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Comparing quantile regression 
methods for probabilistic 
forecasting of  NO2 pollution levels
Sebastien Pérez Vasseur & José L. Aznarte*

High concentration episodes for NO2 are increasingly dealt with by authorities through traffic 
restrictions which are activated when air quality deteriorates beyond certain thresholds. Foreseeing 
the probability that pollutant concentrations reach those thresholds becomes thus a necessity. 
Probabilistic forecasting, as oposed to point-forecasting, is a family of techniques that allow for the 
prediction of the expected distribution function instead of a single future value. In the case of  NO2, 
it allows for the calculation of future chances of exceeding thresholds and to detect pollution peaks. 
However, there is a lack of comparative studies for probabilistic models in the field of air pollution. 
In this work, we thoroughly compared 10 state of the art quantile regression models, using them to 
predict the distribution of  NO2 concentrations in a urban location for a set of forecasting horizons 
(up to 60 hours into the future). Instead of using directly the quantiles, we derived from them the 
parameters of a predicted distribution, rendering this method semi-parametric. Amongst the models 
tested, quantile gradient boosted trees show the best performance, yielding the best results for 
both expected point value and full distribution. However, we found the simpler quantile k-nearest 
neighbors combined with a linear regression provided similar results with much lower training time 
and complexity.

Pollution has become a worrying issue in cities due to its adverse effects on health and the increase in pollut-
ant concentrations, mainly due to human activity (traffic, heating systems...)1. In order to take preventive steps 
to maintain air quality, forecasting the evolution of pollution levels becomes a useful tool for decision makers: 
detecting pollution peaks beforehand could give cities enough time to take and communicate effective measures.

Multiple research papers have focused on this issue and have dealt with the prediction of air quality. Bai 
et al.2 describe the state of the art in this exercise and collect a range of diverse solutions applied to this problem.

However, the prediction of the expected value of pollution concentrations through point-forecasting does 
not provide enough information about the likelihood of the pollutant levels reaching a certain threshold. Indeed, 
we have an estimate but we usually do not have a description of the confidence of the model nor the uncertainty 
in the predictions. Therefore, it is difficult to estimate the probability of the pollutant reaching above a certain 
threshold.

The reason this probability estimation is so important is because the measures taken by cities to limit pollution 
(for example, limiting traffic) impact the daily routines of citizens and prove themselves to be quite unpopular. 
Therefore, local governments need to have an estimation of the confidence in the prediction to safely engage in 
those preventive measures.

As noted by Hothorn et al.3, the real objective in a regression analysis is to find the full conditional distribu-
tion of the target variable: in our case, the distribution of the concentration of the pollutants. Indeed, this full 
distribution gives an idea of the uncertainty of our predictions and can be useful to forecast the probability of 
the signal being above a certain threshold. For example, in the city of Madrid, hourly  NO2 concentrations in the 
air are considered to be harmful from 180 µgm−3.

Previous research on the same dataset has already shown the usefulness of probabilistic forecasting for  NO2 
 levels4, establishing the advantages of the approach and focusing on 1 h-ahead predictions with a single model 
(quantile random forests). We hereby extend that work by implementing other six models) quantile linear regres-
sion, quantile k-nearest neighbours, quantile gradient boosted trees, neural networks, distributional random 
forests, natural gradient boosting) and by using them for a wide set of forecasting horizons (up to 60 hours). 
Inspiration is drawn on some of the best approaches from the GEFCom forecasting  competition5,6.
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Furthermore, improving over these approaches, we also present a novel method to apply statistical inference to 
the output of the models. This method aknowledges the fact that the results show linear dependences between the 
predictors and the target, which slightly benefits linear models over nonlinear ones. By combining a linear model 
with nonlinear probabilistic modelling of its residuals we obtain optimized versions of the standard models.

Probabilistic forecasting with quantile regression
The prediction from most regression models is a point estimate of the conditional mean of a dependent variable, 
or response, given a set of independent variables or predictors. However, the conditional mean does not provide 
a complete summary of the distribution, so in order to estimate the associated uncertainty, quantiles are in order. 
Then the median or 50 percentile can serve as a prediction of the center and for example, the 95 percentile rep-
resents the value of the response with 95% of the predicted points below. Recent advances in computing have 
inducted the development of regression models for predicting given quantiles of the conditional distribution. The 
technique is called quantile regression (QR) and was first proposed by Koenker in  19787 based on the intuitions 
of the astronomer and polymath Rudjer Boscovich in the 18th century. Elaborating from the same concept of 
estimating conditional quantiles from different perspectives, several statistical and CI models that implement 
this technique have been developed: from the original linear proposal to multiple or additive regression, neural 
networks, support vector machines, random forests etc.

Quantile regression has gained an increasing attention from very different scientific  disciplines8, including 
financial and economic  applications9, medical  applications10, wind power  forecasting11, electric load  forecasting12, 
environmental  modelling13 and meteorological  modelling14 (these references are just examples and the list is not 
exhaustive). To our knowledge, despite its success in other areas, quantile regression has not been applied in the 
framework of air quality, with the exception  of15.

Thus, as we can estimate an arbitrary quantile and forecast its values, we can also estimate the full conditional 
distribution and fit it to a known distribution. This will entail us to the results presented in section “Results and 
discussion”.

Among the growing array of methods that allow to estimate and forecast data-driven conditional quantiles, in 
this study we have chosen to compare linear regression, k-nearest neighbors, random forests and gradient boosted 
trees. We took the point-estimate version of those models and converted them to their quantile or probabilistic 
counterparts. We can therefore compare each model not only on the accuracy of their point estimation but on 
the confidence of each model.

We will compare the different algorithms through the Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE) and bias for the quantile 50 and the continuous ranked probability score (CRPS) metric for the 
forecast distribution. As described by Gneiting et al.16, CRPS is a measure of the squared difference between the 
forecast cumulative distribution function (CDF) and the empirical CDF of the observation.

Data description and experimental design
Nitrogen dioxide. The city of Madrid has an air quality monitoring system composed by 24 stations which 
capture hourly data for  NO2. For this study, we have selected one of the stations with higher average leves: Escue‑
las Aguirre station (code 28079008).

As we can see in Fig. 1, the shape of the histogram approaches the one from a lognormal distribution and 
therefore we transformed to the logarithm of the values. This has 2 positive effects: it reduces the tail of the 
distribution which will enable better quantile estimation and it reduces the skewness of the distribution which 
helps with linear models like the linear quantile regression.

The time series for this station consists of hourly measured values of the concentrations of  NO2 from 
01/01/2013 to 31/12/2019. These values exhibit a clear intraday pattern, in which the higher values are located 
in two peaks around the morning and evening (with highest average value around 19 h) while the nightly hours 
(from 00 h to 05 h) have lower average concentrations. Not only are the values higher at those hours, but also 
the variance is, as we can see in Fig. 1.

In order to analyze the seasonality of the signal, we extract the 5 main factors from the Fourier transform. 
Those correspond to the main repetitive patterns found on the series, and can be seen clearly from the first 3000 
components. The series shows certain seasonality for 12-h, 24-h, 1 week (168-h) and one year. Therefore, we 
will create, and use as inputs for the models, the output of periodic functions (cosine and sine) whose frequency 
is equal to the ones stated above. This will enable the machine learning models to learn the seasonality of our 
time series.

As is common when forecasting with machine learning models, we exploit the inertia of the modelled series 
by adding lagged variables to the inputs. Of course, in doing so, we are limited by the horizon of the prediction 
and by the ’curse of dimensionality’, which implies keeping a limited number of features as input. In our case, 
the inertia of the series will be modeled by lagged values from the inmediate past (hours before) and, based on 
the seasonal analysis: 1–5 h before and every 11–13 h up to 9 days before.

Ozone. The same station that records Nitrogen dioxide also records the levels of ozone  (O3). It is known 
that ozone and Nitrogen dioxide are related by chemical reactions occurring in the atmosphere in the presence 
of sunlight, especially of the UV spectrum. Thus, we will also add lagged values of  O3 as inputs to our models.

ECMWF numerical pollution prediction. The European Centre for Medium-Range Weather Forecasts 
(ECMWF) implements the Copernicus Atmosphere Monitoring Service. This service delivers a daily production 
of near-real-time European air quality analyses and forecasts with a multi-model ensemble system. Although 
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these forecasts are a very good starting point, the resolution of the model is 10km and hence it is not expected to 
be capable of modelling the local urban effects of the  NO2 series under study.

Calendar variables. As  NO2 levels are clearly be linked to human activity, we will also flag the hours 
belonging to a specific type of day. Days could be classified as bank holidays, heavy traffic days (for example, 
return from holidays), school holidays...We will also use as inputs to the models past values of this variables (1, 
2 and 7 days before).

Experimental design. As a summary, we use the following predictors:  NO2 measures lagged 1–5 h and 
every 11–13 h up to 9 days before,  O3 levels lagged every 24 h up to 4 days before, calendar variables lagged 1, 2 
and 7 days before, ECMWF predictions and seasonal features extracted from the Fourier analysis. This amounts 
to a total of 102 independent variables.

When performing the experiments, first we aligned and gathered all the hourly time series:  NO2,  O3, ECMWF 
and calendar variables. Then we transformed the signal levels and then we added the lagged values and a seasonal 
time series with the main periods of the  NO2 time series.

Once all this process is finalized, we train the following probabilistic models: quantile random forests (QRF), 
k-nearest neighbors (QKNN), quantile linear regression (QLR) and quantile gradient boosting (QGB), Multi-
layer perceptron (MLP), Distributional random forests (DT) and NGBoost (NGBOOST). Figure 2 shows the 
data flow in the experimental design. All the hyperparameters of the models have been estimated through grid 
search on a validation set. In section “Probabilistic models” we provide more information on each of the models.

Concerning cross-validation, there are several accepted methods to separate the train and test set which 
produce correct estimations of the  error17: We can approximate the error of a model through a cross-validated 
evaluation as long as we removed from each test set the correlated samples to their respective training dataset. 
We chose a cross-validation with 5 splits for time execution reasons. We will always test with predictions done 
at 10:00, as this is the time the forecast is done in the operational setting, as the data is first available at that time.

We want to forecast the full distribution of  NO2 levels for the next 60 h and therefore we will train and evalu-
ate the models for each hour (60 horizons).

After forecasting the quantiles, we will fit them to a normal distribution. Fitting a normal distribution to 
the predicted quantiles and then generating the percentiles for that fitted distribution has several advantages. It 
enables the calculation of more percentiles from a small number of them. It also helps estimating the upper tail 
of the distribution, in spite of the low probability for those values.

We will evaluate the predicted 50 percentile through standard evaluation metrics (RMSE and bias), and the 
predicted distribution through the CRPS.

We will perform this evaluation for each of the models and each of the horizons.

Probabilistic models. As stated above, we will compare seven different probabilistic models, which are 
briefly described below for reference. We will provide alongside the models the abreviation we will use for each 

Figure 1.  Distribution of logarithmic  NO2 and distribution of  NO2 per hour.
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of them throughout this article. Also we are adapting point-estimation algorithms to their probabilistic counter-
parts. This allows us to see the uncertainty these models have. Indeed, metrics like RMSE and Bias are linked to 
the confidence of the models for point estimation but the predicted CDF is much better at describing it. This also 
increases the interpretability of those models. Therefore the implementations we described can have applications 
beyond this forecast exercise.

Quantile linear regression (QLR). As shown  in7, we can apply linear regression with a modified cost function in 
order to predict the quantiles of the dependent variable. Given a set of vectors (xi , yi) , in the usual point forecast-
ing approach we are usually interested in the prediction ŷ(x) = α0 + α1x which minimizes the mean squared 
error,

 This prediction is the conditional sample mean of y given x, that is, ŷ(x) = α̂0 + α̂1x , or the location of the 
conditional distribution. But we could be interested in estimating the conditional median (i.e., the 0.5 quantile) 
instead of the mean, in which case we should find the prediction ŷ(x) which minimizes the mean absolute error,

The fact is that, apart from the 0.5 quantile, it is possible to estimate any other given quantile τ . In that case, 
instead of (2), we could minimize

where

with τ ∈ (0, 1) . Equation (3) represents the median when τ = 0.5 and the τ-th quantile in any other case.
We will train 5 linear regression models to predict 5 percentiles of the signal. Those 5 percentiles will enable 

us to calculate the mean and standard deviation of a normal distribution. This normal distribution will provide 
the predicted quantiles.

Quantile k‑nearest neighbors (QKNN). We will use the probabilistic k-nearest neighbors algorithm as described 
 in6. This algorithm is based on the standard k nearest neighbor, where instead of calculating the mean of the 
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Figure 2.  Data flow of the experiments.
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targets of the k nearest points to the input, it fits a normal distribution to the targets of those neighbors. We build 
the quantiles from the predicted normal distribution.

Quantile random forests (QRF). Quantile random forests create probabilistic predictions out of the original 
observations. They work like the usual random forest, except that, in each tree, leafs do not contain a single value 
as a prediction but the target observations from the training set belonging to that leaf.

Then predictions are calculated by selecting the leafs in each tree corresponding to the input features and 
combining the weighted histograms in each tree out of the target observations in those leafs. For more informa-
tion refer  to18. We then fit a normal distribution to the predicted histogram to calculate the predicted quantiles.

Quantile gradient boosted trees (QGB). Tree  boosting19 is a successful machine learning technique that consist 
on growing trees based on the compromise of a cost function and a regularization function. This technique 
has already been used to predict air pollution, as documented by Lee et al.20. The cost function is usually used 
to forecast the mean of the signal. We will modify the cost function (im a similar way as in the quantile linear 
regression) to predict the quantiles of the target. Also, we will use the lightgbm  implementation21 which provides 
lower training times and higher accuracy.

We will train 5 gradient boosted trees models to predict 5 percentiles of the  NO2 signal. Then, we will use the 
percentiles to fit a normal distribution and calculate the predicted quantiles.

Multilayer perceptron. We will also test a multilayer perceptron (MLP)22 with 1 hidden layer. Like for quantile 
linear regression and quantile gradient boost, we will modify the cost function to predict the quantiles of the 
target.

We will therefore as well train 5 MLP to predict 5 percentiles of the  NO2 signal and calculate the final quantiles 
through a normal distribution as for the quantile linear regression and quantile gradient boosted tree.

Distributional random forests. Based on the idea of GAMLSS, Distributional  Forests23 extend the power of this 
semiparametric method by estimating the LSS (location, scale and shape) through the use of random forests, 
instead of using GAM’s. We will use the R implementation of this method from the package disttree.

NGBoost. NGBoost24 uses the natural gradient instead of the standard gradient to build a boosted ensemble 
learner that predicts directly the parameters of the distribution of the target variable. Natural Gradients are pre-
sented as offering better stability and robustness than normal gradients.

Probabilistic forecast of linear regression residuals. We suspect there are high linear dependencies between the 
input predictors and the target. We will then experiment on combining 3 of the models: quantile random forest, 
quantile k-nearest neighbor and quantile gradient boost with a linear regression.

We decided to train a linear regressor which predicts the  NO2 values and then use the QRF, QKNN and 
QGB models to predict the full distribution of the residuals of that linear regression. We abbreviate both models 
respectively with QRFL, QKNNL and QGBL.

Results and discussion
Figure 3 shows the different metrics for each model across all the horizons. First, we see how quantile gradient 
boosted trees (QGB) outperforms the other models and displays better scores for all metrics. The additive nature 
of QGB is behind these results.

Quantile random forests and quantile k-nearest neighbors underperform compared to the other models, 
showing a bias which is clearly higher compared to the others. The main reason for this can be attributed to the 
highly linear dependence of the data. This also explains the relatively good results of the linear model (QLR). 
However, the linear model underperforms when compared to other models, as it is unable to learn the non-linear 
relationships between the predictors and the target.

Regarding the models predicting the residuals of a linear regression, QKNNL and QRFL showcase good 
performance, which is remarkable for QKNNL due to the simplicity of this approach. The KNNL offers similar 
results to QGB with lower complexity and lower training times. On the other hand, QGBL brings no real benefit 
compared to QGB, since QGB can already integrate the linear component.

Distributional forests (DT) and natural gradient boosted trees (NGB) present relatively good results but are 
still outperformed by QGB. Natural gradients bring no real benefit in this case.

Finally, MLP has good bias results but underperforms against the other methods.
As stated earlier, the  NO2 levels follow a lognormal distribution and thus it seems that it is better modeled 

with a multiplicative model (since different causes multiply the levels of pollution), therefore the logarithm of 
the  NO2 levels is better forecast with an additive model. This would explain why quantile gradient boosted trees 
consistently outperforms the other models: it can naturally add the nonlinear effects.

Table 1 displays the mean and standard deviation of CRPS of the different models. The table shows again the 
good performance of the quantile gradient boosted trees model for CRPS. The table also shows the training times 
of the different models. QGB appears as having a good compromise between low training times and metrics. 
QKNNL offers good performance with really low training times.

As stated above, CRPS is a good summary of the performance of probabilistic models. Notwithstanding, the 
reliability and sharpness graphs are known to be useful at estimating how the observed values are positioned in 
the distributions. Figure 4 features the reliability and sharpness of the different models.
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The sharpness is given by the distribution of the forecast probabilities (small histogram overimposed in the 
graphs). NGBOOST, MLP and QKNNL display the best results as their histograms are almost flat.

For QRF, QRFL, QKNN and DT, we see fewer observations on the sides of the predicted distributions. This 
means the variance of the predicted variance is too high and the predictions have too much uncertainty. It is 
specially noticeable for QRF and DT.

On the contrary, QGB, QGBL and QLR seem more balanced but display high values at both sides of the sharp-
ness curve. If we consider the distribution to be a Gaussian distribution, this means the forecast distributions 
tend to have a too small standard deviation and are too narrow. Therefore, the forecast probability of some levels 
of  NO2 is too small compared to the observed one. QGBL and MLP also display this behaviour. Since, in this 
framework, it is common that the main interest lies in predicting the higher tail of the distribution (representing 
peaks of pollution), this is not considered to be a critical problem in this case. Finally, we see again the QKNNL 
model performing similarly to the QGB model, offering a simpler alternative to QGB.

Reliability is shown in the main charts of Fig. 4. The light blue lines represent each of the reliability diagrams 
for each horizon, while the dark blue line shows the average reliability diagram for a single model over all the 
horizons. This let us see how stable is the reliability per horizon.

It is noticeable that QGBL and QKNNL show the best results both in terms of the average diagram and the 
dispersion of the different diagrams per horizon. MLP and NGBOOST have a good average line but also display a 

Figure 3.  Boxplot of continuous ranked probability score, root mean squared error and bias of the different 
models for all horizons.

Table 1.  Error measures for the proposed models.

method RMSE CRPS bias training time (s)

QRF 22.62
(8.37)

11.86
(3.58)

4.68
(4.77)

24.15
(1.01)

QRFL 19.12
(6.52)

9.97
(3.03)

2.32
(2.0)

8.71
(0.36)

QKNN 20.73
(7.91)

10.52
(3.59)

4.26
(3.53)

6.92
(0.31)

QKNNL 18.4
(6.44)

9.34
(2.99)

3.06
(2.01)

7.06
(0.32)

QGB 16.09
(5.59)

8.04
(2.54)

2.08
(1.76)

42.78
(1.19)

QGBL 16.14
(5.55)

8.1
(2.55)

1.95
(1.55)

42.22
(1.04)

QLR 19.44
(6.71)

10.38
(3.31)

2.77
(2.16)

9.68
(0.53)

MLP 18.16
(6.04)

9.27
(2.85)

1.86
(2.49)

73.08
(7.71)

NGBOOST 18.52
(6.43)

9.4
(2.96)

3.42
(2.32)

180.86
(14.2)

DT 18.69
(6.77)

9.45
(2.99)

4.27
(2.84)

289.81
(12.29)
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high variability for each horizon. On the other hand, QRF, QRFL, QKNN and DT also show a high variability and 
again display the high uncertainty of their predictions, which is seen in the extremes of the reliability diagram. 
On the contrary, QGB and QLR show the opposite behaviour with narrow predicted variances.

We also see that NGBOOST and QKNNL seem to predict better the tail of the distributions (quantile 90). 
This is relevant as we are interested in the higher values of  NO2 pollution levels.

In order to compare the result of the 10 methods, we will use advanced non parametric tests as described 
by García et al.25. The Quade test will calculate the rank of all the algorithms and check if they are significantly 
different from the mean rank. We have 60 different datasets, each one corresponding to a horizon where we have 
performed a fivefold crossvalidation and kept the mean of the results. The rank is calculated not only based on 
the results in the different datasets but also on the importance of the dataset (based on the variance of results), 
this being the main difference with a Friedmann test. The result of the Quade test gives a p-value of 1.11e–16 
which rejects the null hypothesis that the methods have similar performance and thus we can use the ranks to 
classify the different methods. Table 2 shows the ranks of the Quade test.

Conclusions
After extracting and processing the data from one of the pollution stations in Madrid, we have compared 10 
different models to build a probabilistic forecast of the levels of  NO2 for up to 60 hours into the future. We have 
evaluated our models through the forecast quantile 50 and the full forecast distribution. We have also adapted 
the predicted quantiles to fit a normal distribution.

We have observed a linear dependence between the target and the features. For this reason, the linear quantile 
regression has performed well compared to random forests and k-nearest neighbors. However, the multiplicative 
nature of the levels of  NO2 and the nonlinear dependence between target and features have lead to better results 
for the gradient boosted trees which has outperformed all the other models in all metrics.

However, we have shown how quantile random forest and quantile k-nearest neighbors could be used to 
improve the results of a linear model when nested to model the full distribution of the residuals of a linear 

Figure 4.  Average reliability and sharpness of the different models across all horizons. The dim blue lines 
correspond to the different horizons.

Table 2.  Average rankings of the algorithms (Quade).

Algorithm Ranking

QRF 7.354393

QRFL 4.888386

QKNN 6.522557

QKNNL 3.379697

QGB 0.967290

QGBL 1.297199

QLR 5.791688

MLP 2.883587

NGBOOST 3.442853

DT 3.921512
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regression. Those models, specially the k-nearest neighbor are easier to train, so they become worthy and simpler 
alternatives to the gradient boosted trees.

These results are especially useful for practitioners that need to choose a probabilistic model for air quality 
time series and other similar problems with a strong anthropogenic component.
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