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Berezinskii–Kosterlitz–Thouless 
phase induced by dissipating 
quasisolitons
Krzysztof Gawryluk* & Mirosław Brewczyk

We theoretically study the sound propagation in a two-dimensional weakly interacting uniform 
Bose gas. Using the classical fields approximation we analyze in detail the properties of density 
waves generated both in a weak and strong perturbation regimes. While in the former case density 
excitations can be described in terms of hydrodynamic or collisionless sound, the strong disturbance 
of the system results in a qualitatively different response. We identify observed structures as 
quasisolitons and uncover their internal complexity for strong perturbation case. For this regime 
quasisolitons break into vortex pairs as time progresses, eventually reaching an equilibrium state. We 
find this state, characterized by only fluctuating in time averaged number of pairs of opposite charge 
vortices and by appearance of a quasi-long-range order, as the Berezinskii–Kosterlitz–Thouless (BKT) 
phase.

Sound waves carry information on both thermodynamic and transport properties of a medium they propagate 
through. In classical hydrodynamics, measuring the speed of sound waves and their attenuation gives an access 
to characteristics of the medium such as the compressibility and viscosity. In quantum hydrodynamics, with 
superfluids present, the picture is more  complex1. For example, liquid helium and weakly interacting Bose gas 
respond to local perturbation in a qualitatively different ways.

Many experiments exploring the phenomenon of sound propagation in ultracold atomic systems have been 
already performed. Sound waves were studied in harmonically trapped three-dimensional bosonic gases at 
very  low2–4 as well as at  higher5 temperatures. Sound velocity was measured at resonance in a mixture of fermi-
onic lithium  atoms6. Two sound modes propagating at different speeds, according to predictions of two-fluid 
hydrodynamics, were observed in a resonant Fermi  gas7. The sound diffusion in a unitary three-dimensional 
Fermi gas was investigated and a universal quantum limit of diffusivity was observed in Ref.8. Recently, sound 
propagation and damping were studied in two-dimensional systems—a weakly interacting  Bose9,10 and strongly 
interacting  Fermi11 gases.

In9, a gas of rubidium-87 atoms is confined inside a quasi-2D rectangular potential with hard walls. A density 
perturbation is introduced by applying a repulsive potential to the cloud of atoms. This additional potential cre-
ates a density dip along one direction which propagates at constant speed when the laser is switched off. During 
this evolution the density perturbation bounces several times off the walls of the box and its velocity is found 
to be close to the Bogoliubov sound speed. Several attempts have been already undertaken to reproduce results 
of this  experiment12–14. They all support experimental observation that below the BKT transition the generated 
sound waves propagate with velocities close to the speed of second sound, predicted by two-fluid hydrodynamic 
model. They also predict that sound waves can propagate above the BKT transition, in agreement with experi-
ment and in opposition to what is predicted by two-fluid hydrodynamic model with respect to second  sound15,16.

Sound waves propagation
In our numerical simulations we first start with analyzing the response of two-dimensional Bose gas to weak 
perturbation, as in the experiment of Ref.9. With the help of Metropolis  algorithm14,17–22 we create an ensemble of 
initial states, ψ(r) , for a two-dimensional Bose gas confined in a box potential with periodic boundary conditions. 
We work within the grand canonical ensemble, so the temperature T and the chemical potential µ are control 
parameters. Members of an ensemble of classical fields are drawn with the probability ∼ exp((µN − E)/kBT) , 
where N =

∑

k |αk |2 and E = (�2/2m)
∑

k k
2|αk |2 + (g/2L2)

∑

k,j,l α
∗
k α

∗
j αl αk+j−l are the number of particles 

and the energy of the state, respectively. Here, g/L2 is the two-body interaction energy with L being the length 
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of a square box potential and αk are the amplitudes of expansion of the classical field in the basis of the box 
eigenfunctions.

Next, we disturb the cloud of atoms with the protocol similar to that applied  in9. We create a dip in density 
in one direction, just by multiplying the initial classical field by an appropriate steplike function. The dip is 
characterized by two parameters: the width w and the depth d. Such disturbance, a kind of density imprinting, 
is then evolved according to the classical field approximation (CFA) prescription. An equation for a disturbed 
classical field ψ(r, t)  is23

In our case the perturbation is initially located at the center of the box. As a consequence we have two density 
patterns propagating symmetrically outward as in the experiment  of2. Integrating density along the direction 
transverse to the sound propagation we are able to identify traveling waves and find their speeds.

To get the velocities of density waves we decompose the density integrated along the direction perpen-
dicular to the wave propagation, which is y axis in our case, via the Fourier transform at each instant of time: 
n(x, t) = �n� +

∑

j=±1,±2,... Aj(t) exp(j 2πx/L) . Here, 〈n〉 is the average density along x axis. Then we do time 
analysis of Aj(t)/Aj(0) coefficients—we fit real (or imaginary) part of them to an exponentially damped sinusoidal 
function e−Ŵj t/2

[

Ŵj/(2ωj) sin(ωjt)+ cos(ωjt)
]

 . Focusing on lower energy modes we obtain the velocity of density 
waves as v = ωj/kj , where kj is the wave vector ( kj = ±j2π/L , since periodic boundary conditions are applied).

In Fig. 1 we summarize our results, showing velocities of density waves in units of the Bogoliubov speed 
cB =

√

gN/L2m and assuming the interaction strength is g = 0.16 �2/m . The temperature is given in units of 
Tc = 2πn�2/[mkB ln (380 �

2/mg)] , which is the calculated critical temperature for the BKT phase  transition24. 
Two sets of equilibrium states, corresponding to different values of chemical potential (as indicated in the legend), 
are used for the analysis. Numerical values of the speed of sound waves (black and brown bullets, black circles) 
remain in a good agreement with experimental data (red  squares9) in the whole range of studied temperatures. 
Most of the data in Fig. 1 were obtained assuming a density imprinting parameters: w/L = 0.25 and d = 5/16 . 
Some of the points (brown bullets) were calculated in the regime of very weak perturbation, d = 1/16 . Close to 
the transition and for the normal phase we double results showing also the response of the system to stronger 
initial disturbance (black circles, for which d > 5/16 ). Numerical data clearly demonstrate that the response 
of the system depends on the strength of initial density imprinting. Similar observation was reported in Ref.4, 
where the wave fronts propagation through the condensate was studied after it was split by a strong laser beam.

Additionally, we put in Fig. 1 values of the speed of second sound, coming from the two-fluid  model1,15,16. 
Within this framework one can calculate a value of the speed of second sound, c2 , from the equation

where ns , nn , and n (= ns + nn) are superfluid, normal, and total densities, respectively. κT ( κS ) is the isothermal 
(adiabatic) compressibility, s̃ is the entropy, and c̃V—the specific heat at constant volume, both per unit mass. For 

(1)i� ∂/∂t ψ(r, t) = (−�
2/2m∇2 + g |ψ(r, t)|2) ψ(r, t).

(2)c4 −
(

1

mnκS
+

nsTs̃
2

nnc̃V

)

c2 +
nsTs̃

2

nnc̃V

1

mnκT
= 0 ,

Figure 1.  Speed of sound normalized to the Bogoliubov sound speed (at zero temperature) shown as a function 
of T/Tc . Black and brown bullets (obtained at different values of chemical potential, in units of �2/mL2 , as 
indicated in the legend) come from numerical simulations whereas red squares are experimental  results9. 
Numerical results are obtained within weak perturbation scheme, with w/L ≈ 0.25 and d � 5/16 . Open circles 
represent numerical data for stronger disturbance, w/L � 0.25 and d > 5/16 . Crosses are the outcome of two-
fluid  model1,15, showing the speed of second sound. Inset: Propagation of sound waves in a box potential. At 
each time two-dimensional density is integrated along the direction perpendicular to the sound propagation 
and then averaged over a hundred realizations. The effective one-dimensional density is shown as a function of 
time. The width of the density depletion equals w = 0.25 in units of the box length L, and the depth of a density 
dip is 5/16 of initial density ( N = 42275 ). The temperature is T = 0.37Tc . Total evolution time t = 0.05mL2/� 
corresponds to 100ms for L = 38µm . The spatial resolution here is 0.76µm which is 1.58 of the healing length 
ξ = �/

√
mng  . All figures were created with the help of Wolfram Mathematica (version 12.1, https:// www. wolfr 

am. com/ mathe matica/).
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temperatures such that kBT > g n , a good approximation to the velocity of second sound is given by the expres-
sion c2 =

√
ns/n/

√
mnκT

15. Within CFA we can calculate both the superfluid density (from current-current 
 correlations22) and the isothermal compressibility. The latter is obtained from the fluctuation-dissipation relation 
(�N2� − �N�2)/�N�2 = kBTκT/V

25. The speed of second sound, as a function of T/Tc , is plotted in Fig. 1 by black 
crosses and the values are close to experimental (and CFA) results.

In CFA approach the classical field is expanded in the basis of modes which are macroscopically occupied—in 
our case these are simply the plane  waves23. Dynamical equations for modes amplitudes (expansion coefficients) 
can be written in the form of a set of nonlinear differential equations. At each instant of time, these amplitudes 
determine fully the classical field. Hence, we can watch the density (square modulus of the classical field) with 
arbitrary high spatial resolution. In particular, this resolution can be high enough to resolve the healing length 
scale.

Quasisolitons
New observations are possible in a strong perturbation regime with high resolution employed. Interesting things 
happen when the density imprinting parameters, the width w and the depth d of the initial depletion region, are 
being increased. First of all, we find that the visible density waves, in fact, consist of several thinner structures, 
which are characterized by slightly different velocities, see Fig. 2. For weaker initial perturbations they rather 
form a single beam (Fig. 2, upper row), whereas for stronger ones we clearly see signs of nonlinear behavior—
lines in time-position plots (Fig. 2, lower row) are no longer straight. In both cases, internal structures, traveling 
with slightly different velocities, separate each other. For stronger initial perturbation the multiple density dips 
accelerate during the motion. At the same time, larger the width of initial perturbation w bigger the number 
of created waves. The number of internal thin waves visible inside broad dips in Fig. 2 is well described by the 
formula w/(4ξ) , where w is the width of initial perturbation and ξ is the healing length. Factor 4 arises from a 
typical width of these structures, see Fig. 2, which turns out to be about 4ξ.

Structures presented in Fig. 2 survive several crossings and exhibit a moderate change of shapes during the 
evolution, so one can try to assign some solitonic properties to them. Below we exam numerically obtained densi-
ties by comparing their profiles with analytical formulas for a single soliton solution of a nonlinear Schrödinger 
equation, known as Zakharov-Shabat solutions with the nonlinear term corresponding to repulsive  interactions26

Figure 2.  Time evolution of initially perturbed equilibrium state. Two-dimensional density of the system is first 
integrated along one direction, next averaged over approximately 100 realizations, and then shown as a function 
of time. Perturbation parameters, the width w and depth d are given in the frames. Temperature is T = 0.37Tc . 
Total evolution time t = 0.025mL2/� corresponds to 50ms for L = 38µm . Here, the spatial resolution is 1.64 of 
the healing length.
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Here, n0 is the density of the medium far away from the soliton dip, q and q̇ are the position and velocity of the 
soliton, respectively. The healing length ξ = �/

√
mn0g  and cB =

√

n0g/m . The width and the depth of solitonic 
solution (3) is solely determined by soliton velocity, q̇ . For weak perturbations (top left frame in Fig. 2) density 
dips propagate with constant velocity but they get shallower in time (due to snake  instabilities27–31). Hence, addi-
tional damping factor has to be included in Eq. (3) and then a dissipative Zakharov-Shabat solution takes the form

On the other hand, for strong perturbations (lower row in Fig. 2) the density waves accelerate in time. In this 
case, the parameter q̇ in Eq. (3) should depend on time.

To verify this concept we analyze first the simplest case – a small initial perturbation in both w and d which 
leads to single wave moving with constant velocity. In Fig. 3, frames (a) and (b), we compare numerically obtained 
density cuts for various times with Eq. (4), where q̇ is fixed by the value of v we get from the time-dependent 
analysis of A1(t) coefficient (actually, the numerical results are fitted to the sum of two one-soliton solutions of 
Eq. (4)). It turns out that both densities match perfectly up to first collision, after which the agreement slowly 
degrades. Surprisingly, Eq. (3) works well also for strong perturbation, although in this case one has to consider 
rather an accelerating two-soliton solutions of (3), i.e. a solution with time-dependent q̇ . Frames (c) and (d) prove 
that an agreement is good, here w/L = 2/50 and d = 14/16 . Hence, we will be naming observed structures as 
quasisolitons as opposed to true solitonic objects present in 1D but also in 2D, where they are called the Jones-
Roberts (JR)  solitons32,33. Similarly to our case (as discussed in the next section), the JR solitons can transform 
into vortex-antivortes pairs. However, this happens in the limit of vanishing velocity which critically distinguish 
JR structures from ours. Surprisingly, Eq. (3) also works for weak perturbations at longer times, i.e. after first 
collision of density waves. Density dips become, as time progresses, broader and shallower and their velocity 
increases towards speed of Bogoliubov sound (similarly to dissipative dynamics of solitons already observed in 
early experiments on dark solitons created by phase imprinting  technique34 and theoretically discussed  in35).

The excitation protocol we use in numerical simulations is rather a kind of ideal one. It differs from that 
applied in Ref.9 in two ways. First, we generate the system at equilibrium in a box potential, i.e. without an addi-
tional potential repelling atoms out of desired space in the box, and only after that part of the atoms is removed 
from the sample. Second, the change of the density at the border of perturbed-unperturbed regions is extremely 
sharp. The second difference, as we checked, does not influence the results in weak perturbation regime. However, 

(3)|φZS(x, t)|2 = n0

[

q̇2

c2B
+

(

1−
q̇2

c2B

)

tanh2

(

x − q

ξ

√

1−
q̇2

c2B

)]

.

(4)|ψ(x, t)|2 = exp(−Ŵ(t) t) |φZS(x, t)|2 .

Figure 3.  Upper row: Density cuts for week initial perturbation ( w/L = 2/50, d = 5/16 , which corresponds 
to the most left in upper row frame in Fig. 2) together with two-soliton fits according to dissipative 
Zakharov-Shabat solution, Eq. (4), for different times (here, q̇ = 0.90 cB ). For frames (a,b), i.e. before the 
first collision, Ŵ = 126 and Ŵ = 169 , respectively. Lower row: Density cuts for stronger initial perturbation 
( w/L = 2/50 , d = 14/16 , which corresponds to the most left in lower row frame in Fig. 2) together with 
fits according to “accelarating” two-soliton solutions of Eq. (3), for different times ( ̇q = 0.77 cB for (c) and 
q̇ = 0.90 cB for (d)).
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when the system is strongly disturbed, multi-quasisoliton structures visible in Fig. 2 get less pronounced. The 
same happens when the system is disturbed and evolved after it is equilibrated in the presence of repelling barrier.

Emergence of the BKT phase
As observed in simulations, quasisolitons dissipate and eventually breake into elementary vortex pairs (i.e. pairs 
of vortices with winding numbers equal to ±1 ). It is illustrated in Fig. 4, second and fifth rows, where densities 
for a single realization are shown at different times. Except most left frames almost no trace of density waves is 
visible, although, while averaged over a hundred realizations, density dips are still detectable for short times (first 
left three columns in first and fourth rows). Additionally, positions of pairs of opposite charge vortices are marked 
by color (white and red) circles for a single realization cases. We identify vortices by calculating the phase wind-
ing around each lattice plaquette as the system evolves. The number of vortex pairs changes in time but finally, 
for times longer than 0.1mL2/� , an equilibrium is established—see plateau in Fig. 5 (middle frame), exhibiting 
only fluctuating, after averaging over a hundred realizations, number of vortex pairs. This feature sustains over 
hundreds of milliseconds as shown in inset in Fig. 5. The final number of vortex pairs depends on the strength 
of initial density perturbation, the stronger disturbance the larger number of pairs. For longer times no trace 
of quasisolitons’ positions is visible (see most right column in Fig. 4) and motion of pairs of vortices resembles 
rather that of an ideal gas particles.

Production of vortex-antivortex pairs in two-dimensional condensates, due to snake instability of initially 
imprinted dark soliton, was thoroughly discussed  in36. As demonstrated theoretically  in37, creation of vortex-
antivortex pairs is expected to occur in a laser-stirred two-dimensional Bose gas, as in the experiment  of38. There, 
an additional energy is pumped into the system due to stirring the gas at high enough velocity. This energy 
dissipates via mechanism of creation of vortex-antivortex pairs. Vortex dynamics itself features fast (related to 
annihilation of vortices of opposite charges) and slow (related to drifting vortices out to the thermal region of 
the cloud) decay in number of vortices. Remarkably, the first channel is quickly closed and the system exhibits 
very slow relaxation, on time scales of seconds. The somehow opposite route, which is the crossover from the 
BKT  phase39,40 containing pairs of vortices to a vortex free Bose-Einstein condensate (BEC) in weakly interacting 
quasi-two-dimensional Bose gas was experimentally realized  in41.

In numerical simulations, initially prepared sample of the Bose gas at equilibrium is modified by immedi-
ate removing some part of the atomic cloud. Then, in our case the total energy of the system is decreased and 
preserved during further evolution as the system is isolated. How the energy per atom is changed by such a 
perturbation is shown in Fig. 6. What is most important is the behavior of kinetic energy per atom, since it deter-
mines the temperature of the system. Figure 6 tells us that this quantity does not change much. Since the atomic 
density gets lower, the transition temperature is reduced  (see24). Then effectively, a two-dimensional Bose gas is 
shifted towards the transition point because T/Tc gets larger. This supposition is confirmed also by analyzing the 
properties of the system in plateau region in Fig. 5, middle frame. It turns out that there exist such values of the 
chemical potential and temperature that the grand canonical ensemble formalism predicts the average energy 
and particles number just as those exhibited by the system in plateau region in Fig. 5.

As visible in Fig. 5, the number of vortex pairs increases with the strength of perturbation. Left frame in Fig. 5 
shows effective ratio T/Tc after disturbance. In the background a superfluid fraction is plotted as a function of 
relative temperature T/Tc (black dots) for the Bose gas of the chemical potential µ = 2500 �2/mL2  (see22). The 
most right line in Fig. 5 (left frame) indicates the transition temperature as argued  in22, based on consideration 
of current-current correlations. The superfluid density at the transition temperature represents the superfluid 
density jump characteristic for the BKT theory as shown by Nelson and  Kosterlitz42. What we observe in our 
simulations is then an opposite route to that realized  in41, it is rather the crossover from a vortex free BEC to the 
BKT phase containing pairs of vortices.

Presence of vortices in plateau region, Fig. 5 (middle frame), could be a signature of appearance of the BKT 
 phase43,44. Here, we actually observe an appearance and persistence of pairs of vortices which is a strong signa-
ture for the BKT  phase39,40. As we checked, the average number of vortex pairs does not change over a time of 
hundreds of milliseconds (see inset in Fig. 5), suggesting that the system remains frozen in the BKT state. To 
clarify the situation we calculate the first-order correlation function g (1)(r, r′, t) , defined as a normalized aver-
age g (1)(r, r′, t) =

〈

ψ⋆(r, t) ψ(r′, t)
〉

/�ψ⋆(r, t)�
〈

ψ(r′, t)
〉

 over the grand canonical ensemble, while the system 
evolves. According to Kosterlitz and  Thouless39,40 it should decay algebraically with a distance in a uniformn two-
dimensional Bose gas. We plot the results in Fig. 7 for a strong perturbation with w/L = 12/34 and d = 14/16 . 
We find that already when the number of vortex pairs approaches plateau (see Fig. 5), the first-order correlation 
function decays algebraically (Fig. 7, left and middle frames in top row). However, the correlations are not yet 
spatially uniform. They behave as ∼ 1/rα with a distance but with different exponents in x and y directions. 
However, for t � 0.10mL2/� the system starts exhibiting the quasi-long-range order, i.e. g (1)(r, 0) drops alge-
braically with a distance, here with exponent equal to ≈ 0.13 for t > 0.20mL2/� . Hence, the system enters 
the BKT phase. To check the consistency of our simulations we calculate the superfluid density of the system 
which, according to the BKT  theory42, is related to the decay exponent via α(T) = mkBT/2π�

2ns(T) . It gives 
ns(T)/n = (T/Tc)/[α(T) ln (380 �2/mg)] ≈ 0.8 and this result agrees with the superfluid fraction of the BKT 
phase at the temperature T/Tc ≈ 0.8 (Fig. 5, left frame, vertical red line), which is the estimated temperature 
after equilibration in the case of perturbation characterized by w/L = 12/34 and d = 14/16 . Observation of 
signatures of vortex-antivortex pairing in, initially perturbed, two-dimensional superfluid Bose gas was already 
reported  in45.

Details of the relaxation dynamics of our system, i.e. those exhibited in a period before the plateau region 
is reached, are depicted in Fig. 5. We find the number of vortices is decreasing in time. Several experiments, 
studying two-dimensional turbulent flow in bosonic superfluids, have already reported a decay of vortices after 
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Figure 4.  First (from the top) row: 2D time-snapshots of a density (averaged over 100 realizations) for 
different times as labeled in frames. Second (third) row: 2D densities (phases) for a single realization, with 
marked white and red circles surrounding elementary vortices with opposite signs. Vortices are identified by 
calculating the change of the phase around each plaquette of our numerical grid. Here, w/L = 4/50 , d = 14/16 , 
and T = 0.37Tc , which corresponds to the middle lower row frame in Fig. 2. Next three rows show the same 
quantities but for w/L = 12/34 , d = 14/16 , and T = 0.56Tc (see Fig. 5). The spatial resolution is 1.12µm which 
is 1.39 of the healing length.
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an energy was pumped to the system through transient  stirring45–48.  In48 two distinct regimes have been iden-
tified—the one showing t−2/5 and the other exhibiting t−1 decay in time of number of vortices. Such vortex 
annihilation behavior can be understood in terms of collisions involving few vortices. In Ref.49 it was predicted 
that vortices annihilate mainly through two- and three-body loss events. These processes result in specific time 
decay of the number of vortices, governed by ∝ t−1 and ∝ t−2/5 dependence, respectively. Experimental results 
 of48 show reasonable agreement with this prediction for some kinds of disturbance protocols.

Figure 5 (right frame) clearly shows the existence of two different regimes while the system approaches an 
equilibrium. We uncover faster ( ∝ t−1 ) and slower ( ∝ t−2/5 ) decrease of number of vortices as well. In our case, 
a slow decay is succeeding the fast one. This must be related to the perturbation protocol we use. It leads to crea-
tion of pairs of vortices (vortex dipoles) due to snake instability of quasisolitons rather than to spatially random 
distributed vortices. Evidently, in the first stage two-body head-to-tail collisions of vortex dipoles are dominant, 
whereas later on all other relative orientations of vortex dipoles get possible which, effectively, corresponds to 
the three-body collision events.

Yet another transition can be realized with the perturbation protocol we apply. Now, we start with the two-
dimensional Bose gas at higher temperature, T/Tc = 0.8 . The system remains in the BKT  phase22, see Fig. 7, 
most left frame in bottom row. The first-order correlation function decays algebraically. Then we strongly disturb 
the Bose gas with w/L = 10/36 (middle frame) and w/L = 20/36 (right frame). After stronger perturbation the 
correlation function starts to decrease exponentially with a distance, the system looses the quasi-long-range 
order. Hence, we observe the BKT to normal phase transition in this case.

Moreover, we checked that also in the case of less ideal excitation protocols the long-term evolution exhibits 
plateau in the number of vortex pairs as in Fig. 5. Such behavior is expected because the transition temperature 
Tc is again reduced since the average density is lower than the unperturbed one, due to the presence of additional 
atoms-repelling barrier.

Figure 5.  Left frame: Superfluid fraction as a function of temperature (black dots) for µ = 2500 �2/mL2 
 (from22). Initially, i.e. before perturbation, the system is prepared at temperature T/Tc = 0.56 (vertical dotted 
line, most left). After density imprinting with the depth d = 14/16 and the widths w/L = (2, 4, 6, 8, 10, 12)/34 
the system’s relative temperature is shifted up (shown by successive vertical lines). The vertical dashed line, most 
right, shows the transition temperature. Middle frame: Number of pairs of opposite charge vortices (averaged 
over 100 realizations; error bars denote the standard deviations) versus time, for various perturbations as in 
the left frame. Stronger perturbation leads to larger number of vortices at equilibrium, i.e. at longer times 
and to larger standard deviations. Total evolution time t = 0.20mL2/� ( 1.0mL2/� in inset) corresponds to 
400ms ( 2 s ) for L = 38µm . Right frame: Decay of the number of vortex pairs Nv as a function of time, here for 
w/L = 12/34 , exhibiting two characteristic regimes: t−1 (black solid line) and t−2/5 (blue solid line) dependence.

Figure 6.  Total (circles), interaction (squares), and kinetic (diamonds) energies per atom as a function of 
perturbation width, as in Fig. 5. Open symbols represent initial energies while the solid ones are energies 
calculated at t = 0.2mL2/� , deeply in plateau region (total energy is conserved as the system is isolated). A 
small rise in kinetic energy per atom, which is a measure of temperature of the system, is observed. Then, the 
increase of temperature T and the reduction of the critical temperature Tc results in increase of the relative 
temperature T/Tc , shown by vertical lines in Fig. 5 (left frame).
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Summary
In summary, we have studied the propagation of density waves in a two-dimensional weakly interacting uniform 
Bose gas. In a weak perturbation regime, the velocities of sound waves agree with the experimentally measured. 
When the system is strongly disturbed, its response becomes complex. We then identify patterns of multiple 
density dips, propagating with slightly different velocities. Size of these structures is of submicron and their shape 
coincides with dissipative Zakharov-Shabat profile. These structures dissipate, changing into pairs of opposite 
charge vortices. On a scale of hundreds of milliseconds an equilibrium is reached, characterized by only fluc-
tuating in time averaged number of pairs of opposite signs vortices and by appearance of a quasi-long-range 
order—the system enters the BKT phase. The BKT phase appears as a result of an increase of system’s relative 
temperature T/Tc.
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