq. (4), the wind energy density based on position parameter u, shape parameter k, and scale 
parameter c is used to illustrate the wind energy environment conforming to Weibull probability distribution 
characteristics. The wind energy density equation is shown in Eq. (12):

where ρ is the air density (it’s calculated by Eq. (13)) and AR is the swept area of the wind  turbine53.

where g is the gravitational acceleration, t is the temperature, and p is the absolute pressure Eq. (14) is obtained 
by integrating Eq. (12):

where Γ(v, z) is the incomplete gamma function. The calculation method is described in Eq. (15):

Goodness of fit test. The goodness test of parameter estimation and regression analysis in this study 
mainly focuses on  R2 and χ2 to test the degree of agreement between fitting value and actual value. The calcula-
tion process is shown in Eqs. (16) and (17):
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Site description and data analysis
ZephIR Lidar test system. Wind lidar has been widely used in wind resource evaluation. The basic prin-
ciples of lidar depend on measuring the Doppler shift of radiation from wind-borne natural aerosols, such as 
droplets, pollen, or dust (the parameters are shown in Table  2). The ZephIR pulse lidar can simultaneously 
measure at different heights over long distances in space (see Fig. 1 for the testing principle and the setting height 
of wind speed in this paper). Vl is the radial velocity along the diameter line of strafing cone obtained directly 
by radar test, whereas Vh and Vz are the velocity components in horizontal and vertical directions, respectively. 
According to the observation height setting shown in Fig. 1, ZephIR Lidar continuously observes the weather 
and wind speed for one year and three months, during this period, the observing system will automatically mark 
the invalid data caused by the signal obscured by floating objects. When the power supply is intermittent or 
stopped, the data is displayed as a blank group. After removing the above invalid group and blank group data, 
the integrity of the observation data is about 91.88%.

Observation environment. Geographical location and building profile observations. The lidar observa-
tion system is located in the experimental base of the key laboratory of wind and solar energy utilization mecha-
nism and optimization in Inner Mongolia Autonomous Region. The specific locations of the geomorphology, 
building plane, and observation system are shown in Figs. 2 and 3. The site environment consists of mostly 
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low-rise buildings with a building density of less than 50% surrounded by a single row of aspen poplars and a 
shrub green belt of approximately 0.75 m. Figure 3 can be seen that the terrain of the observed area in the suburb 
is relatively open. In this area, the influence of urban heat island effect is more less, the wind speed of is higher 
than that of the buildings in the urban area, and the wind direction is stable. In addition to low shrubs and lawns, 
there are no tall obstacles, buildings and trees, which are suitable for the development of wind energy resources. 
It is a natural wind field in line with the characteristics of most urban suburbs.

Meteorological conditions at the observation site. Meteorological conditions refer to the hydrothermal condi-
tions of various weather phenomena. The main meteorological conditions of the urban complex environment 
are wind speed, temperature, humidity, and atmospheric pressure. The parameters related to the utilization of 
wind energy mainly include wind speed and air density calculated by temperature T Air and atmospheric pres-
sure. The above meteorological parameters are shown in Figs. 4, 5 and 6.

Table 2.  Main parameters of ZephIR Lidar.

The parameters of ZephIR Lidar Parameter values

Measuring range 10–200 m (Lidar survey)
0–10 m (Shipboard weather station)

The length of the probe  ± 0.07 m@10 m
 ± 7.70 m@100 m

Measure the height The user is configured with 10 heights plus an additional met station for measurement

Sampling frequency 50 Hz (up to 50 measuring points per second)

The average ratio The actual value is 1 s, with a 10-min average of 0.1 m/s

Wind speed resolution 0.1 m/s

Change the direction of the wind  < 0.5°

Change the direction of the wind  < 1 m/s–80 m/s

Figure 1.  ZephIR Lidar testing principles.

Figure 2.  Architectural features of the observation site.
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Figure 3.  Observation environment was positioned with the ZephIR Lidar.

Figure 4.  Monthly average changes of temperature and humidity.

Figure 5.  Monthly average variation of atmospheric pressure.
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The altitude of the observation site is 1014 m, and the annual average temperature is 10.3 °C. The average 
atmospheric pressure is 892.4 mbar, and the average humidity is 39.6%. The average air density is 1.09 kg/m3, as 
calculated by Eq. (17). The monthly variation law of atmospheric pressure and air density is basically the same. 
The air density and air pressure are the lowest in July when the average air temperature is highest. During this 
period, the air density varies from 1 to 1.2 kg/m3, and the air pressure varies from 884 to 900 mbar, both of which 
are lower than the atmospheric pressure and air density values under standard conditions.

Characteristics of the wind environment. Wind direction characteristics. The change of wind direc-
tion is very important for wind turbines, especially vertical axis wind turbines. Figure 7 shows the annual wind 
direction and wind speed frequency rosettes at heights of 10–19 m. The main wind direction at all observation 
positions, including the contrast height, is N. However, it is not very different from other minor winds. The di-
rection in which wind occurs most frequently is between two tall buildings. However, in the continuous height 
range (Fig. 8), no significant difference was found in the wind direction frequency of 10 positions.

Wind speed power law characteristics. The wind shear coefficients within 10–19 and 19–38 m (Table 2) can be 
calculated from the Exponential Law (Eqs. 1 and 2). The coefficient value between 12 and 19 m is 0.32, whereas 
coefficient values of more than 19 and within 10–12 m show significant differences. In comparing the exponen-
tial and logarithmic profile curves to simulate wind shear in the vertical direction of wind speed, the exponential 
law is closer to the actual value than the logarithmic law at 38 m. Furthermore, the exponential law form using 
the natural constant e as the base is close to the actual average wind speed value (Fig. 9, Eq. (18)). However, the 
height observed in this paper is concentrated in 10–19 m, so it is impossible to judge the accuracy of its estima-
tion of the horizontal wind speed value above 38 m. However, compared the differences of wind shear coefficient 
in different height (Table 3), the wind shear coefficient between 12 and 19 m tends to be stable. It can be reason-
ably assumed that the vertical shear of wind speed may be more hierarchical in the atmospheric boundary layer 
corresponding to the complex landform in the suburb of the city. However, Eq. (18) shows excellent agreement 
with the actual wind speed at the observation altitude because of the addition of a correction (x-0.43) to the alti-
tude, and through the coefficients of 3.88 and 5.17, the function is limited and modified at the wind shear section 
and the atmospheric boundary layer height where the wind shear tends to 0, but its specific role and correlation 
still need to be combined with the hydrodynamics experiment and theory on the determination of derivation, 
further discussion will not be made here.

Wind speed statistical characteristic. In this study, a three-parameter Weibull model is used to analyze the 
probability distribution of wind speed at different heights (10–19 and 38 m) during the observation period. 
The probability statistics and nonlinear regression analysis are presented in Fig. 10. The parameters obtained 
from the least square method (Eqs. (7), (8) and (9)) are shown in Table 4. Therefore, this paper compares the 
differences between the Rayleigh distribution, the two parameter Weibull distribution and the three parameter 
Weibull distribution function model with the actual probability distribution, as shown in Fig. 10. The probability 
distribution of wind speed expressed by the Rayleigh distribution is quite different from the actual one; while the 
two parameter Weibull distribution model is obviously different from the three parameter distribution and the 
actual distribution in the zero and low wind speed regions, while the surface structure in the suburb of the city 

(18)V(h) = 3.38 · e

(

− 5.17
x−0.43

)

Figure 6.  Average change of air density.
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is complex, with the influence of buildings, trees and shrubs, and the rough length is approximately 167 times 
that of the grassland, 4000 times that of the sea. This obvious difference in retardation makes the probability of 
low velocity wind samples taking up the whole sample in the range of suburban near ground height quite con-
siderable, it is necessary to require the corresponding probability distribution function to accurately represent 
the probability distribution of zero wind and low-speed wind interval. Compared with the above three types of 
probability distribution functions, only the three parameter Weibull distribution model has a good consistency 
with the actual wind speed distribution in the low wind speed interval. Moreover, from the results of the good-
ness test of four different standards (Tables 5 and 6), the three parameter Weibull distribution is more suitable 

Figure 7.  Wind roses at various altitudes.
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for describing the probability distribution of wind speed within the test height than the other two distribution 
models.

Parameter analysis of wind speed distribution model
The three unknown parameters of the three-parameter Weibull model are the shape parameter k, scale param-
eter c, and location parameter μ. Nonlinear regression analysis was used to estimate the values of these three 
parameters at 10 observation positions (Fig. 11). Its mathematical significance is that while c and μ are the same, k 
affects the shape change of the distribution curve. When k and μ are the same, c affects the size of the x-coordinate 
scale. When k and c are the same, μ determines the starting position of the curve.

The variation of location parameters and scale parameters with height presents a monotonically increasing 
trend (Fig. 11). However, the increasing range is not the same. Scale parameters increase by approximately 0.4 in 
the height range of 10–19 m. However, the increasing range of location parameters is only approximately 0.28. 
Therefore, in the scale range of 10–19 and 10 m, the influence of height growth on scale parameters is more 

Figure 8.  Wind direction frequency variation trend at each observed height.

Figure 9.  Various forms of wind speed power law changes.

Table 3.  Wind shear index within the range of 10–19 and 19–38 m.

Height range 10–11 11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–38

α 0.49 0.35 0.32 0.32 0.33 0.32 0.31 0.31 0.31 0.26
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significant than that of position parameters. However, no similar trend was observed in the variation of shape 
parameters. The variation was the smallest of the three parameters. The mathematical relevance of the corre-
sponding parameters is that while height increases, the span between the wind speed values of the Weibull prob-
ability distribution function also increases because the three-parameter Weibull distribution function considers 
the influence of static wind. As the wind speed in the vertical direction of the gradient increases, the frequency 
of static winds decreases. This condition also indirectly proves that in the urban wind environment where static 
wind, low speed wind, and strong wind exist alternately, the three-parameter Weibull probability distribution 
model considering static wind factor has good fit with the local actual wind conditions of the city.

Based on the Weibull distribution function model and corresponding parameter values obtained from the 
wind speed data at the 10 positions of 10–19 m, this study extrapolates the parameter values and wind speed 
distribution function model at other height positions (Fig. 12). The distribution function model and parameters 
of the relative height at 38 m are compared, and the results are shown in Fig. 13. See Fig. 14 for the compari-
son between the function constructed by extrapolation parameters at other heights and the actual distribution 
function.

The extrapolated model parameters are close to the actual wind speed probability distribution in the inter-
val over 2 m/s. Thus, the extrapolated value at the height not reached by the probe can be used to qualitatively 

Figure 10.  Three type of probability distribution of wind speed at the observed altitude.

Table 4.  Values of μ, k, and c at each observation position.

Height range 10 m 11 m 12 m 13 m 14 m 15 m 16 m 17 m 18 m 19 m 38 m

μ 0.60 0.61 0.62 0.62 0.66 0.66 0.67 0.67 0.68 0.68 0.71

k 0.30 0.31 0.31 0.31 0.33 0.33 0.33 0.33 0.34 0.34 0.35

c 0.45 0.46 0.46 0.48 0.49 0.50 0.50 0.50 0.51 0.51 0.53
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Table 5.  Chi-square goodness and  R2 of fit test.

Height

Simplify the Chi-square R2

Rayleigh Weibull2 Weibull3 Rayleigh Weibull2 Weibull3

10 m 0.00104 8.82E−05 3.56E−05 0.98268 0.99853 0.99941

11 m 0.0012 3.18E−04 1.31E−05 0.98449 0.99592 0.99983

12 m 0.0012 3.18E−04 1.31E−05 0.98449 0.99592 0.99983

13 m 0.00103 3.89E−05 1.72E−05 0.97807 0.99917 0.99963

14 m 9.60E−04 3.40E−05 1.83E−05 0.97763 0.99921 0.99957

15 m 0.00128 4.09E−05 2.71E−05 0.97520 0.99921 0.99948

16 m 0.00102 3.70E−04 2.18E−05 0.98432 0.99626 0.99978

17 m 0.00107 6.10E−05 2.64E−05 0.97795 0.99875 0.99946

18 m 0.00126 6.20E−05 3.43E−05 0.97650 0.99885 0.99936

19 m 0.00118 0.00118 3.43E−05 0.97718 0.97718 0.99934

38 m 0.00104 8.82E−05 3.56E−05 0.98268 0.99853 0.99941

Table 6.  RSS/SSE and RMSE test of goodness.

Height

RSS/SSE RMSE

Rayleigh Weibull2 Weibull3 Rayleigh Weibull2 Weibull3

10 m 1.03593 0.08781 0.03553 0.004691997 0.001366043 0.000868941

11 m 1.20287 0.31624 0.01302 0.005121666 0.002626094 0.000532853

12 m 1.20287 0.31624 0.01302 0.005121666 0.002626094 0.000532853

13 m 1.02738 0.0387 0.01713 0.004705661 0.000913294 0.000607622

14 m 0.95879 0.03389 0.01824 0.00454083 0.000853708 0.000626305

15 m 1.28107 0.04077 0.027 0.005242264 0.000935196 0.000761052

16 m 0.97209 0.3681 0.0217 0.004560902 0.002806599 0.00068144

17 m 1.06774 0.06072 0.02627 0.004778441 0.001139513 0.00074952

18 m 1.26048 0.06171 0.03416 0.005191509 0.001148691 0.000854643

19 m 1.17745 1.17745 0.0342 0.005016162 0.005016162 0.000854896

38 m 1.03593 0.08781 0.03553 0.004691997 0.001366043 0.000868941

Figure 11.  Parameter values of Weibull distribution function at each observed altitude.
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determine the overall probability distribution of wind speed at that point. However, the extrapolation between 
0 and 2 m/s is lower than the actual frequency of wind speed, which may lead to an underestimation of wind 
potential.

Regardless of the scale, shape, or position parameters, the monthly changes at each observation height have 
maintained relatively consistent rules. However, the position and shape parameters have different vertical vari-
ation characteristics (10–19 m) in different months, and only the scale parameters show stable linear growth.

To understand the relationship between seasons and the probability distribution of wind speed, this paper 
also summarizes and sorts the parameter values of the above three parameters in each month of the observation 
year. The parameter values have no significant seasonal characteristics and are not significantly correlated with 
meteorological parameters, such as air temperature, atmospheric pressure, and air density (Figs. 13, 14, and 15), 
and parameter values of the wind speed probability distribution model in the observed year, neither seasonally 
nor monthly. Moreover, the parameter values estimated using a year’s data affect the monthly variation (Fig. 15 
and 16), making it easy to underestimate or overestimate the potential of wind energy in a dispersed and highly 
variable wind environment, such as urban area, where the observation site is located. Furthermore, in a built 
environment, such as energy base, the proportion of very low or zero wind speeds in the overall sample of 
monthly wind speeds does not change considerably. In addition, considering the mathematical significance of 
position parameter, scale parameter and shape parameter in Weibull distribution, when the wind speed data of 
each month is taken as the estimation, the difference of parameters of each month is mainly reflected in the scale 
parameter, which is directly related to the difference of wind speed threshold in different months. Figures 15 and 
16 reflect the location parameters and shape parameters, from which we can see that the frequency of low wind 
speed interval and the frequency structure of the whole wind speed interval have little difference in each month 
of the year; The wind speed fluctuates greatly from February to may, and the wind speed threshold is the highest 
in the whole year. In other months, the wind speed keeps within a relatively stable range.

Figure 12.  Value of the Weibull parameter (10–19 m) and the extrapolation value.

Figure 13.  Probability distribution and extrapolation probability distribution curves of actual wind speed at 
38 m.
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The scale parameter determines the threshold value of the wind speed interval. In other words, the larger 
the parameter, the larger the maximum wind speed value of the wind speed interval. Wind speed decreases in 
the vertical direction with the influence of the underlying surface, and the average wind speed in a certain time 
period generally increases in the form of power law or exponential law (Fig. 9). However, the scale parameter is 
related to the maximum wind speed in the wind speed data sample.

The shape parameter determines the shape of the probability density curve. According to the properties of 
Weibull distribution, when the shape parameter is 1, the Weibull distribution is simplified into an exponential 
distribution. When the annual wind speed data of 10 min is taken as a sample, the value of shape parameters at 
each height is close to 1, and the deviation is within ± 0.03. The distribution of wind speed tends to exponential 
distribution at this time. When taking the wind speed data of each month as the sample, although the whole is 
close to 1, the difference of some months is more than 0.3, which has changed the distribution form. Based on 
the same time span, statistical analysis of samples made throughout the year will affect the actual differences 
of each month. When conditions permit, separate statistics on monthly meteorological and wind speed data of 
the location of wind energy utilization in urban plans are conducive to the seasonal advantage of wind energy, 
which is also shown in the wind energy density estimation below.

Assessment of wind resources
The intensity distribution of the wind speed at all heights is almost the same in the 16 wind direction ranges. 
The speed in the direction of NNE is lower, whereas the wind speed in the direction of N is higher (Fig. 17).

According to the change of wind direction, the steady distribution of wind direction between vertical layers 
is suitable for installing vertical axis wind turbine. For the horizontal axis wind turbine, attention should be paid 
to the effect of yaw on the operation of the wind turbine. However, an evident gradient is observed in the wind 

Figure 14.  Probability distribution and extrapolation probability distribution curves of actual wind speed at 
10–19 m.
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speed from the 16 directions (Fig. 17), which will add a large non-uniform wind load to the wind wheel and 
central axis and affect the safe and stable operation of the wind turbine.

To further evaluate the wind energy potential at the observation position, the basic parameters of two small 
vertical axis and horizontal axis wind turbines (Table 7) were selected to calculate the wind energy density. Spring 

Figure 15.  Parameter values at the observed position of 10–19 m (monthly).

Figure 16.  Parameter values at the observed position of 38 m (monthly).
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is the season with the highest wind density, followed by autumn (Figs. 18 and 19). At 10–19 m, the horizontal 
axis (Fig. 20) is better than the vertical axis but not enough to compensate for the effect of yaw.

In IEC61400-1, if a turbine is installed, it will greatly affect the stability and safety of the wind turbine. The 
power law change of TI measured by Lidar in the vertical direction conforms to the curve rule of the function 
shown in Eq. (19).

Although we are not quite sure about the size of extrapolate TI beyond 38, but the simulated extrapolation 
curve of TI at the actual height also indicates that it is difficult for TI to be less than 20% at the height of 38–10 m 

(19)l(h) = 0.2e

(

6.44
x+3.66

)

Figure 17.  Annual wind speed distribution at all observed altitudes of 10–19 m.

Table 7.  Basic parameters of commercial horizontal and vertical axis wind turbines.

Wind turbine Rated power (W) Rotor diameter (m) Blade length/height (m) Start-up wind speed (m/s)

H-300W (vertical axis) 300 1.2 1.4 2

FD1.5-300W (horizontal axis) 300 1.5 0.7 2.5

Figure 18.  Wind energy density (VAWT) per month at 10–19 m.
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Figure 19.  Wind energy density (HAWT) per month at 10–19 m.

Figure 20.  Annual wind density at each height.

Figure 21.  TI vertical variation law.
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(Fig. 21). However, after classifying the TI at these observed heights according to 16 wind direction intervals 
(Fig. 22), the TI has a relatively regular expression in the wind direction. In the area where TI is relatively high 
[90, 225], the incoming flow direction is a continuous row of shrubs with a height of approximately 20 m in 
the south of the observation site. By contrast, buildings in the northeast and northwest of the site have no such 
effect on turbulence near the site.

Conclusions
The continuous promotion of urban wind energy utilization requires not only theoretical research and innova-
tion of energy utilization model, but also diverse field data to understand the wind environment characteristics 
of microclimate groups in different urban scales and different urban areas.

In this study, ZephIR Lidar was used to observe the wind environment indicators 10–19 m above the relatively 
open area of an experimental base in the urban outskirts of Hohhot for one year. The Weibull distribution func-
tion was used to analyze its statistical characteristics. The results showed that the three-parameter Weibull prob-
ability distribution model has good applicability to the wind speed characteristics of urban suburban buildings 
similar to the energy bases. Therefore, the spatial and temporal variation of the parameters and the estimation 
of wind energy density were discussed, and the following conclusions were drawn:

1. In this paper, Eqs. (18) and (19), the exponential form based on natural logarithm, can well fit the vertical 
changes of wind speed and TI in the station. Within the observed height range, 12–19 m is a relatively stable 
wind-shear height zone.

2. From the perspective of the sample source of wind data and the characteristics of its Weibull distribution, 
capturing the dispersed and changing wind energy in cities by fitting parameters of each month alone is 
beneficial. The scale, shape, and position parameters generally change linearly within the height of 10–19 m. 
The wind speed probability distribution at 38 m, which is composed of the parameter values derived in 
extrapolation, at the range of 0–2 m/s is significantly lower than the probability value of the actual distribu-
tion at this position. Thus, the wind speed region within 0–2 m/s is underestimated. However, the limitations 
of urban observation conditions can still be solved on the whole.

3. In terms of the available wind potential, the annual wind density of the 300 W commercial horizontal axis 
wind turbine in the range of 10–19 m is 61.73 W/m2, whereas the vertical axis wind density is 58.71 W/
m2. However, the wind direction statistics at the observation site show that the environment is suitable for 
installing vertical axis wind turbine (not including the roof). Wind energy is abundant in April and May, 
60.68 and 63.38 W/m2, respectively. These values are approximately three times of the month with the low-
est wind energy density. Moreover, in the environment where the site is located, approximately 100 W wind 
turbines seem to be suitable.

Figure 22.  10–19 m TI is distributed by wind direction throughout the year at all observed altitudes.
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4. The TI near the station is still hardly lower than 20% within 0–100 m. However, the TI in the wind direction 
with trees in the incoming flow direction is higher by approximately 1% than that in the direction of build-
ings.

Data availability
The authors would like to acknowledge the usage of the ZephIR Lidar provided by the laboratory of utilization 
mechanism and optimization of wind energy and solar energy of college of energy and power Engineering of 
the Inner Mongolia University of Technology.
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