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Integrative nomogram 
of intratumoral, peritumoral, 
and lymph node radiomic features 
for prediction of lymph node 
metastasis in cT1N0M0 lung 
adenocarcinomas
Sushant Kumar Das1,4, Ke‑Wei Fang2,4, Long Xu1, Bing Li1, Xin Zhang3 & Han‑Feng Yang1*

Radiomics studies to predict lymph node (LN) metastasis has only focused on either primary tumor 
or LN alone. However, combining radiomics features from multiple sources may reflect multiple 
characteristic of the lesion thereby increasing the discriminative performance of the radiomic model. 
Therefore, the present study intends to evaluate the efficiency of integrative nomogram, created 
by combining clinical parameters and radiomics features extracted from gross tumor volume (GTV), 
peritumoral volume (PTV) and LN, for the preoperative prediction of LN metastasis in clinical 
cT1N0M0 adenocarcinoma. A primary cohort of 163 patients (training cohort, 113; and internal 
validation cohort, 50) and an external validation cohort of 53 patients with clinical stage cT1N0M0 
were retrospectively included. Features were extracted from three regions of interests (ROIs): GTV; 
PTV (5.0 mm around the tumor) and LN on pre‑operative contrast enhanced computed tomography 
(CT). LASSO logistic regression method was used to build radiomic signatures. Multivariable 
regression analysis was used to build a nomogram. The performance of the nomogram was assessed 
with respect to its calibration, discrimination, and clinical usefulness. The discriminative performance 
of nomogram was validated both internally and externally. The radiomic signatures using the features 
of GTV, PTV and LN showed a good ability in predicting LN metastasis with an area under the curve 
(AUC) of 0.74 (95% CI 0.60–0.88), 0.72 (95% CI 0.57–0.87) and 0.64 (95% CI 0.48–0.80) respectively 
in external validation cohort. The integration of different signature together further increases the 
discriminatory ability: GTV + PTV (GPTV): AUC 0.75 (95% CI 0.61–0.89) and GPTV + LN: AUC 0.76 
(95% CI 0.61–0.91) in external validation cohort. An integrative nomogram of clinical parameters 
and radiomic features demonstrated further increase in discriminatory ability with AUC of 0.79 
(95% CI 0.66–0.93) in external validation cohort. The nomogram showed good calibration. Decision 
curve analysis demonstrated that the radiomic nomogram was clinically useful. The integration of 
information from clinical parameters along with CT radiomics information from GTV, PTV and LN 
was feasible and increases the predictive performance of the nomogram in predicting LN status in 
cT1N0M0 adenocarcinoma patients suggesting merit of information integration from multiple sources 
in building prediction model.
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Abbreviations
LN  Lymph node
GTV  Gross tumor volume
PTV  Peritumoral volume
GPTV  Combined gross and peritumoral volume
ROI  Regions of interest
CT  Computed tomography
HRCT   High-resolution computed tomography
LASSO  Least absolute shrinkage and selection operator
AUC   Area under the curve
NSCLC  Non-small-cell lung cancer
LND  Lymph node dissection
SLND  Selective lymph node dissection
FDG-PET/CT  Fluorine-18 2-fluoro-2-deoxy-d-glucose positron emission tomography/computed 

tomography
EBUS-TBNA  Endobronchial ultrasound-guided transbronchial needleaspirate
TNM  Tumor-node-metastasis
CEA  Carcinoembryonic antigen
GGO  Ground-glass opacity
GLCM  Gray level co-occurrence matrix
GLSZM  Gray-level size zone matrix
GLRLM  Gray level run length matrix
IBSI  Image biomarker standardization initiative
ICCs  Intra- and inter-class correlation coefficients
ALK  Anaplastic lymphoma kinase

Non-small-cell lung cancer (NSCLC) typically metastasizes to hilar and mediastinal lymph nodes (LNs)1. While 
lobectomy with systematic lymph node dissection (LND) is a standard procedure for  NSCLC2,3, lobe-specific 
selective lymph nodal dissection (SLND) has been used as an alternative to LND in patients with early stage 
NSCLC in order to reduce perioperative complications; especially for elderly patients or the patients with 
impaired pulmonary  functions4,5. However, as most of the early NSCLC patients did not have metastasis to all 
of the systematic LNs, systematic LND leads to invalid  LND5,6. On the other hand, as patients clinically diagnosed 
with cN0 LNs pre-operatively might have lymph node metastases pathologically. SLND overlook these LNs which 
would later progress and result in a poor  prognosis7–9. Therefore, it is important to predict lymph node metastasis 
as accurately as possible, in order to help formulate individualized treatment strategies.

Currently, high-resolution computed tomography (HRCT), integrated Fluorine-18 2-fluoro-2-deoxy-d-glu-
cose positron emission tomography/computed tomography (FDG-PET/CT), and mediastinoscopy or endobron-
chial ultrasound-guided transbronchial needleaspirate (EBUS-TBNA) are mainly used to predict lymph node 
metastasis in NSCLC in clinical  practice10. However, mediastinoscopy or EBUS-TBNA are invasive methods 
which are costly and possess several serious  complications11,12. FDG-PET/CT is not a commonly done for early-
stage tumors with no enlarged LNs on CT imaging in China due to its economic burden for  patients13. Therefore, 
CT is still the mainstay for screening lymph node status in early stage NSCLC, but it is limited by low sensitiv-
ity in the evaluation of small metastatic LNs. Thus, improvement in diagnostic performance of CT imaging in 
discriminating LN status in patients with early-stage NSCLC is of paramount importance.

Radiomics has emerged as a non-invasive method to derive quantitative features from medical imaging 
which has displayed great promise in oncological  practice14–19. Studies have reported higher sensitivity and 
specificity for CT radiomics in predicting lymph node metastasis in patients with  NSCLC13,20–23. Most of these 
studies principally focused on the evaluation of either the primary pulmonary  nodule13,20,21, or the LN  alone22,23. 
Theoretically, combined CT texture information from tumor as well as LN would be more reliable in assessing 
lymph node status. Furthermore, more recently peritumoral microenvironments has been found to offer its util-
ity for clinical evaluation of tumor aggressive biological  behavior24–26. Moreover, studies analyzing LN feature 
have smaller  sample22,23 and analyzed larger LN ignoring normal sized  LN22,23. He et al.20 did not perform whole 
tumor analysis instead extracted features from only large cross-sectional area of the tumor. Most studies are also 
limited by lack of standardization of imaging which might have led to batch  effect13,20–23. In addition, aforemen-
tioned studies did not perform external validation, instead different types of internal validation (samples from 
single institute) such as cross-validation13,21,22 or temporal  validation20 method was used. Herein the present 
study, we aim to determine the integrative value of clinical features and CT radiomic data extracted from gross 
tumor volume (GTV), peritumoral volume (PTV), and LNs, in prediction of LN metastasis in cT1N0M0 lung 
adenocarcinoma patients.

Materials and methods
Ethics approval and consent to participate. The current study was conducted in accordance with 
the 1964 Declaration of  Helsinki27 and was approved by the Institutional Review Board of Affiliated Hospital 
of North Sichuan Medical College (Nanchong, China). Written informed consent was obtained from all the 
patients.

Patients. Patients with clinical stage cT1N0M0 lung adenocarcinoma, according to the 8th Edition of 
Tumor-Node-Metastasis (TNM)  classification28, who underwent surgical resection and systematic LN dissec-
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tion at the Interventional Radiology Department of the Affiliated Hospital of North Sichuan Medical College 
(Nanchong, China) between January 2016 and March 2019, were included in the present retrospective study as a 
primary cohort. The criteria for enrollment were as follows: solitary pulmonary nodule in clinical stage T1 based 
on CT imaging; no enlarged lymph nodes (i.e., short diameter of LN < 10.0 mm on CT imaging); had undergone 
lobectomy or sub-lobectomy with systematic lymph node dissection; patients ≥ 18 years of age; and had an East-
ern Cooperative Oncology Group performance status of 0 or  129. The exclusion criteria were: patients with his-
tory of extra pulmonary malignancy; neoadjuvant chemotherapy or radiotherapy before surgery; and lack of CT 
imaging or CT artifacts. Finally, a primary cohort after applying the inclusion and exclusion criteria consisted of 
163 patients with 163 tumors. Patients in the primary cohort were stratified based on the lymph node status and 
then randomly divided in a ratio of 7:3 into training and internal validation cohort. Training cohort consisted of 
113 patients [mean age ± standard deviation (SD) 60.41 ± 9.90; range 41–83; male 66; female 47] while internal 
validation cohort consisted of 50 patients (mean age ± SD 62.87 ± 10.53; range 39–81; male 32; female 18).

This study also included a secondary cohort of patients from another hospital (Nanchong Central Hospital) to 
form an external validation cohort. These patients were enrolled retrospectively from January 2018 to December 
2019 using the same criteria as that for the primary cohort. In total of 53 patients [mean age ± standard deviation 
(SD) 61.37 ± 11.70; range 35–73; male 30; female 23] with 53 tumors were identified and comprise the external 
validation cohort. The flow diagram of patient enrollment, eligibility, and exclusion criteria is shown in Fig. 1.

Pre‑operative clinical features. The following clinical features were collected for each patient from the 
medical records: age, gender, smoking status, the maximal diameter of the tumor, and carcinoembryonic antigen 
(CEA) levels. Laboratory analysis of CEA was done via routine blood tests within one week before surgery. The 
threshold value of CEA level was 5.0 ng/mL according to the normal range used at our institution.

Surgical procedures and pathological diagnosis. All patients underwent either lobectomy or sub-
lobectomy with systematic lymph node dissection in the same manner. At least six lymph nodes were dissected 
in accordance with the European Society of Thoracic Surgeons  guidelines30. The pathological specimens were 
analyzed by experienced pulmonary pathologists. Pathologic lymph node stage was classified according to the 
8th TNM classification in lung  cancer28.

Acquisition of images. CT scan protocol. All patients underwent a chest CT scan at the respective hos-
pitals before the operation. Contrast enhanced chest CT scan at both the hospitals were performed extending 
from the lung apex to the adrenal glands at full inspiration. All patients at affiliated Hospital of North Sichuan 
Medical College underwent scanning with a multi-detector CT (MDCT) scanner (Discovery CT750HD; GE 
Healthcare, Milwaukee, WI) with the following parameters: tube voltage, 120 kVp; tube current, 250 mAs; scan 
thickness, 1.25 mm; and interval, 1.25 mm; and pitch, 0.75–1.5. All patients at Nanchong Central Hospital were 
scanned on MDCT Somatom Definition AS (Siemens Healthineers, Erlangen, Germany) scanner with following 
acquisition parameter: tube voltage, 120 kVp; tube current, 100–200 mAs; scan thickness, 1.5 mm; and interval, 
1.5 mm; and pitch, 0.75–1.5.

CT semantic features. Two radiologists (B.L. and XF with eight and five years of experience respectively), 
who were blinded to the clinical pathological findings noted semantic features of each of the lesions. Five CT 
morphology characteristics for each mass were included: (a) attenuation, (b) spiculation, (c) lobulation, (d) 
pleural retraction, (e) air bronchogram, and (f) vacuole. Lesion attenuation was divided into three types: pure 
ground-glass opacity (GGO), part solid, and pure solid. In case of any discrepancy, the final consensus was 
reached by group discussion.

Radiomic analysis. Image pre‑processing. First the linear interpolation of the imaging data to isotrop-
ic voxel spacing was carried out to allows for a better comparison of heterogeneous, multi-institutional im-
aging data. Images were up-sampled to a 1.0 × 1.0 × 1.0  mm3 voxel from the original image voxel spacing of 
1.0 × 1.0 × 3.0  mm3. Then, the Gaussian filter was applied for denoising. To assess the impact of the intensity 
discretization method on textural features, fixed bin number (FBN) method using 32 bins was implemented. 
The FBN method discretizes every voxel intensity from a VOI to a fixed number of Ng bins (here 32 bins). It is 
defined as follows:

where  Ng corresponds to the fixed number of bins between  Xgl,min and  Xgl,max, which are the minimum and 
maximum intensities of the ROI,  respectively31.

Segmentation of lesion of interest. Three dimensional region of interest (3D ROI, i.e. VOI) for GTV as well as 
lymph node was manually segmented by a single board-certified cardio-thoracic radiologist (B.L. with eight 
years of experience) across all of the two-dimensional sections of the nodule and LN, with a hand- annotation 
tool in axial view by using an open-source software ITK‐SNAP (version 3.6.0; http:// www. itksn ap. org/ pmwiki/ 
pmwiki. php?n= Downl oads. SNAP3)32. The radiologist was blinded to pathologic diagnosis. The radiologist was 
given the option to vary the window and level setting within this software to efficiently annotate the nodule. For 
PTV segmentation, GTV was dilated in three dimensions uniformly to capture the region outside the nodule up 
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Figure 1.  Consolidated standards of reporting trials, or CONSORT, flow diagram of patient enrollment, 
eligibility, and exclusion criteria of data set.
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to a radial distance of 5.0  mm33. The intra-nodular mask was then subtracted from this dilated mask to obtain a 
ring of lung parenchyma immediately around the nodule. This served as a PTV.

Extraction of radiomic features. Radiomic features were extracted from each region of interest using Artificial 
Intelligence Kit software (A.K. software; GE Healthcare, China). The features consisted of six classes of radiomic 
features: (1) Shape features; (2) First order statistical features; (3) Gray level co-occurrence matrix (GLCM) 
features; (4) Gray-level size zone matrix (GLSZM) based features; (5) Gray level run length matrix (GLRLM) 
features; and (6) Inverse difference moment (IDM). The algorithm of each radiomic feature was based on the 
image biomarker standardization initiative (IBSI).

Standardization of the extracted radiomic features. Standardization of the extracted features was applied, using 
Z-score method, as the images were from two different scanners with different imaging protocols. Both training 
and validation data were standardized as the min–max normalization, where each feature was normalized as the 
range from 0 to 1.

where, x is the value of feature, μ indicates the average value of this feature for all patients in the cohort, and σ 
represents the corresponding standard  deviation31.

Feature selection. To assess for segmentation variability, two additional readers (Observer 1: KWF and Observer 
2: LX), with six and four years of experience in thoracic imaging respectively were recruited to independently 
segment a random cohort of 75 nodules and LNs. Observer one conducted lesion segmentation twice, while 
observer two conducted segmentation once. The inter- and intra-observer reproducibility were assessed using 
the intra-class correlation coefficients (ICCs). The features with ICC lower than 0.75 were adjudged to have poor 
agreement and therefore were  excluded34.

After the ICC selected the repeatable features, spearman correlation analysis (SPM) combined with the least 
absolute shrinkage and selection operator (LASSO) method were utilized to select the most useful predictive 
features in the training cohort. The threshold of the Spearman correlation coefficient was 0.9 to reduce feature 
 redundancy35, and the LASSO was used to further select the features with penalty parameter tuning that was 
conducted by tenfold cross-validation based on minimum criteria.

Construction of radiomic signature model. Radiomic models were then constructed by multivariable Logistic 
regression model with the selected radiomic features. Radiomic signatures also called Radiomic Score (Rad-
score) were then calculated in training and validation cohort via a linear combination of selected features 
weighted by their respective coefficients in the models respectively.

where b is the intercept, Xi is the value of ith selected feature and Ci is the coefficient of the i th selected  feature35.
In this way, independent radiomic signatures based on GTV, PTV and LN features were obtained. In addition, 

these radiomic signatures were combined via logistic regression model to build combined radiomic signatures 
GPTV radiomic signature (GTV + PTV) and GPTV + LN radiomic signature (GTV + PTV + LN).

Selection of clinical parameters. Clinical features and CT semantic feature are together referred to as 
clinical parameters hereafter in the present study. Univariate logistic analysis was carried out to select the clinical 
parameters which were predictive of LN metastasis. Clinical parameters with two-sided p < 0.05 were consider 
predictors of LN metastasis and were selected.

Construction and validation of nomogram. Radiomic signatures and clinical parameters were evalu-
ated by univariable logistic regression analysis for prediction of LN metastasis in a training cohort. Variables 
with < 0.05 were further analyzed by multivariable logistic regression. Finally, an integrative nomogram was built 
combining the radiomic signatures and clinical parameters identified as independent predictors of LN metasta-
sis in multivariable logistic regression analysis. The discrimination performance of the radiomic signatures and 
nomogram was evaluated by receiver operating characteristic (ROC) curve analysis and quantified by the area 
under the ROC curve (AUC). The predictive capability of the radiomic signatures and nomogram were validated 
on internal as well as external validation cohorts.

Statistical analysis. R version 3.4.2 (R Foundation for Statistical Computing, Vienna, Austria) (http:// 
www.r- proje ct. org/) was used to carry out all the statistical analyses. The clinical parameters between the 
groups were compared by using the independent samples Student’s T test (or Wilcoxon Mann–Whitney U test 
if required) for continuous variables and chi-square test (or Fisher’s exact if required) for categorical variables. 
Univariate and multivariate logistic regression analyses were performed to determine the predictors of LN 
metastasis.

Spearman correlation test was applied to remove the high-dimensional feature redundancy. The “glmnet” 
package of R software was applied to conduct LASSO logistic regression model analysis. The nomogram and 

Z score =
(x − µ)

σ
,

Radiomic signature (Rad - score) =

n
∑

i=1

CiXi + b,
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calibration curve were constructed by using the “rms” package of R software. Calibration curve was used to 
analyze the calibration of the radiomics nomogram. The Hosmer–Lemeshow goodness-of-fit test was used to 
evaluate the model’s  fit36. The discrimination performance of the radiomics signatures and nomogram in both 
cohorts were evaluated with ROC curves analysis and quantified by the area under the ROC curve (AUC). The 
AUCs of the radiomics signatures and the nomogram in the two cohorts were compared by using the DeLong 
test to evaluate whether over fitting occurred. In addition, to further verify the reliability of the model, bootstrap 
validation was performed.

By repeating 1000 times bootstrap respectively, the overall accuracy of the model was estimated by Equation:

Decision curve was plotted to evaluate the diagnostic efficiency of the model by calculating the net benefits 
at different threshold  probabilities37. All statistical tests were two- sided, and P values of < 0.05 were considered 
statistically significant.

Results
Clinical characteristics. In the training cohort, there were 39 patients (34.5%) who had a lymph node 
metastasis (LN positive) while 74 patients (65.5) without lymph node metastasis (LN negative) on pathological 
examination. In the internal validation cohort, there were 17 patients (34.0%) with LN positive and 33 (66.0%) 
with LN negative lymph node status. LN metastases prevalence between the training and internal validation 
cohorts was insignificant (p = 0.95). Similarly, there were 31 patients (58.5%) with LN positive and 22 (41.5%) 
with LN negative lymph node status in the external validation group. LN metastases prevalence between the 
training and external validation group was insignificant (p = 0.63). The baseline clinical features and CT seman-
tic features of the tumor for each cohort according to LN metastasis are given in Table 1.

Feature selection and radiomic signature building. Work flow of tumor segmentation, feature 
extraction and signature building is illustrated in Fig. 2. The total number of features extracted for each signa-
ture along with the formulas are shown in Supplementary Table S1. Total of 396 features were extracted from 
each GTV, PTV, GPTV, and LN. Low reproducible radiomic features, i.e., features with intra- or inter-observer 
ICC of < 0.75, were considered less reproducible and were excluded. So, the number of GTV, PTV, GPTV, and LN 
features was reduced to 266, 395, 395, and 155 respectively. Subsequently, redundant features as per Spearman 
rank correlation coefficients were also excluded. This left 133, 62, 71, and 24 features in GTV, PTV, GPTV, and 
LN respectively. After that, using LASSO logistic regression model, two, seven, and three features with non-zero 
coefficients in GTV, PTV, GPTV, and LN respectively were selected. Finally, these features were used by LASSO 
logistic regression model to build radiomic signatures in a training cohort. GTV, PTV, GPTV, and LN radiom-
ics signature were thus acquired. Furthermore, all the GPTV and LN radiomic features were placed together to 
create a combined GPTV + LN radiomic signature.

Texture feature selection using the LASSO binary logistic regression model is shown in Supplementary Fig. S1.

Predictive performance of radiomic signature. The potential association of the radiomics signature 
with LN status was first assessed in the training cohort and then validated in the internal as well as external 
validation cohort. In the training cohort, the AUC for GTV, PTV, GPTV, LN, and GPTV + LN was 0.75 (95% CI 
0.66–0.85), 0.77 (95% CI 0.76–0.91), 0.84 (95% CI 0.76–0.91), 0.73 (95% CI 0.63–0.83), 0.87 (95% CI 0.80–0.93) 
respectively. In the internal validation cohort, the AUC for GTV, PTV, GPTV, LN, and GPTV + LN was 0.76 
(95% CI 0.60–0.91), 0.72 (95% CI 0.57–0.87), 0.76 (95% CI 0.62–0.91), 0.68 (95% CI 0.52–0.85), 0.78 (95% CI 
0.65–0.91) respectively. There was no significant difference in AUCs of radiomic signatures between the two 
cohorts (DeLong test, p > 0.05 for each comparisons). Upon external validation, the AUC for GTV, PTV, GPTV, 
LN, and GPTV + LN was 0.74 (95% CI 0.60–0.88), 0.72 (95% CI 0.57–0.87), 0.75 (95% CI 0.61–0.89), 0.64 (95% 
CI 0.48–0.80), 0.76 (95% CI 0.61–0.91) respectively. Furthermore, there was no significant difference in AUCs 
of radiomic signatures between the external validation and training cohorts (DeLong test, p > 0.05 for each com-
parisons). The result of DeLong test is given in Supplementary Table S3 and S4.

GPTV + LN radiomic signature had the best AUC in all the cohort (0.87 in the training cohort, 0.78 in the 
internal and 0.76 in the external validation cohort) in predicting lymph node metastasis. The predictive perfor-
mance of each individual radiomic signatures on training and validation cohort is listed in Table 2. The ROC 
curves for each individual signature on the training and validation cohort is shown in Fig. 3.

Development of nomogram. In univariate analysis, five clinical parameters namely, CEA, tumor size, 
spiculation, pleural retraction, and air bronchogram as well as four radiomic signatures (GTV, PTV, GPTV, LN) 
significantly correlated with the LN metastasis in the training cohort. Multivariable logistic regression analysis 
was conducted using these five clinical parameters and the four radiomic signatures. Of these features, two clini-
cal features (spiculation and CEA level) and two radiomic signature (GPTV and LN) significantly correlated 
with the LN metastasis. The results of the univariate and multivariate regression analysis are summarized in Sup-
plementary Table S2. Finally, a nomogram was created incorporating above identified independent predictors. A 
nomogram was thus created and is shown in Fig. 4.

Accoverall =

k
∑

i=1

(0.632× Acctestset + 0.368× Acctrainset).
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Variables

Training cohort (n = 113)

Estimated 
 riskλ p  value‡

Internal Validation 
Cohort (n = 50)

Estimated 
 riskλ p  value‡

External Validation 
Cohort (n = 53)

Estimated 
 riskλ p  value‡

pLN (−) 
(n = 74)

pLN (+) 
(n = 39)

pLN (−) 
(n = 33)

pLN (+) 
(n = 17)

pLN (−) 
(n = 22)

pLN (+) 
(n = 31)

Age

≤ 60 37 (50.0) 19 (48.7) 1 7 (21.2) 8 (47.1) 1 8 (36.4) 13 (41.9) 1

> 60 37 (50.0) 20 (51.3) 1.05 
(0.48–2.29) 0.90 26 (78.8) 9 (52.9) 0.30 

(0.08–1.07) 0.06 14 (63.6) 18 (58.1) 0.71 
(0.22–2.28) 0.56

Gender

Male 45 (60.8) 21 (53.8) 1 23 (69.7) 9 (52.94) 1 15 (68.2) 15 (48.4) 1

Female 29 (39.2) 18 (46.2) 1.33 
(0.61–2.91) 0.48 10 (30.3) 8 (47.1) 2.04 

(0.61–6.84) 0.25 7 (31.8) 16 (51.6) 2.14 
(0.67–6.86 0.20

Smoking status

Never 38 (51.4) 18 (46.2) 1 21 (63.6) 8 (47.1) 13 (59.1) 17 (54.8) 1

Current/
former 36 (48.6) 21 (53.8) 1.23 

(0.57–2.68) 0.60 12 (36.4) 9 (52.9) 1.97 
(0.60–6.45) 0.26 9 (40.9) 14 (45.2) 1.32 

(0.42–4.15) 0.63

CEA (μg/L)

≤ 5 62 (83.8) 23 (58.9) 1 26 (78.8) 13 (76.4) 1 19 (86.4) 20 (64.5) 1

5–20 12 (16.2) 12 (30.8) 2.70 
(1.06–6.85) 0.04* 7 (21.2) 2 (11.8) 0.57 

(0.10–3.15) 0.52 3 (13.6) 9 (29.0) 4.00 
(0.75–21.35) 0.10

> 20 0 (0.0) 4 (10.3) / 0.98 0 (0.0) 2 (11.8) / 0.99 0 (0.0) 2 (6.5) / 0.99

Tumor size 2.09 ± 0.59 2.42 ± 0.58 2.74 
(1.31–5.70) 0.005* 2.17 ± 0.62 2.74 ± 0.31 10.19 

(2.01–51.72) < 0.001* 2.07 ± 0.61 2.51 ± 0.54 3.76 
(1.28–11.01) 0.02*

Tumor location

Central 20 (27.0) 16 (41.1) 1 9 (27.3) 9 (52.9) 1 6 (27.3) 14 (45.2) 1

Peripheral 54 (73.0) 23 (58.9) 0.53 
(0.23–1.21) 0.13 24 (72.7) 8 (47.1) 0.33 

(0.10–1.13) 0.08 16 (72.7) 17 (54.8) 0.38 
(0.11–1.33) 0.13

Lung lobes

RUL 21 (28.4) 9 (23.1) 1 14 (42.4) 3 (17.6) 1 5 (22.7) 8 (25.8) 1

RML 2 (2.7) 1 (2.6) 1.17 
(0.09–14.56) 0.90 3 (9.1) 3 (17.6) 4.67 

(0.61–35.49) 0.14 2 (9.1) 3 (9.7) 0.71 
(0.07–6.92) 0.77

RLL 21 (28.4) 7 (17.9) 0.78 
(0.24–2.48) 0.67 2 (6.1) 2 (11.8) 4.67 

(0.46–47.63) 0.19 4 (18.2) 5 (16.1) 0.89 
(0.16–5.11) 0.90

LUL 18 (24.3) 13 (33.3) 1.68 
(0.58–4.85) 0.33 10 (30.3) 5 (29.4) 2.33 

(0.45–12.09) 0.31 8 (36.4) 8 (25.8) 0.71 
(0.16–3.23) 0.66

LLL 12 (16.2) 9 (23.1) 1.75 
(0.55–5.61) 0.35 4 (12.1) 4 (23.5) 4.67 

(0.72–30.12) 0.10 3 (13.6) 7 (22.6) 2.50 
(0.36–17.50) 0.36

Lesion attenuation

Solid 54 (72.9) 35 (89.7) 1 23 (69.7) 17 (100.0) 1 16 (72.7) 29 (93.5) 1

Part solid 7 (9.5) 1 (2.6) 0.22 
(0.03–1.87) 0.17 7 (21.2) 0 (0.0) / 0.99 4 (18.2) 0 (0.0) / 0.99

GGO 13 (17.6) 3 (7.7) 0.36 
(0.09–1.34) 0.13 3 (9.1) 0 (0.0) / 0.99 2 (9.1) 2 (6.5) 0.29 

(0.02–3.40) 0.32

Lobulation

Present 48 (64.9) 30 (76.9) 1 22 (66.7) 11 (64.7) 1 10 (45.5) 22 (71.0) 1

Absent 26 (35.1) 9 (23.1) 0.55 
(0.23–1.34) 0.19 11 (33.3) 6 (35.3) 1.09 

(0.32–3.73) 0.89 12 (54.5) 9 (29.0) 0.35 
(0.11–1.13) 0.08

Spiculation

Present 37 (50.0) 32 (82.1) 1 22 (66.7) 13 (76.5) 1 13 (59.1) 24 (77.4) 1

Absent 37 (50.0) 7 (17.9) 0.22 
(0.09–0.56) 0.001* 11 (33.3) 4 (23.5) 0.61 

(0.16–2.34) 0.48 9 (40.9) 7 (22.6) 0.35 
(0.10–1.21) 0.10

Pleural retraction

Present 32 (43.2) 25 (64.1) 1 17 (51.5) 12 (70.6) 1 9 (40.9) 20 (64.5) 1

Absent 42 (56.8) 14 (35.9) 0.43 
(0.19–0.95) 0.04* 16 (48.5) 5 (29.41) 0.44 

(0.13–1.54) 0.20 13 (59.1) 11 (35.5) 0.39 
(0.12–1.25) 0.11

Air bronchogram

Present 31 (41.9) 26 (66.7) 1 15 (45.4) 9 (52.9) 1 7 (31.8) 14 (45.2) 1

Absent 43 (58.1) 13 (33.3) 0.36 
(0.16–0.81) 0.01* 18 (54.6) 8 (47.1) 0.74 

(0.23–2.39) 0.62 15 (68.2) 17 (54.8) 0.49 
(0.15–1.63) 0.25

Continued
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Variables

Training cohort (n = 113)

Estimated 
 riskλ p  value‡

Internal Validation 
Cohort (n = 50)

Estimated 
 riskλ p  value‡

External Validation 
Cohort (n = 53)

Estimated 
 riskλ p  value‡

pLN (−) 
(n = 74)

pLN (+) 
(n = 39)

pLN (−) 
(n = 33)

pLN (+) 
(n = 17)

pLN (−) 
(n = 22)

pLN (+) 
(n = 31)

Vacuole

Present 25 (33.8) 13 (33.3) 1 6 (18.2) 4 (23.5) 1 6 (27.3) 12 (38.7) 1

Absent 49 (66.2) 26 (66.7) 1.02 
(0.45–2.32) 0.96 27 (81.8) 13 (76.5) 0.72 

(0.17–3.01) 0.65 16 (72.7) 19 (61.3) 0.51 
(0.15–1.79) 0.29

Table 1.  Clinical arameters of patients on training, internal and external validation cohort. pLN (−) 
pathologically lymph node negative, pLN (+) pathologically lymph node positive, CEA carcinoembryonic 
antigen, GGO ground glass opacity, RUL right upper lobe, RML right middle lobe, RLL right lower lobe, LUL 
left upper lobe, LLL left lower lobe. λ Odd ratio with univariate test; ‡Chi-square test or Mann–Whitney test; * 
p < 0.05.

Figure 2.  Work flow of tumor segmentation, feature extraction and signature building. Region of interest (ROI) 
was manually placed on axial CT over gross tumor volume (GTV) (in blue), and lymph nodes (LN) (in red). 
GTV was dilated 5 mm in all three dimensions uniformly to capture the peritumoral volume (PTV) (green).

Table 2.  Diagnostic performance of radiomics signatures and nomogram. GTV gross tumor volume, PTV 
peritumoral volume, GPTV gross and peritumoral volume, LN lymph node, AUC  area under curve.

Signatures

Training cohort Internal validation cohort External validation cohort

Sensitivity Specificity
AUC (95% 
CI) Sensitivity Specificity

AUC (95% 
CI) Sensitivity Specificity

AUC (95% 
CI)

GTV 0.67 0.76 0.75 
(0.66–0.85) 0.71 0.73 0.76 

(0.61–0.90) 0.68 0.8 0.74 
(0.60–0.88)

PTV 0.90 0.58 0.77 
(0.76–0.91) 0.76 0.45 0.72 

(0.57–0.87) 0.72 0.6 0.72 
(0.57–0.87)

GPTV 0.64 0.92 0.84 
(0.76–0.91) 0.71 0.76 0.76 

(0.62–0.91) 0.68 0.72 0.75 
(0.61–0.89)

LN 0.77 0.65 0.73 
(0.63–0.83) 0.71 0.58 0.68 

(0.52–0.85) 0.68 0.46 0.64 
(0.48–0.80)

Clinical 0.59 0.86 0.77 
(0.67–0.86) 0.65 0.76 0.71 

(0.54–0.88) 0.6 0.8 0.685 
(0.53–0.84)

GPTV + LN 0.64 0.93 0.87 
(0.80–0.93) 0.71 0.73 0.78 

(0.65–0.91) 0.72 0.76 0.76 
(0.61–0.91)

Nomogram 0.90 0.73 0.90 
(0.84–0.96) 0.94 0.51 0.79 

(0.67–0.92) 0.92 0.56 0.79 
(0.66–0.93)
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Apparent performance of the radiomics nomogram in the training cohort. The AUC of the 
nomogram for the prediction of LN status was 0.90 (95% CI 0.84–0.96) in the training cohort (Table 2, Fig. 3a). 
The calibration curve showed that the predictive value of the nomogram for the LN metastasis was in close 
approximation with observed value indicating good agreement between them (Supplementary Fig.  S2). The 
Hosmer–Lemeshow test yielded a non-significant statistic (p = 0.6) indicating no departure from perfect fit.

Validation of the radiomics nomogram. The AUC of the nomogram for the prediction of LN status was 
0.79 (95% CI 0.67–0.92) in the internal validation cohort and 0.79 (95% CI 0.66–0.93) in the external validation 
cohort (Table 2, Fig. 3b,c). There was no significant difference in AUCs between training and internal validation 
cohorts (DeLong test, p = 0.1) (Supplementary Table S3). Similarly, the difference in AUCs between the training 
and external validation cohorts was also insignificant (DeLong test, p = 0.1) (Supplementary Table S4). Because 
the discriminative performance of nomogram dropped by 11% in validation cohort as compared to training 
cohort, further reliability of nomogram was assessed using bootstrapping validation in training cohort. Even 
after repeating 1000 times bootstrap, the nomogram in training set achieved the overall accuracy of 0.86 com-

Figure 3.  The receiver operating characteristic (ROC) curves of radiomic signatures: (a) training cohort, (b) 
internal validation cohort (c) external validation.
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pared with the accuracy of 0.90 derived from the entire original dataset. Similarly, the nomogram in internal 
validation cohort achieved the overall accuracy of 0.75 compared with the accuracy of 0.79 derived from the 
entire original dataset (Supplementary Table S5). The finding implied that the performances of the nomogram 
remained satisfactory even after correction by the optimism.

Moreover, good calibration was observed for the prediction of LN metastasis in both the internal and external 
validation cohort (Supplementary Fig. S2). The Hosmer–Lemeshow test yielded insignificant statistic for both 
internal validation (p = 0.3) and external validation (p = 0.2) indicating good agreement between predicted risk 
of LN metastasis and observed outcome.

Clinical usefulness of the radiomics signature and nomogram. The decision curve analysis for the 
radiomics signatures that were identified as independent predictor on the multivariate analysis (GPTV signature 
and LN signature) and that for the integrative nomogram is shown in Fig. 5. The decision curve demonstrated 
that the GPTV signatures, LN signature and nomogram would render net gain over the “treat-all-patients” or 
“treat-none” scheme inside a specific range of threshold (GPTV signature, between five and 80.0%; LN signature 
between 15 and 65% and nomogram between five and 100%. This suggests that if the threshold probability of a 
patient or doctor is greater than five percent, the nomogram would add more benefit in predicting LN metastasis 
than either the treat-all or treat-none scheme.

Discussion
Herein the present study, a nomogram was developed by incorporating clinical features with radiomics features 
from GTV, PTV, and LNs. The nomogram, as constructed, had higher AUC than either of the individual radi-
omic signatures alone suggesting a combination of radiomics features from multiple sources would increase the 
diagnostic accuracy of model in predicting LN metastasis in cT1N0M0 lung adenocarcinoma.

LN status needs to be accurately determined for selection of optimal surgical treatment, i.e., either systematic 
LND or SLND in patients with early stage lung  cancer4,5,10. Although imaging plays a pivotal part in LN staging in 
clinical setting, it still is challenging to accurately predict LN status by routinely used imaging  modalities38. Imag-
ing modalities such as CT or FDG-PET/CT. PET/CT, has significantly decreased diagnostic accuracy reported, 
especially in case where LN size is less than 10.0  mm39,40. On the other hand, diagnosis of LN status by CT mainly 
depends on nodal size criteria which might lead to misdiagnosis, especially in early stage NSCLC in which LNs 
might be understated without any enlargement on CT  imaging41–43. Previous studies have found LN size to be 
unreliable parameter for the evaluation of LN in status NSCLC  patients43,44.

Emergence of radiomics has given rise to the possibility of precise prediction of LN status by analyzing 
quantitative features from the primary tumor or LNs. Most of the studies have focused primarily on radiomic 
features extracted from primary pulmonary tumor to predict the LN status in lung  NSCLC13,20,21,44. However, 
recent oncological researches have reported presence of cancerous cells in peritumoral region to have signifi-
cantly stronger association with distant or local recurrences than their intra tumoral  counterparts45–48. Studies 
have demonstrated that cancer cells can microscopically spread beyond grossly visible tumor margin involving 
peritumoral  region45–48. Dou et al.19 found peritumoral radiomic features to be significantly associated with 
distant metastasis in NSCLC. In addition, Grove et al.49 showed that peritumoral region based radiomic features 
(i.e., entropy) were higher expressed compared to features extracted from corresponding gross tumour volumes 
in NSCLC patients. Furthermore, Hosney et al.50 developed a deep learning-based prediction model using a 3D 

Figure 4.  An integrative nomogram incorporating carcinoembryonic antigen (CEA), tumor spiculation and 
CT radiomics features extracted from gross tumor volume (GTV), peritumoral volume (PTV) and lymph nodes 
(LN) for the prediction of LN metastasis in patients with cT1N0M0 stage lung adenocarcinoma.
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convolutional neuronal network for the prediction of OS for NSCLC patients and observed that the network 
tended to focus on the interface between the tumour and stroma (parenchyma or pleura) regions in the CT 
images. recent cancer research has shown evidences that extratumoral lung parenchymal tissues surrounding 
the primary tumor can become involved as cancer infiltrates and metastasizes.

It is believed that hypoxic or necrotic regions preferably appear in the tumor core due to inadequate vascular 
supply, and the proliferating cancer cells mainly occur in the tumor periphery. Therefore, information from 
periphery might be crucial stratifying the risk of metastasis. However, only one study, Wang et al.44 has considered 
peritumoral radiomics feature for predicting lymph node metastasis in lung carcinoma and found that incorpo-
ration of peritumoral radiomic features with intratumoral features increased the diagnostic performance of the 
nomogram (GTV radiomic signature verses GPTV radiomic signature: 0.83 verses 0.84). This suggests adding 
PTV radiomic information could enhance the predictive performance of the radiomic signature.

Furthermore, few studies have used CT texture of LN to discriminate benign ones from malignant LNs in 
NSCLC with satisfactory  results22,23. The size of the target lymph nodes in their studies were usually larger than 
10.0 mm though. Nonetheless, it does suggest that the information from LNs could well be useful in differen-
tiating benign from malignant LNs. This give rise to an interesting idea of integrating information from both 
primary tumor and LN to predict LN status. A study from Coroller et al.51 demonstrated that adding CT radiomic 
features extracted from lymph node to the radiomic features from primary pulmonary tumor increased their 
predictive performance for overall treatment response in NSCLC. However, combined CT radiomics features of 
both primary tumors and lymph nodes have not been used to predict lymph node metastasis in NSCLC. In the 

Figure 5.  Decision curve analysis (DCA) for the radiomics nomogram along with (a) combined gross and 
peritumoral volume (GPTV) radiomic signature and (b) lymph node (LN) radiomic signature. Gray line 
represents the assumption that all patients have LN metastasis. Black line represents the assumption that all 
patients have negative LN metastasis. Red curve represents the radiomics nomogram (in both (a,b). Blue 
curve represents the GPTV radiomic signature (in a) and LN radiomic signature (in b). The x-axis shows the 
threshold probability. The y-axis shows the net benefit. It is clear from the graph that the radiomics signature 
and nomogram are superior to either treat-all or none strategy within certain ranges of risk.
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present study, apart from GTV and PTV, we also included features from LN to construct a predictive signature 
(GPTV + LN) and found it to yielded higher predictive ability when compared to all other individual radiomic 
signature and found it to yield higher predictive ability when compared to all other individual radiomic signature.

In the present study, among individual signature, GPTV + LN radiomic signature achieved highest AUC in 
training cohort (GPTV + LN vs GTV vs PTV vs GPTV vs LN: 0.87 vs 0.75 vs 0.77 vs 0.84 vs 0.73). The result was 
validated on both internal validation (GPTV + LN vs GTV vs PTV vs GPTV vs LN: 0.78 vs 0.76 vs 0.72 vs 0.76 
vs 0.68) as well as on external validation cohort (GPTV + LN vs GTV vs PTV vs GPTV vs LN: 0.76 vs 0.74 vs 
0.72 vs 0.75 vs 0.64). In addition, in the present study among several clinical parameters, CEA level and specula-
tion (CT sematic feature of tumor) were identified as independent predictor of LN metastasis on multivariable 
regression analysis. A nomogram was thus built combining these clinical parameters (CEA level and spiculation) 
with GPTV + LN radiomic signature.

The combined nomogram demonstrated significantly higher AUC when compared to all other individual 
radiomic signatures in training cohort (Nomogram vs GTV: 0.90 vs 0.75, DeLong test p = 0.03; Nomogram vs 
PTV: 0.90 vs 0.77, DeLong test p = 0.01; Nomogram vs GPTV:0.90 vs 0.84 DeLong test p = 0.006; Nomogram 
vs LN: 0.90 vs 0.77, DeLong test p = 0.0006). This implies that combination of GPTV radiomic signature, LN 
signature and clinical parameters may perform better than a single radiomic signature. On the validation cohort, 
although not statistically significant, combined nomogram achieved higher AUC compared to all other individual 
radiomic signatures. This finding suggests that GTV, PTV and LN features could be cooperated to achieve higher 
predictive performance. However, it is noteworthy that the discriminative performance of nomogram achieved 
in both the internal (AUC 0.79) and external validation cohort (AUC 0.79) was lower than in the training cohort 
(AUC 0.90). The observed drop in the performance might be due to random sampling distribution, as the p value 
calculated by Delong test in training as well as both the validation cohort was greater than 0.05. Therefore, in 
order to further verify the reliability of the model, bootstrap as an internal validation method was also carried 
out. By repeating 1000 times bootstrap, the overall accuracy of the nomogram in training set was 0.86 compared 
with the accuracy (0.90) derived from the entire original dataset. The overall accuracy of the nomogram in 
internal validation cohort was 0.75 compared with the accuracy (0.79) derived from the entire original dataset. 
The performances of the nomogram in training and validation cohort yielded a satisfactory optimism indicating 
that the difference in the performance of the nomogram were not caused by overfitting.

In the present study, the integrative nomogram developed in training cohort achieved higher AUC when 
compared to all the previous radiomics model  studies13,20–23,44. This improvement suggests that information 
integration from multiple sources may reflect that multiple factors of the patient characteristics contributes to 
a more accurate prediction model.

However, comparison of the discriminative performance of nomogram from the validation cohort needs a 
careful interpretation as many aforementioned studies either did not have any validation  cohort22,23 or performed 
internal validation using resampling method (e.g. bootstrapping or cross-validation)21 or split the original data-
set non-randomly (e.g., by time or type of CT scanner) to form validation  cohort13,20,44. Nonetheless, only two 
studies, Gu et al.13, (0.81) and Wang et al.44 (0.87) had higher validation AUC compared to the present study 
(0.79). The difference in discriminative performance of nomogram of internal validation cohort in this study 
with that of Gu et al.13 and Wang et al.44 might be due to random sampling approach utilized in this study. The 
direct comparison of discriminative performance of nomogram of external validation in the present study with 
that of Gu et al.’s13 validation results would be unfair because Gu et al.13 had sampled the single center data into 
validation cohort depending upon time (temporal validation) which is considered as an intermediary between 
internal and external  validation52. In contrast, the present study has conducted external validation by collecting 
data from another hospital where different CT scanner and CT protocol were used. Wang et al.44, too had data 
from single center, spilt into external validation cohort. Only the present study has included data from another 
center and demonstrated good discriminative capabilities. Moreover, the present study has validated nomogram 
both internally as well as externally. Furthermore, statistically there was no difference in the discriminative 
performance of the nomogram between either of validation cohort and training cohort (DeLong Test p > 0.05) 
suggesting nomogram to have good discrimination in both the validation cohorts as well.

Capability of the nomogram in realizing the necessity of an individual patient to undergo additional treat-
ment, determines the clinical usefulness of the nomogram.

However, the risk-prediction performance, discrimination and calibration, could not capture the clinical 
consequences of a particular level of discrimination or degree of  miscalibration53,54. Therefore, to justify the 
clinical usefulness, whether the radiomics nomogram-assisted decisions would improve patient outcomes or 
not has to be assessed. Nevertheless, due to disparity in CT image acquisition and clinical data collection, the 
multi-institutional prospective validation of the nomogram is impractical. Thus, the decision curve analysis was 
used in the present study. The decision curve, in the present study, showed that if the threshold probability of 
a patient is more than five percent, the presented nomogram would be more beneficial than either of treat-all-
patients or the treat-none scheme to predict LN metastasis.

The present study had several limitations. First, it is a single-institutional and retrospective study which 
might lead to patient selection bias. Second, the number of patients with cT1N0M0 was limited and in addition, 
the ratio of LN positive to negative was imbalanced. Third, manual segmentation of the lesion was done which 
is vulnerable to subjective factors, and fourth, genomic characteristics were not considered. In recent years, 
to detect LN metastases, increased research with gene markers, such as anaplastic lymphoma kinase (ALK) in 
patients with clinical N0 lung adenocarcinoma has been  proposed8,55. In addition, it should be acknowledged 
that radiomics primarily rely on the extraction, selection, and subsequent classification of predefined features 
using different machine learning methods alone or in combination. However, there is no “one fits all” approach 
as performance of various machine learning workflows has been found to depend on application and/or type of 
 data56. Machine learning feature extraction and selection is affected by several factors such as imaging scanners, 
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tumor delineation methods, reconstruction methods, discretization, etc.57,58. Several methods for image pre-
processing, standardization and classification of extracted feature has been proposed to reduce the variability of 
radiomic  features56. However, one optimal machine learning approach has not yet been identified. As far as our 
study is concerned, we have standardized all features using Z-score standardization. Moreover, used an inde-
pendent validation cohort to assess the prediction performance of nomogram. Future studies not only assessing 
predictive capabilities but also comparing different feature selection and predictive modeling methods is war-
ranted to decrease dimensionality and reduce overfitting. Moreover, cross-combination of different machine 
learning method could also be used and compared.

Conclusion
In conclusion, integrative radiomics nomogram created by combining clinical parameters with radiomic fea-
tures extracted not only from primary pulmonary tumor but also from peritumoral region and lymph nodes 
increases the predictive performance of the nomogram in predicting LN status. The present study emphasizes 
that radiomics feature from both primary tumor as well as the LN should be considered in predicting LN status. 
An integrative nomogram thus created would offer a feasible and practical reference for individualized manage-
ment of cT1N0M0 lung adenocarcinoma patients.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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