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A generalized deep learning 
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Balaji Srinivasan2

Histopathology tissue analysis is considered the gold standard in cancer diagnosis and prognosis. 
Whole‑slide imaging (WSI), i.e., the scanning and digitization of entire histology slides, are now 
being adopted across the world in pathology labs. Trained histopathologists can provide an 
accurate diagnosis of biopsy specimens based on WSI data. Given the dimensionality of WSIs and 
the increase in the number of potential cancer cases, analyzing these images is a time‑consuming 
process. Automated segmentation of tumorous tissue helps in elevating the precision, speed, 
and reproducibility of research. In the recent past, deep learning‑based techniques have provided 
state‑of‑the‑art results in a wide variety of image analysis tasks, including the analysis of digitized 
slides. However, deep learning‑based solutions pose many technical challenges, including the large 
size of WSI data, heterogeneity in images, and complexity of features. In this study, we propose 
a generalized deep learning‑based framework for histopathology tissue analysis to address these 
challenges. Our framework is, in essence, a sequence of individual techniques in the preprocessing‑
training‑inference pipeline which, in conjunction, improve the efficiency and the generalizability of 
the analysis. The combination of techniques we have introduced includes an ensemble segmentation 
model, division of the WSI into smaller overlapping patches while addressing class imbalances, 
efficient techniques for inference, and an efficient, patch‑based uncertainty estimation framework. 
Our ensemble consists of DenseNet‑121, Inception‑ResNet‑V2, and DeeplabV3Plus, where all 
the networks were trained end to end for every task. We demonstrate the efficacy and improved 
generalizability of our framework by evaluating it on a variety of histopathology tasks including breast 
cancer metastases (CAMELYON), colon cancer (DigestPath), and liver cancer (PAIP). Our proposed 
framework has state‑of‑the‑art performance across all these tasks and is ranked within the top 5 
currently for the challenges based on these datasets. The entire framework along with the trained 
models and the related documentation are made freely available at GitHub and PyPi. Our framework 
is expected to aid histopathologists in accurate and efficient initial diagnosis. Moreover, the estimated 
uncertainty maps will help clinicians to make informed decisions and further treatment planning or 
analysis.

Histopathology is considered the gold standard for cancer  diagnosis1,2 and identification of prognostic and 
therapeutic targets. Early diagnosis of cancer significantly increases the probability of  survival3. Unfortunately, 
pathological analysis is an arduous process that is difficult, time-consuming, and requires in-depth knowledge. 
A  study4 examining breast biopsies concordance among pathologists found that pathologists disagreed with each 
other on a diagnosis 24.7% of the time on average. This high rate of misdiagnosis stresses the need to develop 
computer-aided methods to aid pathologists in histopathology.

Digital pathology is the method of digitizing the histology slides to produce high-resolution  images5. Stud-
ies have been conducted on collecting, analyzing, and interpreting digitized pathological slide  images1. The 
increasing prevalence of WSI technology that can scan the entire tissue slide at the subcellular level makes the 
in-silico pathology analysis more  viable6. Digital pathology’s array of image analysis activities include identifi-
cation and counting (e.g. mitotic events), segmentation (e.g. nuclei), and tissue differentiation (e.g. cancerous 
vs. non-cancerous)5,7,8. Segmentation analysis helps to detect and separate tumor cells from the normal  cells9,10. 
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Segmentation of WSI images is usually the precursor for performing various other downstream analyses such 
as classification and tumor burden estimation.

Automated WSI image analysis is plagued by a myriad of  challenges11, namely: 

1. Large dimensionality of WSI images A WSI image is obtained by digitizing a glass slide at a very high resolu-
tion (of the order of 0.25 micrometers/pixel, which corresponds to 40 × magnification on a microscope). A 
typical glass-slide of size 20 mm × 15 mm results in gigapixel image of size 80,000 × 60,000 pixels.

2. Insufficient training samples The main impediments to the development and clinical implementation of deep 
learning algorithms consist of sufficiently large, curated, and representative training data which includes 
expert labeling, which is a costly and time-consuming process (e.g., pathologist annotated data). Most clinical 
research groups currently have restricted access to data. The data is often based on small sample sizes with 
limited geographic variety, resulting in algorithms with limited utility and poor generalization.

3. Stain variability across laboratories As the data is acquired from multiple sources, there exists a lack of uni-
formity in staining protocol. Building a generalized framework that is invariant to stain pattern variability 
is challenging.

4. Extraction of clinically relevant features and information Another major challenge is trying to extract features 
that are meaningful from a clinical point of view. Deep learning does an excellent task of automatic feature 
extraction, but understanding these extracted features and extracting meaningful information from them 
is challenging.

In this study, we propose a generalized deep learning-based framework for histopathology tissue analysis that 
addresses all the aforementioned problems. Our proposed framework is a sequence of individual techniques in 
the preprocessing-training-inference pipeline which, in conjunction, improve the efficiency and the generalizabil-
ity of the histopathology image analysis. The combination of techniques we have introduced includes an ensemble 
segmentation model, division of the WSI into smaller overlapping patches while addressing class imbalances, 
efficient techniques for inference, and an efficient, patch-based uncertainty estimation framework. The organiza-
tion of the paper is as follows. Prior work on histopathology image analysis using deep learning-based methods 
is discussed in “Related work” section. In “Datasets used for this study” section, the datasets used in this study 
are presented. Discussion on training and inference pipelines is provided in “Training pipeline” and “Inference 
pipeline” sections respectively. Experimental analysis is described in the supplementary note. The comprehensive 
results to demonstrate the performance of the proposed method on several open-source datasets are presented 
in “Challenge results” section. Discussion of the results, conclusion, and limitations of the proposed study with 
the possible course of research is provided in “Discussion and conclusions” section.

Related work
Deep learning methods for histopathological image analysis. The advent of WSI scanners has 
enabled the digitization of glass slides at very high resolution. Typical WSI images are in the order of gigapix-
els and are usually stored in multi-resolution pyramidal format. These slide images are suitable for developing 
computer-aided diagnosis systems for automating the pathologist workflow. The availability of a large amount of 
data makes them amenable for analysis with machine learning algorithms.

In tumor pathology, nuclear morphology and cellular anatomy are often significant determinants of disease 
severity. In order to make the diagnostic and grading task of tumors less subjective, quantifiable features are 
derived from the images that correlate with the condition of the  disease1. For example, algorithms can be designed 
to detect invasive tumors by first segmenting nuclei from the background, quantifying several nuclear charac-
teristics, such as size, shape, and distribution, and comparing these characteristics with those of normal  cells12. 
Yu et al.13 predicted non-small cell lung cancer prognosis by applying classical machine learning algorithms that 
use engineered features derived from pathology images.

Feature-engineered algorithms rely on a predetermined set of features to classify the tissue. They can only 
classify the tissue as good as the features that differentiate between them. Thus, there is a limit to their efficiency 
even when there is a large amount of data available to refine the algorithm. Therefore, there has been a significant 
shift in recent years towards applying deep learning algorithms as they are known for their inherent ability to 
automatically derive features from input data. Typical deep learning-based approaches for WSI image segmenta-
tion or classification are usually made by cropping the slide image into multiple small image patches and treat-
ing them independently during training and inference. Furthermore, to make an overall slide-level prediction 
or generate a heatmap of regions of interest, patch-level predictions are aggregated appropriately. Cruz-Roa 
et al.14 were one of the first to use this method and showed promising results in detecting invasive ductal breast 
carcinoma. Several studies have applied deep learning algorithms for various pathology tasks related to breast 
cancer, prostate biopsies, colon cancer, etc.

Given the image size and resolution of WSI images, a patch-based approach is used for training deep convolu-
tional neural  networks15–19. Hameed et al.20 and Li et al.21 proposed an ensemble-based framework for classifica-
tion and segmentation using histopathology images. Qin et al.22 proposed a feature pyramid-based approach for 
semantic segmentation, authors combined feature pyramid blocks in the decoder blocks along with ResNet50 
as an encoder. Authors claim that including feature pyramid block provided an overall boost of 10–20% dice 
coefficient, with an overall dice coefficient of 63%. Guo et al.15 proposed a two-stage approach where the first 
stage utilizes inception-v3 for classifying the tumor region followed by a cascaded deep convolutional network 
for fine segmentation. Pedersen et al.23 proposed a C++-based open-source package to read, visualize, zoom, 
pan, and analyze WSI images using CNN’s. In another interesting study,  Shahidi24 proposed the method to use 
super-resolution generative adversarial networks to generate histopathology images, they tested their approach 
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on CAMELYON16  dataset25. Priego-Torres et al.17 propose a segmentation pipeline for breast cancer images, 
using a patch-based approach, where the patches we extracted from all possible regions in an image and later 
merged with fully connected conditional random fields (CRF). Roy et al.19presented a multi-resolution-based 
deep learning approach along with customized reconstruction loss for viable tumor segmentation in liver WSI 
images. Hägele et al.26 explored the effect of various biases in histopathology image analysis. The authors pro-
vided an explainable method such as layer-wise relevance propagation to analyze latent biases and observed and 
improved area under receiver operating curve by 5% after reducing a labeling bias.

Colorectal carcinoma is the third most common cancer in the  world27. The majority of colorectal carcinoma 
are adenocarcinomas originating from epithelial  cells28.  Shapcott29 discuss the application of deep learning 
methods for cell identification on TCGA data. Kather et al.30 discuss the deep learning methods to predict the 
clinical course of colorectal cancer patients based on histopathological images. Bychkov et al.31 discuss the use 
of Long short-term memory (LSTM)32 artificial recurrent neural network (RNN) architecture for estimating the 
patient risk score using spatial, sequential memory.

A review on WSI application for histopathological analysis of liver diseases and for understanding liver biol-
ogy is given by Melo et al.33. They explore how WSI can enhance the evaluation and quantification of several 
histologic hepatic parameters and help to identify various liver diseases with clinical implications. Kiani et al.34 
developed a deep learning-based system to aid pathologists in differentiating between two subtypes of primary 
liver cancer, hepatocellular carcinoma, and cholangiocarcinoma on H&E stained WSI images. Lu and  Daigle35 
demonstrated the usefulness of extracting image features from hepatocellular carcinoma histopathological images 
using pre-trained CNN models to reliably differentiate between normal and cancer samples.

Contributions. A deep learning-based framework for the segmentation and analysis of WSI images has 
been proposed. The framework comprises a segmentation network at its core along with novel algorithms that 
utilize the segmentation to do pathological analyses such as metastasis classification and viable tumor burden 
estimation. As discussed in “Introduction” section, challenges in WSI image analysis are mainly due to their 
large size, variability in staining, and the limited amount of annotated data. Although there exist some studies 
as described in “Related work” section, none of them seem to provide a framework that generalizes well against 
multiple cancer sites. In this work, we proposed methods to address most of the challenges associated with WSI 
analysis with the generic framework, which produces benchmarking results along with uncertainty maps on 
three large open-source databases. The main contributions in this work are described below :

• Ensemble segmentation model The ensemble comprises multiple fully convolutional architectures (FCN) 
architectures, each independently trained on different subsets of the training data. During inference, the 
ensemble generated the tumor probability map by averaging the posterior probability maps of all the FCNs. 
The ensemble approach showed superior segmentation performance when compared to its individual con-
stituting FCNs.

• Training pipeline The proposed approach divided the WSIs into smaller-sized image patches for the pur-
pose of training FCN models. For the preparation of the training set, efficient methodologies for sampling 
patches from the WSI images were introduced. The problem of class imbalance due to the limited number 
of representative patches from tumor regions in the WSI images was addressed by employing overlapping 
and oversampling techniques during patch extraction (random patch coordinate perturbation technique) 
alongside various data augmentation schemes.

• Inference pipeline For efficiently generating model inference on the entire WSI image, a concept of generating 
patch coordinate sampling grid from the post-processed tissue mask was introduced. The sampling grid aided 
in the reduction of computational time by discarding non-tissue patches during the construction of the tumor 
probability heatmap. The patch-based segmentation of WSI images introduced edge artifacts due to loss of 
neighboring context information at patch borders, and this issue was addressed by proposing techniques to 
average prediction probabilities at overlapping regions and making use of large patch size during inference. 
Apart from this, we also compute inference on multiple models parallelly for ensemble calculation over 
patches rather than an entire image.

• Lymph node metastases classification from WSI images A Random Forest-based ensemble classification algo-
rithm was trained with hand-crafted features derived from the predicted tumor-probability maps. The class 
imbalance in the training dataset was addressed by employing strategies such as over-sampling (by syntheti-
cally generating under-presented class data points) and under-sampling (balance all classes by removing 
some noisy data points).

• Uncertainty estimation An efficient patch-based uncertainty estimation framework was developed to estimate 
both data specific and model (parameter) specific uncertainties.

• Open-source Packaging: The proposed framework was packaged into an open-source GUI application for 
the benefit of researchers (DigiPathAI on GitHub).

The performance of the segmentation pipeline was benchmarked by validating it on WSI slide images of three dif-
ferent cancer sites, namely- breast lymph nodes, liver, and colon by participating in  CAMELYON36,  DigestPath37, 
and  PAIP38 challenges respectively.

Materials and methods
This section goes into the details of the proposed framework. Firstly, the ensemble and the network architectures 
are detailed. Secondly, the strategies used to train the models are explained. Finally, the segmentation inference 
method is discussed, followed by the methods used to perform secondary histopathology analyses (Viable tumor 
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burden estimation, pn-staging). Figure 1 provides an overview of the proposed deep learning-based segmenta-
tion and downstream analyses framework for WSI slide images corresponding to multiple different cancer sites.

Datasets used for this study. The proposed framework was validated on multiple open-source datasets 
which included  CAMELYON36 with 1399 WSI images with an average image size of 100000× 100000 and image 
resolution of 0.25microns/pixel,  PAIP38 with 90 WSI images with an average image size of 50000× 50000 and 
image resolution of 0.5microns/pixel, and finally  DigestPath37 dataset consists of 872 tissue images with image 
size of 5000× 5000 . Table 1 provides an overview of the datasets used in this study.

CAMELYON16. The  CAMELYON1625 dataset comprised of 399 WSI slide images taken from two medical 
centers in the Netherlands, out of which 159 WSI images were metastases, and the remaining 240 were negative. 
Pathologists exhaustively annotated all the WSI images with metastases at the pixel level. In the CAMELYON16 
challenge, the 399 WSI images were split into training and testing sets, comprising of 160 negative and 110 
metastases WSI images for training, 80 negative and 49 metastases WSI images for testing.

CAMELYON17. The  CAMELYON1739 dataset consisted of 1000 WSI images taken from five medical centers in 
the Netherlands. In the CAMELYON17 challenge, 500 WSI images were allocated for training, and the remain-
ing 500 WSI images were allocated for testing. The training dataset of CAMELYON17 included 318 negative WSI 
images and 182 WSI images with metastases. In the CAMELYON17 dataset, slide-level labels of metastases type 
were provided for all the WSI images, and exhaustive pixel-level annotations were provided for 50 WSI images. 
The slide-level labels were negative, Isolated tumor cells (ITC), micro-metastases, and macro-metastases. Table 2 
provides the size criteria for metastases type. The pN-stage labels were provided for all the 100 patients in the 
training set and were based on the simplified rules provided in Table 3. Table 4 provides the metastases type 
distribution in CAMELYON17 training dataset.

PAIP. The PAIP  201938 dataset contains a total of 100 WSI images scanned from liver tissue samples. Each 
image has an average dimension of 50,000x50,000 pixels. All the images were H&E stained, scanned at 20x 
magnification, and prepared from a single center (Seoul National University Hospital). The dataset included 
pixel-level annotation of the viable tumor and whole tumor regions. It also provided the viable tumor burden 
metric for each image.

Figure 1.  Deep learning based framework for segmentation and analysis of WSI images. Drawn using draw.io 
(draw.io).

Table 1.  Summary of histopathological datasets used in this work. The test images were hidden by the 
competition organizers and used only for leaderboard evaluation.

Dataset Train set Test set Image size Microns/pixel

CAMELYON16 270 129 100,000 × 100,000 0.25

CAMELYON17 500 500 100,000 × 100,000 0.25

DigestPath 660 212 5000 × 5000 0.25

PAIP 50 40 50,000 × 50,000 0.5
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Tumor burden is defined as the ratio of the viable tumor region to the whole tumor region. The viable tumor 

region is defined as the cancerous region. The whole tumor area is defined as the outermost boundary enclosing 
all the dispersed viable tumor cell nests, tumor necrosis, and tumor capsule . Each tissue sample contains only one 
whole tumor region. This metric has applications in assessing the response rates of patients to cancer treatment.

Out of the 100 images, 50 images were the publicly available training set, ten images were reserved for valida-
tion set that was made publicly available after the challenge was completed, and the rest 40 images were the test 
set whose ground truth were not publicly available. The test images weren’t used directly in the study. However, 
the score generated by the PAIP 2019 server by testing our algorithm against the test images was used in the study.

DigestPath. The DigestPath dataset consists of tissue sections collected during the examination of colonoscopy 
pathology to identify early-stage colon tumor cells. There are ten or more tissue sections in a single WSI image 
for colonoscopy pathology review. The challenge organizers selected one or two tissue sections in a WSI image 
and provided images of these tissue sections along with their corresponding lesion annotations by pathologists 
in jpg format. On average, each tissue image was of size 5000 × 5000 pixels. The training dataset of DigestPath 
consists of 660 tissue images taken from 324 patients, in which 250 tissue images from 93 patients had lesions, 
and the remaining 410 tissue images from 231 patients had no lesions. The data was collected from multiple 
medical centers, especially from several small centers in developing countries. All the tissue sections were H&E 
stained and scanned at 20 × magnification. The testing dataset consisted of 212 tissue images from 152 patients. 
The challenge organizers released only the training set, and the testing set was kept confidential.

Network architecture. For the task of segmentation of tumor regions from patches of the WSI images, an 
ensemble of  FCN40 architectures were used. A typical FCN based segmentation network comprises an encoder 
network, a decoder network, and a pixel-wise classification layer. An encoder network comprises a series of 
operations (like convolution and pooling) that transforms the input (image) to a set of low-resolution feature 
maps. The decoder network comprises of up-sampling or transposed convolution followed by series of convolu-
tion operations that transform the low-resolution encoder feature maps to the original input resolution feature 
maps for pixel-wise classification.

The ensemble consisted of three encoder-decoder-based FCN architectures. Experiments (Tables Experimen-
tal 8, 9 in the supplementary note) showed that using an ensemble of three different networks provided superior 
segmentation performance compared to using the networks individually. During inference, the predicted tumor 
posterior probability map from all three models was averaged to generate the ensemble model’s final prediction. 
We carefully selected these three different architectures based on the number of parameters, multi-scale feature 

Table 2.  Tumour size criteria for assigning metastasis type.

Category Size

Isolated tumour cells Single tumour cells or a cluster of tumour cells not larger than 0.2 mm or less than 200 cells

Micro-metastasis Larger than 0.2 mm and/or con- taining more than 200 cells, but not larger than 2 mm

Macro-metastasis Larger than 2 mm

Table 3.  Pathologic lymph node classification (pN-stage) in CAMELYON17 Challenge.

pN-Stage Slide labels

pN0 No micro-metastases or macro-metastases or ITCs 
found

pN0(i+) Only ITCs found

pN1mi Micro-metastases found, but no macro-metasta-
ses found

pN1 Metastases found in 1-3 lymph nodes, of which 
at least one is a macro-metastasis

pN2 Metastases found in 4-9 lymph nodes, of which 
at least one is a macro-metastasis

Table 4.  Metastases type distribution in CAMELYON17 training set.

Metastases (Training set)

Negative ITC Micro Macro

318 35 64 88
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extraction, and their performance on PASCAL  VOC41 open leaderboard. The ensemble comprised of the fol-
lowing FCN architectures:

• U-Net42 with DenseNet-12143 as the backbone (encoder) pre-trained on  ImageNet44. The decoder comprised 
of the bi-linear up-sampling module followed by convolutional layers. Features learned in the down-sampling 
path of the encoder were concatenated with the features learned in the up-sampling path using skip connec-
tion.

• U-Net42 with Inception-ResNet-V245 as the backbone (encoder) pre-trained on  ImageNet44. The Inception-
ResNet-V245 (also known as Inception-v4) integrates the features of the Inception  architecture46 and the 
ResNet  architecture47. Multi-scale convnet blocks in inception network helps in reducing number of param-
eters along with encoding large amount of information.

• DeeplabV3Plus48 with  Xception49 network as the backbone and pre-trained on PASCAL  VOC41.  DeepLabV350 
was built to obtain multi-scale context. This was done by using atrous convolutions with different rates. 
DeeplabV3Plus extends this by having low-level features transported from the encoder to the decoder.

Training pipeline. The training can broadly split into tissue mask generation, patch extraction and training 
the models patchwise. Figure 2 illustrates the training strategy utilized for training each of the models in the 
ensemble.

Tissue mask generation. In this step, the entire tissue region was segmented from the background glass region 
of the WSI image. This step aided in preventing unnecessary computations on non-tissue regions of the slide. 
An approximate tissue region boundary suffices; therefore the processing was done on a low-resolution version 
of the WSI image to further reduce computational costs. The RGB color space of the low-resolution image was 
transformed to the HSV (Hue-Saturation-Value) color space and Otsu’s adaptive  thresholding51 was applied 
to the saturation component. Post thresholding, binary morphological operations were performed to facilitate 
proper extraction of patches at the small tissue regions and tissue borders.

Tissue mask generation specific to CAMELYON dataset. In some of the CAMELYON17 cases, the Otsu’s thresh-
olding failed because of the black regions in the WSI image. Hence, before the application of image thresholding 
operation, the pre-processing involved replacing black pixel regions in the WSI image background with white 
pixels and median blurring with a kernel of size 7x7 on the entire image. Median blur aided in the smoothing of 
the tissue regions and removal of noise at the tissue bordering the glass-slide region while preserving the edges 
of the tissue. Figure 3 illustrates the pipeline for tissue mask generation with an example.

Patch coordinate extraction. Using the tissue mask generated from the previous step, patches of the image were 
randomly extracted to make the training dataset. An equal number of tumourous and non-tumorous patches 
were extracted. This was done to prevent class imbalance or manifold shift issues and enforce proper training. A 
patch was considered tumourous if at least one pixel inside the patch was classified as a tumor. The dimensions 
of the extracted patches were not fixed; rather, they were a hyperparameter we experimented with. The patches 
were extracted from the highest resolution of the image.

Data augmentation. To increase the number of data points and to better generalize the models across various 
staining and acquisition protocols, data augmentation schemes were proposed. Augmentations like “horizontal 
or vertical flip,” “90-degree rotations”, and “Gaussian blurring” along with color augmentation were performed. 
Colour augmentation included random changes to brightness, contrast, hue, and saturation with a maximum 
delta of 64.0/255, 0.75, 0.25, 0.04, respectively.

Figure 2.  Overview of the tumour segmentation training pipeline. Drawn using draw.io (draw.io).
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Additionally, in order to introduce some diversity between patches extracted from the images at different 
epochs, random coordinate perturbation was introduced. This technique involved randomly offsetting the center 
of the patch within a specified radius (128 pixels) prior to the extraction from the WSI image. Post augmentation, 
the images were normalized.

Loss function. Tumour regions were represented by a minuscule proportion of pixels in WSI images, thereby 
leading to class imbalance. This issue was circumvented by training the network to minimize a hybrid loss func-
tion. The hybrid loss function is comprised of cross-entropy loss and a loss function based on the Dice overlap 
coefficient. The Dice coefficient is an overlap metric used for assessing the quality of segmentation maps. The 
effect of hybrid loss was extensively studied  in52 showing an overall improvement in segmentation performance 
by combining cross-entropy and dice loss. The dice loss is a differentiable function that approximates Dice-coef-
ficient and is defined using the predicted posterior probability map and ground truth binary image as defined 
in (1). The cross-entropy loss is defined in (2). In the equations, pi and gi represent pairs of corresponding pixel 
values of predicted posterior probability and ground truth. N represents the total number of pixels. DL refers to 
dice loss and CL refers to cross-entropy loss. DLFG and DLBG represent the foreground pixels that correspond to 
the tumor regions and the background pixels that corresponded to non-tumor regions, respectively.

The proposed loss was defined as a linear combination of the two-loss components as defined in (3). The neural 
networks were trained by minimizing the proposed loss function using ADAM  optimizer53. The α,β , γ were 
assigned such that the cross-entropy loss and the dice loss are given equal weightage ( α = 0.5,β = 0.25 and 
γ = 0.25).

Training. All three models were trained independently, with different cross-validation folds of the data. The 
FCN architectures in the ensemble whose encoders were based on DenseNet-121 and Inception-ResNet-V2 
made use of transfer learning by using  ImageNet44 pre-trained weights for their respective encoders. In the case 
of DeeplabV3Plus, the model weights were pre-trained on  PascalVOC41. For the network architectures with 
encoders based on DenseNet-121 and Inception-ResNet-V2, the encoder weights of the models were frozen 

(1)DL =1−
2
∑N

i pigi
∑N

i p2i +
∑N

i g2i

(2)CL =

N
∑

i

(

gilog(pi)+ (1− gi)log(1− pi)
)

(3)Loss =α ∗ CL+ β ∗ DLBG + γ ∗ DLFG

Figure 3.  An illustration of the intermediate stages in the process of tissue mask generation from a WSI image 
in CAMELYON17 dataset. Drawn using draw.io (draw.io).
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for the first two epochs, and only the decoder weights were made trainable. For the remaining epochs, both 
the encoder and decoder parts were trained. The learning rate was decayed every few epochs in a deterministic 
manner to allow for the model to gradually converge. The training was stopped when the validation loss between 
epochs started increasing.

Inference pipeline. The pre-processing step in the inference pipeline included segmentation of tissue 
region from the WSI image (refer “Training pipeline” section). In order to facilitate extraction of patches from 
the WSI image within the tissue mask region, a uniform patch-coordinate sampling grid was generated at a lower 
resolution, as shown in Fig. 4. Each point in the patch sampling grid was re-scaled by a factor to map to the 
coordinate space corresponding to the WSI image at its highest resolution. With these scaled coordinate points 
as the center, fixed-size high-resolution image patches were extracted from the WSI image for feeding the trained 
segmentation model as an input.

The sampling stride was defined as the spacing between consecutive points in the patch sampling grid. The 
patch size and the sampling stride controlled the overlap between consecutive extracted patches from the WSI 
image. The main drawback of the patch-based segmentation method for WSI images was that the smaller patch 
sizes could not capture the wider context of the neighborhood region. Moreover, the stitching of the segmented 
patches introduced boundary artifacts (blockish appearance) in the tumor probability heatmaps. The generated 
heatmaps were smooth when the inference was done on overlapping patches with larger patch-size and averag-
ing the prediction probabilities at the overlapping regions. The experimental observation suggested that a 50% 
overlap between consecutive neighboring patches is the optimal balance between accuracy and computational 
efficiency. Also, during inference, increasing the patch size by a factor of 4 (1024x1024) when compared to the 
patch size used during training (256x256) improved the quality of generated heatmaps.

pN‑staging pipeline for CAMELYON17 dataset. Figure 5 illustrates the complete pipeline developed 
for pN-staging of CAMELYON17 dataset. The pipeline comprises four blocks as described below:

• Pre-processing: The tissue regions in the WSI images were detected for patch extraction.
• Heatmap generation: The extracted patches from the WSI images were passed through the inference pipeline 

to generate the down-scaled version of the tumor probability heatmaps.
• Feature extraction: The heatmaps were binarized by thresholding at 0.5 and 0.9 probabilities, and at each 

of these thresholds, the connected components were extracted, and region properties were measured using 
scikit-image54 library. Thirty-two geometric and morphological features from the probable metastases regions 
were computed (Table 5).

• Data balancing: In order to handle the class imbalance problem, one of the techniques proposed in the litera-
ture is oversampling by synthetically generating minority class samples using SMOTE  algorithm55. However, 
this method can introduce noisy samples when the interpolated new samples lie between marginal outliers 
and inliers. This problem is usually addressed by removing noisy samples by using under-sampling techniques 
like Tomek’s  link56 or nearest-neighbors.  SMOTETomek57 algorithm was employed for balancing the training 
data. SMOTETomek algorithm is a combination of SMOTE and Tomek’s link performed consecutively.

• Classification: The pN-stage was assigned to the patient based on all the available lymph-node WSI images, 
taking into account their individual metastases type (Table 2). For predicting the metastases type, an ensemble 
of Random Forest  classifiers58 was trained using the extracted features.

Tumour burden estimation for PAIP dataset. The tumor burden computation requires the segmenta-
tion of the viable tumor and whole tumor regions in the WSI image of the liver cancer tissue. The viable tumor 

Figure 4.  (Left to Right) An illustration of the tissue mask overlayed on a small region of the WSI image at 
low resolution (level-4), here the white region corresponds to the tissue mask; An illustration of the generated 
uniform patch coordinate sampling grid, here the points on the image act as centers from which high-resolution 
image patches were extracted from the WSI image.
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region was segmented using the proposed deep learning-based segmentation network. However, it was observed 
that training the same segmentation network for the whole tumor region gave sub-optimal results. Hence, a heu-
ristic method was adopted to approximate the whole tumor region from the viable tumor region.

The tumor burden estimation algorithm consisted of the following steps:

• Segment the viable tumor region via the proposed algorithm in “Inference pipeline” section
• Apply morphological operations on the prediction to remove false positives and fill the small holes
• Find the smallest convex hull containing the entire viable tumor region
• Estimate the tissue mask, as discussed in “Training pipeline” section
• The whole tumor region is approximated to be the intersection of the convex hull and tissue mask region
• The tumor burden is calculated by taking the ratio between the area of the viable and whole tumor regions

Uncertainty analysis. Uncertainty estimation is essential in assessing unclear diagnostic cases predicted 
by deep learning models. It helps pathologists to concentrate more on the uncertain regions for their analysis. 
Begoli et al.59 argues the need for uncertainty analysis in machine-assisted medical decision-making system. 
There exist two main sources of uncertainty, namely (i) Aleatoric uncertainty and (ii) Epistemic uncertainty. Ale-
atoric uncertainty is uncertainty due to the data generation process itself. In contrast, the uncertainty induced 

Figure 5.  Overview of the steps involved in the pN-staging pipeline developed for CAMELYON17 dataset. 
Drawn using draw.io (draw.io).

Table 5.  List of features extracted for the purpose of predicting lymph node metastases type. Features were 
extracted after thresholding tumour probability heatmaps. For feature numbers 5, 6, 7, 8 and 9 the following 
statistics were computed- maximum, mean, variance, skewness, and kurtosis.

No. Feature description Threshold (p)

1 Largest tumour region’s 
major axis length p = 0.9 & p = 0.5

2 Largest tumour region’s area p = 0.5

3 Ratio of tumour region to tis-
sue region p = 0.9

4 Count of non-zero pixels p = 0.9

5 Tumour regions area p = 0.9

6 Tumour regions perimeter p = 0.9

7 Tumour regions eccentricity p = 0.9

8 Tumour regions extent p = 0.9

9 Tumour regions solidity p = 0.9

10 Mean of all region’s mean con-
fidence probability p = 0.9

11 Number of connected regions p = 0.9
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due to the model parameters, which is the result of not estimating ideal model architectures or weights to fit the 
given data, is known as epistemic  uncertainty60. Epistemic uncertainty can be approximated by using test time 
Bayesian  dropouts61, which estimates uncertainty by Montecarlo simulations with Bayesian dropout.

In the proposed pipeline, aleatoric uncertainty for each model was estimated using test time augmentations, 
as introduced  in62 (4).

where �i(x|w) is the output of the neural network with weights w for input x and TTA  denotes the set of pos-
sible test time data augmentations allowed. The proposed methodology for aleatoric uncertainty included the 
following augmentations- TTA ∈ {rotation, verticalflip, horizontalflip}.

For epistemic uncertainty, the diversity of model architectures were used to calculate uncertainty (5).

where the likelihood distribution p(y|x, w) is a probabilistic model which generates outputs (y) for given inputs 
(x) for some parameter setting (w) and �i indicates the trained model.

Challenge results
Performance evaluation on CAMELYON17 challenge. On the CAMELYON17 testing dataset 
(n=500) the ensemble strategy was employed by combining the predictions from all the four trained Random 
Forest classifiers. The ensembling was based on the majority voting principle, and in case of a tie, the higher 
metastases category was selected. The ensemble model is referred to as RF-Ensemble. Table  6 compares the 
results of the proposed ensemble approach with other published approaches on the CAMELYON17 testing data-
set (n=500). The proposed ensemble strategy gave Cohen’s kappa score of 0.9090.

Performance evaluation on DigestPath 2019 challenge. Table 7 compares the results of the pro-
posed with other approaches on DigestPath-2019 testing dataset (n=212). The proposed approach obtained a 
Dice score of 0.78 on the test set. Though the proposed method is ranked fourth, it can be observed that the 
results of all the top three methods lie inside the estimated confidence bounds of ±0.014 as described in sup-
plementary section 1.6.

Performance evaluation on PAIP 2019 challenge. Table 8 compares the results of the proposed with 
other approaches on PAIP-2019 testing dataset (n=40). The challenge comprised of two tasks, described as fol-
lows-

• Task 1: Liver cancer segmentation performance was evaluated using the average Jaccard index.
• Task 2: Viable tumor burden estimation was evaluated as the average of products of absolute accuracy and 

corresponding Task 1 score (Jaccard index) for each of the cases in the test set.

(4)varal(x,�i) ≈ Et∼TTA[(�i(x|w, t)− Et∼TTA[�i(x|w, t)])
2]

(5)varep(p(y|x,w)) ≈ Eφ∼{�i}[(φ(x|w)− Eφ∼{�i}[φ(x|w)])
2]

Table 6.  Comparison of the proposed with other published approaches for automated pN-Staging in 
CAMELYON17 challenge. The score reported in the table is from the open public leader board of the 
CAMELYON17 challenge. The proposed approach (RF-Ensemble) stood rank-3 on the leaderboard (Accessed 
on 31-Dec-2019). The table additionally provides the performance of individual Random Forest classifiers in 
the ensemble and RF-Ensemble classifier.

Method Cohen Kappa Score Rank

Lee et al.63 0.9570 1

Pinchaud64 0.9386 2

Proposed (RF-Ensemble) 0.9090 3

Proposed (RF-PI) 0.8971 12

Proposed (RF-PB) 0.9027 9

Proposed (RF-CI) 0.8889 18

Proposed (RF-CB) 0.9057 6

Table 7.  Top four entries in DigestPath-2019 challenge.

Teams Dice

kuanguang 0.807

zju_realdoctor 0.792

TIA_Lab 0.787

Proposed 0.782
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For Task 1, all the participants utilized deep learning-based methods for the segmentation of viable tumors, 
albeit with different CNN architectures. For Task 2, all the participants used deep learning-based methods for the 
segmentation of the whole tumor. The proposed convex hull-based approximation method showed comparable 
performance with deep learning-based methods.

Discussion and conclusions
An automated end-to-end deep learning-based framework for segmentation and downstream analysis of WSI 
images was developed. The proposed framework showed state-of-the-art results on three publicly available his-
topathology image analysis challenges, namely, CAMELYON, PAIP 2019, and DigestPath 2019. The problem of 
segmentation of gigapixel WSI images was approached using the divide-and-conquer strategy by dividing the 
large image into computationally feasible patch sizes, running segmentation algorithms on the extracted patches, 
and stitching the individual outputs together to generate the segmentation of the entire WSI image. The patches 
were segmented using an ensemble of FCNs, which are encoder-decoder-based architectures employed for gener-
ating dense pixel-level classification. The encoders in the proposed FCNs were some of the state-of-the-art CNNs 
used for natural image analysis tasks, and the decoders were a learnable upsampling module to generate dense 
predictions. The proposed segmentation framework was an ensemble comprising of multiple FCN architectures, 
each independently trained on different subsets of the training data. The ensemble generated the tumor prob-
ability map by averaging the posterior probability maps of all the FCNs. The ensemble approach showed superior 
segmentation performance when compared to its individual constituting FCNs. The patch-based segmentation 
methods for large-sized images suffer from loss of neighboring context information at patch borders. This issue 
was addressed during inference by proposing- (i) to use patch size larger than that used during training and (ii) 
to overlap patches and average the posterior probabilities of the overlapping regions while stitching the output 
together. In addition to the generation of tumor probability heatmaps, a methodology for generating uncertainty 
maps based on model and data variability was also incorporated into the framework. These uncertainty maps 
would assist in better interpretation by pathologists and fine-tuning the model with uncertain regions.

Further research can be done in the design of efficient and multi-resolution FCN architectures for captur-
ing multi-resolution information from WSI  images65. The proposed experimental analysis on transfer learning 
showed that pre-training models with different histopathology datasets could act as good starting points for 
training models where pathology datasets are limited. Post-processing techniques could be one of the directions 
to improve the predicted WSI image’s tumor segmentation; techniques such as patch-based conditional random 
 fields66,67 could be employed to refine the predicted segmentation masks rather than employing hardcoded 
threshold values. In the current study, the presence of artifacts in WSI images makes it difficult for tissue region 
sampling, which further results in sub-optimal segmentation results. The addition of a pre-processing stage for 
filtering these artefacts, or the addition to the training set of a significant number of images that include these 
elements, could lead to an improvement in the robustness of the framework. Moreover, the majority of the images 
used in this study were stained using H&E stain. Increasing the heterogeneity of the training samples with other 
possible stains could increase the generalizability of the framework.

The segmentation of WSI images is usually the first step which precedes other specific analyses such as 
metastases classification and estimation of tumor burden. In this regard, an automated pipeline for lymph node 
metastases classification and pN-staging was developed. For the task of lymph node metastases classification, an 
ensemble of multiple Random Forest classifiers was proposed, and each classifier was trained on different subsets 
of the training data. The training data was prepared by extracting features based on the pathologist’s viewpoint 
from the tumor probability maps. Additionally, incorporating synthetically generated training samples into 
the training data demonstrated its efficacy in addressing class imbalanced datasets for such classification tasks.

The proposed method for viable tumor burden estimation from WSI images of liver cancer utilized an empiri-
cal method for estimating the whole tumor region from the predicted viable tumor region. The whole tumor 
region was proposed to approximate a convex hull around the viable tumor region. This approximation per-
formed on par with other deep learning-based segmentation approaches and was also computationally inexpen-
sive. The proposed method could be refined further by incorporating learning-based methods into the empirical 
method. For example, the convex hull output could be used as an initial point for active contours-based  models68 
for correcting whole tumor region segmentation.

Table 8.  Top five entries of PAIP 2019. Task 1 corresponds to Viable tumour segmentation and Task 2 
corresponds to Viable tumour burden estimation. Note: FNLCR: Frederick National Laboratory for Cancer 
Research.

Team Task 1 Task 2

FNLCR 0.789 0.752

Sichuan University 0.777 NA

Proposed 0.750 0.6337

Alibaba 0.672 0.6199

Sejong University 0.665 0.6330
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