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Skyrmion crystals 
in centrosymmetric itinerant 
magnets without horizontal mirror 
plane
Ryota Yambe1,2* & Satoru Hayami2

We theoretically investigate a new stabilization mechanism of a skyrmion crystal (SkX) in 
centrosymmetric itinerant magnets with magnetic anisotropy. By considering a trigonal crystal 
system without the horizontal mirror plane, we derive an effective spin model with an anisotropic 
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction for a multi-band periodic Anderson model. We 
find that the anisotropic RKKY interaction gives rise to two distinct SkXs with different skyrmion 
numbers of one and two depending on a magnetic field. We also clarify that a phase arising from the 
multiple-Q spin density waves becomes a control parameter for a field-induced topological phase 
transition between the SkXs. The mechanism will be useful not only for understanding the SkXs, such 
as that in Gd

2
PdSi

3
 , but also for exploring further skyrmion-hosting materials in trigonal itinerant 

magnets.

A magnetic skyrmion, which is characterized by a topologically nontrivial spin  texture1–3, has been extensively 
studied in condensed matter physics since the discovery of the skyrmion crystal (SkX) in chiral  magnets4–6. 
The SkX exhibits a nonzero topological winding number called the skyrmion number Nsk , which is defined 
as Nsk =

∑

R �R/4π , where �R is a skyrmion density related to the solid angle consisting of three spins Si , Sj , 
and Sk on the triangle R: tan (�R/2) = Si · (Sj × Sk)/(1+ Si · Sj + Sj · Sk + Sk · Si)7. The study of the SkX has 
attracted much attention, as the swirling topological magnetic texture owing to nonzero Nsk gives rise to an 
emergent electromagnetic field through the spin Berry phase and results in intriguing transport phenomena and 
 dynamics8–12, such as the topological Hall  effect13,14 and the skyrmion Hall  effect15,16.

The SkXs are expressed as a superposition of three spin density waves (triple-Q state) as

where eη and ez are the unit vectors along the in-plane and z directions, respectively. Qηi = Qη · ri + φη , and 
Q′

ηi = Qηi + ψη where φη and ψη are phases of each spin density wave. A variety of the SkXs are described by 
Eq. (1); a superposition of spiral waves for eη � ez × Qη ( eη ‖ Qη ) and ψ1 = ψ2 = ψ3 = 0 or π represents the 
Bloch-type (Néel-type) SkX, while that for ψ1 = ψ2 = 0 and ψ3 = π represents the anti-type SkX. The real-
space spin texture for the Bloch-type SkX is shown in Fig. 1a. All the SkXs have the skyrmion number of one, 
nsk≡ |Nsk | = 1 , in the magnetic unit cell and breaks the spatial inversion symmetry irrespective of eη and ψη

8. We 
call them the nsk = 1 SkXs. The nsk = 1 SkXs are stabilized by the Dzyaloshinskii-Moriya (DM)  interaction17,18 
in chiral/polar  magnets4,19 or the competing exchange interactions in frustrated  magnets20–22.

Meanwhile, the spiral density waves are not necessarily for the formation of the SkX. By considering the 
superposition of the sinusoidal waves characterized by a different ψη , another type of the SkX can emerge, as 
shown in Fig. 1b23,24. In contrast to the nsk = 1 SkX, this spin texture exhibits the skyrmion number of two in 
a magnetic unit cell ( nsk = 2 SkX), whose spatial inversion and/or sixfold rotational symmetries are broken 
depending on φη on a discrete lattice. For example, the nsk = 2 SkX with φη = π shown in Fig. 1b has the inver-
sion symmetry, but the nsk = 2 SkX with φ1 = 4π/3 , φ2 = 2π/3 , and φ3 = π shows the inversion symmetry 
breaking. Although the nsk = 2 SkX seems to be rare compared to the nsk = 1 one, it is stabilized by a multi-spin 

(1)Si =
3

∑

η=1

(

eη sinQ
′
ηi + ez cosQηi

)

,
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interaction in itinerant magnets 23,24 or an anisotropic symmetric exchange interaction in frustrated  magnets25. 
Moreover, an isolated skyrmion with nsk = 2 is nucleated in frustrated  magnets26,27.

In the present study, we report our theoretical discovery of the SkXs by focusing on a magnetic anisotropy that 
arises from the absence of the mirror symmetry in the crystal structure. By constructing a microscopic effective 
spin model and performing simulated annealing for triangular itinerant magnets, we show that an anisotropic 
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction 28–30 arising from the absence of the mirror symmetry 
on a magnetic layer [Fig. 1d] induces the SkXs with nsk = 1 and nsk = 2 . The anisotropic RKKY interaction 
stabilizes the SkXs even without the DM, competing exchange, and multi-spin  interactions25,31–35. The obtained 
SkXs exhibit different symmetry breaking compared to that found in previous  studies4,19. The spin texture in 
the SkX with nsk = 1 does not have the sixfold rotational symmetry in addition to the inversion symmetry, 
as shown in Fig. 1c, which is different from that in chiral and frustrated magnets in Fig. 1a. We here call this 
state the nsk = 1 threefold-rotational-symmetric SkX (T-SkX). Meanwhile, the nsk = 2 SkX shows the inversion 
symmetry breaking. Furthermore, we elucidate that topological phase transitions between the nsk = 1 T-SkX, 
the nsk = 2 SkX, and another non-topological triple-Q state are caused by a change with respect to the relative 
phase ψη in Eq. (1), which is controlled by the degree of the mirror symmetry breaking. This mechanism for the 
SkXs might be useful to understand a microscopic origin of the SkX in Gd2PdSi336–38, as the underlying lattice 
structure without the mirror plane on a magnetic layer is  common39.

Results
Model. Let us start by showing an effective spin model starting from a multi-band periodic Anderson model 
consisting of localized and itinerant electrons. To trace out the itinerant electron degree of freedom and obtain 
effective magnetic interactions between localized spins, we adopt the standard Schrieffer-Wolff  transformation40 

Figure 1.  Schematic pictures of the SkXs and the crystal structure. (a–c) SkXs characterized by three spiral and 
sinusoidal  waves along the Q1 , Q2 , and Q3 directions: (a) the nsk = 1 SkX for ψη = 0 , (b) the nsk = 2 SkX for 
ψη = π/2 , and (c) the nsk = 1 T-SkX for ψη = π/6 in Eq. (1). (d) Centrosymmetric trigonal structure without 
the horizontal mirror plane. The blue spheres represent magnetic sites, while the gray spheres shifted by +c ( −c ) 
from the center of the downward (upward) triangles on the magnetic layer represent  nonmagnetic sites on a 
layer A (B).
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and perform the perturbative expansion of the grand potential with respect to the anisotropic spin-charge 
 coupling24,41, as detailed in Supplementary Information. Generally, the effective spin model is given by

where α,β = x, y, z , SQη
 is the Fourier transform of the localized electron spin Si at site i ( |Si| = 1 ), and the coef-

ficient 2 arises from the −Qη contribution. The effective spin model consists of an isotropic RKKY interaction, 
symmetric anisotropic RKKY interaction, and antisymmetric DM-type RKKY interaction with coupling con-
stants JQη

 , Kαβ
Qη

 , and Dα
Qη

 , respectively. The coupling constants are defined by

where χαβ
q  corresponds to the bare susceptibility of itinerant electrons, δαβ is the Kronecker delta, and ǫαβγ is the 

Levi-Civita symbol. In Eq. (2), the wave vector Qη is chosen by supposing that χQη
> χq , which is relevant to 

the lattice symmetry. The anisotropic interactions, Kαβ
Qη

 , and Dα
Qη

 , originate from the atomic spin-orbit 
 coupling42–44. The number of Qη and nonzero components of the interactions are determined by the lattice 
symmetry.
For the above effective spin model, we consider the lattice structure in Fig. 1d consisting of a magnetic layer 
sandwiched by two nonmagnetic layers. The nonmagnetic ions at z = c ( z = −c ) are located above (below) the 
downward (upward) triangles on the magnetic layer at z = 0 , which breaks the horizontal mirror symmetry at 
z = 0 while keeping the inversion symmetry. The lattice symmetry is compatible with the D3d point group sym-
metry. In this situation, we set three Qη and four independent coupling constants to satisfy the D3d symmetry. 
The former is given by Q1 = (2π/6, 0, 0) , Q2 = (−π/6,

√
3π/6, 0) , and Q3 = (−π/6,−

√
3π/6, 0) and the latter 

is given by JQ1
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(all other coupling constants are zero). Among three anisotropic coupling constants, we focus on the effect of 
K
yz
Q1

 , which originates from the horizontal mirror symmetry breaking and is characteristic of the D3d symmetry, 
on the stabilization of the multiple-Q states, and Kxx

Q1
 and Kyy

Q1
 are neglected for  simplicity31,34. In the end, the 

effective spin model is summarized as

Here, J ≡ JQ1
 , Ŵ ≡ K

yz
Q1

 , IyzQ1
=IzyQ1

=1, IyzQ2
=IzyQ2

=−1/2 , IxzQ2
=IzxQ2

=−
√
3/2 , IyzQ3

=IzyQ3
=−1/2 , and IxzQ3

=IzxQ3
=
√
3/2 (all 

other component of IQη
 are zero). The symmetric aniostropic interaction with Ŵ is qualitatively different from 

the antisymmetric DM interaction: the former can appear irrespective of the inversion symmetry, while the latter 
requires the inversion symmetry breaking, and thus vanishes in Eq. (6). The Ŵ term also appears in the other trigo-
nal crystal systems. We also introduce the Zeeman coupling to an external magnetic field H along the z direction.

Magnetic phase diagram. A magnetic phase diagram of the model in Eq. (6) is calculated by simulated 
annealing combined with the standard Metropolis local updates. Figure 2a shows the magnetic phase diagram 
while changing Ŵ and H in the unit of J at a temperature of 0.01. To identify magnetic phases, we compute the 
magnetization M = (1/N)

∑

j�Szj � and the spin structure factor Sααs (q) = (1/N)
∑

jl�Sαj Sαl �e
iq·(rj−r l) , where rj is 

the position vector at site j, N = 482 is the system size, and �· · · � is the thermal average. We also calculate the spin 
scalar chirality χsc = (1/N)

∑

R�[Si · (Sj × Sk)]R� where the subscript R represents the center of the triangle and 
i, j and k are in the counterclockwise order. We obtain six different magnetic phases besides the single-Q (1Q) 
conical state for Ŵ = 0 and the fully-polarized (FP) state for H � 2 , whose real-space spin configurations and the 
in-(out-of-)plane spin structure factor S⊥s (q) = Sxxs (q)+ S

yy
s (q) [ Szzs (q) ] are shown in Fig. 2b–g. We also show 

the skyrmion density �R for each spin configuration in Fig. 2h–m.
For Ŵ = 0 , the model in Eq. (6) reduces to the isotropic RKKY model, which stabilizes the 1Q conical state 

for any H. By introducing Ŵ , the multiple-Q instabilities occur: the triple-Q I (3Q-I) state is stabilized for small 
H, while the triple-Q II (3Q-II) state is stabilized for large H, as shown in Fig. 2a. Their spin modulations are 
mainly characterized by the in-plane single-q component, which smoothly connects to the 1Q conical state. 
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Meanwhile, they exhibit different peak structures in Szzs (q) , as shown in Fig. 2b,c: there is a dominant peak at Q2 
in the 3Q-I state, whereas there are two dominant peaks at Q1 and Q3 in the 3Q-II state in addition to the peak 
at Q2 in S⊥s (q) . Both phases are topologically trivial without χsc.

While increasing Ŵ , the 3Q-I state is replaced by the nsk = 2 SkX (SkX-2) in the low-field region for Ŵ � 0.1 
and the nsk = 1 T-SkX (SkX-1) in the intermediate-field region for Ŵ � 0.05 , as shown in Fig. 2a. Both SkXs are 
characterized by the triple-Q peaks with the same intensities, as shown in Fig. 2d,e. By looking into the real-
space spin configurations, they are formed by a vortex with vorticity ν = −2 and two vortices with ν = +1 in a 
magnetic unit cell in Fig. 2d,e, which indicates the inversion symmetry breaking. The positions at the cores with 
negative Szi  are different with each other. They are located at the cores with ν = −2 ( ν = +1 ) for the nsk = 2 SkX 
( nsk = 1 T-SkX). Such a difference results in the different skyrmion numbers, which is clearly found in Fig. 2j,k.

In the high-field region, the 3Q-II state and nsk = 1 T-SkX are replaced by the other topologically trivial 
triple-Q states depending on Ŵ : the triple-Q III (3Q-III) or the triple-Q chiral (3Q-Ch) state. The 3Q-III state is 
mainly characterized by the in-plane double-Q peaks in Fig. 2f, while the 3Q-Ch state is by the in-plane triple-Q 
peaks with equal intensities in Fig. 2g. The 3Q-Ch state exhibits nonzero χsc , although the skyrmion number 
becomes zero.

We show H dependences of M and |χsc| for Ŵ = 0.075 and 0.2 in Fig. 2n. While increasing H, jumps of M and 
χsc appear when the skyrmion number changes: Two jumps between the nsk = 1 T-SkX and the 3Q-I are found 

Figure 2.  Magnetic phase diagram and characteristics of magnetic phases. (a) Ŵ-H magnetic phase diagram 
for the model in Eq. (6) in the unit of J. The 3Q-I, 3Q-II, 3Q-III, SkX-2, SkX-1, 3Q-Ch, 1Q conical, and FP 
represent the triple-Q I, triple-Q II, triple-Q III, nsk = 2 SkX, nsk = 1 T-SkX, triple-Q chiral, single-Q conical, 
and fully polarized states, respectively. In the hatched region, energies for several magnetic states are degenerate 
and it is difficult to determine the phase boundaries. (b–g) Snapshots of the spin configurations in (b) 3Q-I for 
Ŵ = 0.075 and H = 0.4 , (c) 3Q-II for Ŵ = 0.075 and H = 1.3 , (d) SkX-2 for Ŵ = 0.2 and H = 0 , (e) SkX-1 for 
Ŵ = 0.2 and H = 1 , (f) 3Q-III for Ŵ = 0.075 and H = 1.6 , and (g) 3Q-Ch for Ŵ = 0.2 and H = 1.4 . The arrows 
and contour denote the xy and z components of the spin moments, respectively. The square root of in-plane 
and out-of-plane spin structure factors in the Brillouin zone are shown in upper and lower panels, respectively, 
where the dashed circles highlight ±Q1 , ±Q2 , and ±Q3 and the q = 0 component is removed for better visibility. 
(h–m) Real-space distributions of the skyrmion density �R for the spin configurations in (b–g), respectively. 
(n) H dependences of the magnetization (red square) and spin scalar chirality (blue circle) for Ŵ = 0.075 (filled 
symbols) and Ŵ = 0.2 (open symbols).
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at H ≃ 0.7 and ≃ 0.9 for Ŵ = 0.075 and other two jumps are found between the nsk = 2 SkX and the nsk = 1 
T-SkX and between the nsk = 1 T-SkX and the 3Q-Ch for Ŵ = 0.2 . The transition between the nsk = 1 T-SkX 
and the 3Q-III for 0.1 < Ŵ < 0.17 also shows jumps of M and χsc.

Mechanism of the topological transition. Next, we show the transformation of the skyrmion numbers 
on the basis of the phase degrees of freedom among the constituent triple-Q density waves. We find that the spin 
configurations for the nsk = 1 T-SkX in Fig. 2e and nsk = 2 SkX in Fig. 2d are summarized in a single expression 
as

where A and mz are additional variational parameters compared to Eq. (1), and we set eη � ez × Qη and 
ψ ≡ ψ1 = ψ2 = ψ3 for Ŵ > 0 . There are two types of phase degrees of freedom in Eq. (7). One is a phase among 
the constituent waves, φη , which induces the transformation between the SkX and the vortex crystal with stag-
gered spin scalar  chirality45. The other is a relative phase between in-plane- and z-spin components, ψ , which 
induces the different types of the SkX, as discussed in the introduction: the nsk = 1 T-SkX for 0 < ψ < ψc and 
nsk = 2 SkX for ψc ≤ ψ ≤ π/2 , where ψc depends on the other variational parameters. From the symmetry 
viewpoint, nonzero ψ in the nsk = 2 SkX and nsk = 1 T-SkX shows the sixfold-rotational symmetry breaking in 
addition to the inversion symmetry breaking, which is in contrast to ψ = 0 in the nsk = 1 SkX in chiral magnets.

The phase diagram obtained by the simulated annealing in Fig. 2a is well reproduced by the variational spin 
ansatz in Eq. (7) for Ŵ � 0.2 . This means that ψ is evaluated through the spin ansatz in Eq. (7). Figure 3a shows 
H dependence of ψ by simulated annealing and variational calculation at Ŵ = 0.2 . Both the results show that the 
nsk = 2 SkX exhibits ψ = 0.5π , the nsk = 1 T-SkX exhibits 0.24π � ψ � 0.3π , and the 3Q-Ch exhibits ψ = 0.5π . 
Thus, the phase transitions among the nsk = 2 SkX, the nsk = 1 T-SkX, and the 3Q-Ch are regarded as the phase 
transitions with respect to ψ . In other words, the topological transitions are caused by the changes of the types 
of constitute waves, as shown in Fig. 3a.

The phase transition characterized by the change of ψ is due to the mirror symmetry breaking in the lattice 
structure. To demonstrate that, we calculate the energy contributions from each term in the model in Eq. (6): 
the RKKY energy ERKKY = −2J

∑

η SQη
· S−Qη

/N  , the anisotropic energy EŴ = −2Ŵ
∑

ηαβ I
αβ
Qη

SαQη
S
β
−Qη

/N  , 
and the Zeeman energy EZeeman = −H

∑

i S
z
i /N . Figure 3b shows ψ dependences of ERKKY , EŴ , and EZeeman for 

the spin ansatz in Eq. (7) with |Si| = 1 at fixed A = 1/
√
2 , mz = 0 , φ1 = 4π/3 , φ2 = 2π/3 , and φ3 = π , where 

ψc is around π/3 . ERKKY has little ψ dependence, whereas EŴ and EZeeman show distinct behaviors against ψ ; EŴ 
( EZeeman ) decreases while increasing (decreasing) ψ . In other words, Ŵ arising from the mirror symmetry break-
ing tends to favor the nsk = 2 SkX with ψ = π/2 , while the magnetic field tends to favor the nsk = 1 SkX with 
ψ = 0 . The competition between these distinct behaviors causes the filed-induced transition from the nsk = 2 
SkX to the nsk = 1 T-SkX with 0.24π � ψ � 0.3π.

(7)Si ∝





−
√
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2
sinQ′
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√
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Figure 3.  Mechanism of the topological transition for Ŵ � 0.2 . (a) H dependence of the phase ψ obtained from 
the simulated annealing (SA) and variational calculation (VC) in the model in Eq. (6) at Ŵ = 0.2 . Schematic 
pictures of the constitute waves in each SkX are shown in the inset. (b) ψ dependences of energies from 
different contributions, ERKKY , EŴ , and EZeeman in the unit of J, Ŵ , and H, respectively, for A = 1/

√
2 , mz = 0 , 

φ1 = 4π/3 , φ2 = 2π/3 , and φ3 = π in Eq. (7) with |Si| = 1 . The vertical dashed line represents the boundary 
between the SkXs with nsk = 1 and 2.
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Summary
In conclusion, we clarify that the magnetic anisotropy arising from the breaking of the mirror symmetry is 
another way to stabilize the SkXs in itinerant magnets irrespective of the spatial inversion symmetry. On the basis 
of simulated annealing and variational calculation, we show that the anisotropic RKKY interaction induces two 
SkXs with different topological numbers, which accompanies the spontaneous inversion symmetry breaking. 
Moreover, we find that two SkXs are transformed with each other by changing the anisotropic RKKY interaction 
and magnetic field, the former of which is tuned by the degree of mirror symmetry breaking.

Our study reveals that the nsk = 1 and nsk = 2 SkXs are stabilized even without the multi-spin interaction 
in itinerant magnets, which is distinct from the previous one in the Kondo lattice model without the magnetic 
 anisotropy23: The anisotropic bilinear exchange interaction plays an important role in the stabilization of the 
former SkXs, while the isotropic biquadratic interaction is important for the latter  one24. Although both the 
systems exhibit similar skyrmion textures, the degeneracy in terms of the vorticity and helicity is different owing 
to the different mechanisms. The SkXs by the isotropic biquadratic interaction are energetically degenerate for 
different vorticity and helicity, while the present SkXs have a definite vorticity and helicity depending on the 
sign of the anisotropic interaction. Reflecting such a difference, the SkXs in the present model induce a different 
Goldstone mode from that in the previous model, which results in different dynamics. Furthermore, the aniso-
tropic response against the electromagnetic field is anticipated due to the nature of magnetic anisotropy, which 
might give rise to further unconventional multiple-Q states. Such a theoretical exploration of the SkXs based on 
magnetic anisotropy will be left for future study.

Finally, let us discuss a relevant material in the present mechanism. The centrosymmetric itinerant magnet 
Gd2PdSi336 might be a candidate material, which hosts the skyrmion crystal in an external magnetic field. The 
importance of the RKKY interaction from the nesting of the Fermi surfaces has already been suggested by the 
angle-resolved photoemission  spectroscopy46,47. In addition, the anisotropic RKKY interaction would play an 
important role in this compound, as the magnetic Gd ions form the triangular lattice and they are sandwiched 
by the nonmagnetic Pd and Si so that the mirror symmetry on each magnetic layer is  broken39,48. Indeed, the 
importance of the multi-orbital degrees of freedom, which become the microscopic origin of the anisotropic 
RKKY interaction, has also been implied by first-principle  calculations46,49. It would be interesting to test our 
scenario for the SkX in Gd2PdSi3 by considering the superstructure of the Pd and Si and the effect of the spin-
orbit coupling. Our mechanism will also shed light on engineering the SkXs in quasi-two-dimensional magnetic 
materials including surface, domain, and layered systems.

Methods
Simulated annealing. We perform the simulated annealing combined with the standard Metropolis local 
updates under the periodic boundary condition. In the simulation, we gradually reduce the temperature with a 
rate Tn+1 = αTn , where Tn is the temperature at the nth step. We set the initial temperature T0 = 1 and the coef-
ficient α = 0.99954 . The final temperature T ≃ 0.01 is reached after total 106 steps, where we perform 102 Monte 
Carlo sweeps at each temperature. At the final temperature, we perform 106 Monte Carlo sweeps for thermaliza-
tion and measurements, respectively. Although Figs. 2 and 3a show the results for N = 482 , we confirm that the 
obtained result does not change for N = 962 . We also confirm that the simulations with different values of α , 
α = 0.99908, 0.99541 , and 0.95499, give the same result.

Variational calculation. We here present the details of the spin ansatz in Eq. (7) and the variational calcu-
lation. To find the spin configuration in Eq. (7), we start from a general spin ansatz of the single-Q spiral state 
given by

where Q′′
ηi = Qη · ri + ϕη , ẽηy = eη cos θ − ez sin θ , and ẽηz = eη sin θ + ez cos θ ( 0 ≤ θ < π ). This spin configu-

ration expresses an elliptical wave, where the axis with a length of 2a is parallel to ẽηz and the axis with a length 
of 2b ( a > b ≥ 0 ) is parallel to ẽηy . The spin ansatz in Eq. (8) describes a variety of spin density waves depending 
on r ≡ b/a and θ : the spiral wave ( r = 1 ), standard elliptical wave ( 0 < r < 1 and θ = 0,π/2 ), rotated elliptical 
wave ( 0 < r < 1 and θ  = 0,π/2 ), standard sinusoidal wave ( r = 0 and θ = 0,π/2 ), and rotated sinusoidal wave 
( r = 0 and θ  = 0,π/2 ), where “standard” means that the axes are parallel to eη or ez . A schematic picture of spiral 
plane in Eq. (8) is shown in Supplementary Information.

We rewrite the spin configuration in Eq. (8) as

where �⊥ , �z , Az , and A⊥ satisfy tan�⊥ = tan θ/r , tan�z = r tan θ , A⊥ =
√

a2 sin2 θ + b2 cos2 θ  , and 
Az =

√

a2 cos2 θ + b2 sin2 θ  , respectively. Then, the spin ansatz in Eq. (7) is obtained by superposing three 
spin density waves in Eq. (9) in addition to a uniform z component, which is given by

The variational parameters A, mz , φη , and ψη in Eq. (7) are related to that in Eq. (10) as A = Az/A⊥ , 
mz = Mz/A⊥ φη = ϕη +�z and ψη = �⊥ −�z . From the definition, ψη does not depend on η , i.e., 
ψ1 = ψ2 = ψ3 ≡ ψ.

(8)S
η
i = ẽηyb sinQ

′′
ηi + ẽηza cosQ

′′
ηi ,

(9)S
η
i = eηA⊥ sin(Q′′

ηi +�⊥)+ ezAz cos(Q
′′
ηi +�z),

(10)Si ∝
∑

η

S
η
i +Mzez .
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In the variational calculations in Fig. 3a, we optimize a, b, θ , ϕη , and Mz as the variational parameters for 
N = 122 . After obtaining the optimal parameters, we calculate ψ in Fig. 3a from the difference between phases 
of SyQ1

 and SzQ1
 . In Supplementary Information, we show H dependences of the magnetic moment, magnetization, 

and spin scalar chirality by the variational calculation and the simulated annealing. Compared to the results, one 
can find that the variational spin ansatz in Eq. (7) corresponds to the spin textures obtained by the simulated 
annealing.

Data availibility
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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