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Reconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, 
affecting both the complexity and performance of the entire system. During the reconciliation 
protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a 
single decoding attempt. In this paper, we propose a modification to a conventional reconciliation 
protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) 
protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer 
decoding iteration than the conventional protocol. Between each decoding attempt we propose 
to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the 
conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and 
an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is 
also proposed and implemented. With early termination, MDA has decoding complexity similar to the 
conventional protocol while having an improved SKR.

Data security plays a vital role in communications for ensuring that a potential adversary or eavesdropper (Eve) is 
incapable of gaining access to sensitive information. It is theoretically possible to secure the sensitive information 
by using  encryption1. In encryption, a secret key is used to encrypt the information, this encrypted information 
can only be recovered if it is decrypted using the same secret key. In order for the transmitter (Alice) and the 
receiver (Bob) to securely exchange information they both need access to the same key, without Eve having any 
knowledge regarding the secret key. To get the same key, Alice and Bob will exchange keys with each other. It 
is of the utmost importance that the key exchanging process is completely secure to prevent Eve from gaining 
knowledge on the key.

Quantum Key Distribution (QKD) is a method of sharing secret keys between Alice and Bob in a secure 
 manner2. There are two main variants of QKD, namely discrete-variable (DV)3 and continuous-variable (CV)4 
QKD. In DV-QKD systems, the measurements of the quantum states are done using specialized hardware, e.g., 
single photon counters. CV-QKD systems, however, use existing technology currently used in telecommunica-
tion systems for the measurement. Because CV-QKD does not require such specialized hardware, it is easier to 
implement into the current telecommunication network when compared to DV-QKD. However, the downside 
is that error correction in CV-QKD is more complex when compared to DV-QKD5. In addition to this, com-
pared to DV-QKD, there has been less research on reconciliation for CV-QKD. For these reasons, we will focus 
on CV-QKD in this paper. A detailed description of the CV-QKD systems is given in the “Methods” section.

Because of the potential advantages CV-QKD, it has been gaining a lot of attention recently. Joint propaga-
tion of CV-QKD has been implemented both with on-off keying  signals6 and unmodulated classical intensity 
 carriers7. Co-propagation of CV-QKD with 56 100 Gb/s coherent classical channels has been  shown8. Further-
more, co-propagation with 100 wavelength division multiplexing channels with a total data rate of 18.3 Tb/s 
has been demonstrated over a period of 24  h9. For implementations of full CV-QKD systems, secret key rates 
(SKR) of 5.77 kbps have been reported over distances of 50  km10. Additionally, CV-QKD over a distance of 200 
km was demonstrated by controlling excess noise and using highly efficient reconciliation procedures with an 
SKR of 6.2  bps11. Recently, CV-QKD has also been implemented on on cost effective silicon photonics  chips12.
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One of the biggest challenges in CV-QKD is the error correction as part of the reconciliation. Because of 
the very low signal-to-noise ratio (SNR) operating range of the system, error correcting codes with large block 
sizes and low rates, which require computationally complex decoding algorithms , are necessary for the error 
 correction13. Due to these requirements, reconciliation is a major bottleneck of the entire CV-QKD system in 
regards to both speed and hardware  complexity14. The performance of reconciliation also heavily influences the 
performance of the CV-QKD system. For backgrounds and details on the reconciliation process, we refer the 
interested reader to the “Methods” section (Figs. 6, 7) and references therein.

The types of codes that are most often used during the reconciliation are low-density parity-check (LDPC) 
 codes4,15 or more specifically, multi-edge type (MET) LDPC  codes16. Recently, other error correction codes, 
such as quasi-cyclic LDPC  codes14, polar  codes17, raptor  codes18 and spatially coupled  codes19 have been studied, 
however, we will use MET-LDPC codes in this paper as it is the most commonly used type of code for CV-QKD 
systems. In the “Methods” section we give more detail on the MET-LDPC codes used.

The SKR is the most important measure of the performance of the reconciliation, representing the rate at 
which secret keys can be exchanged. The SKR is influenced by the error correction, namely by the rate of the 
code ( Rc ) and its frame error rate (FER). In order to maximize the SKR during reconciliation, it is preferred that 
the rates of the codes operate as closely as possible to the capacity, and that the FER is as low as possible. Current 
reconciliation protocols used for CV-QKD operate with fairly high FERs, but with relatively high Rc . Optimizing 
the trade-off the FER and Rc , and therefore increasing the SKR, is the main motivation for this paper.

In this paper, we propose a new reconciliation protocol, called the multiple decoding attempts (MDA) pro-
tocol, which is a modification of the one-dimensional reconciliation protocol as described in Ref.14 which we 
will refer to as the conventional protocol throughout the rest of this paper. MDA, as the name implies, involves 
multiple decoding attempts, with bits being revealed in between attempts. In order to ascertain the performance 
in regards to SKR of MDA we implement a basic version of it and compare it to the conventional protocol. 
Numerical results show that MDA offers gains of up to 8.5% in terms of SKR for a typical CV-QKD link.

Results
Conventional reconciliation protocol. The SKR is a measure for the performance of the QKD system. 
For the conventional protocol the SKR is given  by20

Here, IAB is the mutual information between Alice’s and Bob’s measured outcomes, χBE is the Holevo informa-
tion, a measure for the amount of information Eve has on the secret keys, and β is the reconciliation efficiency. 
The reconciliation efficiency is defined as β = Rc

IAB
 and represents the gap between Rc and IAB . This gap exists 

because, in practice, the codes used in QKD systems operate with Rc < IAB . Typically, there is a trade-off between 
β and FER, which affects the SKR in Ref.1: the higher β becomes, the higher the FER. Ideally, the error correcting 
code should operate at a high β with a low FER.

Figure 1 shows the FER and SKR for the conventional protocol against the signal to noise ratio (SNR) for a 
code with Rc = 0.02 and 500 decoding iterations. In this paper, we consider CV-QKD with quadrature-phase-
shift-keying (QPSK) and heterodyne detection. See “Methods” for the details of the CV-QKD protocol and its 
SKR analysis. Details on the parameters used in the simulation are given in the simulation set-up section of 
“Methods”. As the figure shows, for this fixed code rate, the optimal SNR in terms of SKR is around −15.23 dB, 
which corresponds to a β of 0.939, as IAB = 0.0213 at this SNR. All simulations performed in the rest of this 

(1)SKR = (1− FER)(βIAB − χBE).

Figure 1.  FER and SKR of the conventional protocol over a range of different SNRs for an LDPC code with 
Rc = 0.02 . The points corresponding to the optimal SKR are shown with white markers.
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paper are done at SNR = −15.23 dB (white markers). In the next section, we will propose a new protocol which 
improves the SKR presented in Fig. 1.

Multiple decoding attempts reconciliation protocol. In order to improve the SKR without a sig-
nificant increase in decoding complexity, we propose the new MDA protocol. An overview of MDA is given in 
Fig. 2. In MDA, we first attempt to decode the codeword in the same manner as in the conventional protocol. 
After this decoding attempt, we check whether the codeword has been decoded successfully. If so, we keep the 
codeword and move on to privacy amplification. If not, Bob will choose some information bits to reveal to 
Alice. This effectively lowers the code rate, and therefore increases the probability of successfully decoding the 
codeword. The information bits to be revealed are chosen randomly, as revealing bits in this manner does not 
cause any issues in regards to security, as this is equivalent to the sp-protocol already used in  reconciliation21,22, 
except that the bits are revealed after a decoding attempt. In the Discussion we mention some other bit revealing 
strategies which we had considered. Alice adjusts her LLRs based on these revealed bits and attempts to decode 
again. An important thing to note here is that Alice continues decoding from where she left off after the previ-
ous decoding attempt. More information on how exactly this is done is given in the LDPC coding and decoding 
section in the “Methods”. We then check once again whether the decoding was successful, and we continue with 
MDA until either the codeword was decoded successfully, or the maximum amount of decoding attempts has 
been reached. Any bits that were revealed during MDA are discarded when passing on the information bits to 
privacy amplification, as Eve knows the values of these bits.

MDA is somewhat reminiscent of  Raptor18 codes, in that extra information on the codeword is revealed after 
a failed decoding attempt.

The SKR of MDA is a modified version of Eq. (1). In particular, let FERi and βi be the frame error rate and rec-
onciliation efficiency for the ith decoding attempt and n the number decoding attempts. Then it can be shown that

Essentially, the SKR of MDA in Eq. (2) is an addition of the SKRs of all decoding attempts. In Eq. (2), the 
SKR of each decoding attempt is multiplied by the FERs of all previous attempts. This multiplication of FERs 
represents the fraction of codewords that have not yet been correctly decoded given that the previous decoding 
attempts were unsuccessful. So for each additional decoding attempt, the maximum SKR that can be gained 
decreases. Therefore, the SKR resulting from the transmission of a single codeword will never be lower than 
that of the conventional protocol, as the first decoding attempt would use a code with the same reconciliation 
efficiency and FER as that of the conventional protocol. Furthermore, the average amount of decoding iterations 
needed for MDA is

where Di is the maximum amount of iterations for the ith decoding attempt. The total amount of decoding itera-
tions that were used for the decoding of a particular codeword depends on the amount of decoding attempts 
necessary to decode it. As the amount of decoding iterations used differs for each codewords, we have decided 
to introduce D , which is simply an average over the amount of decoding iterations needed per codeword. We 
will use Eqs. (2) and (3) to calculate the SKR and the average decoding iterations for MDA in the remainder.

As a proof of concept, we implemented the simplest version of this new protocol ( n = 2 ). We first performed a 
sweep over the amount of bits to be revealed for the second decoding attempt, assuming 400 decoding iterations 

(2)SKR = (1− FER1)(β1IAB − χBE)+

n
∑

i=2

(1− FERi)(βiIAB − χBE)

i−1
∏

j=1

FERj .

(3)D = D1 +

n
∑

i=2

Di

i−1
∏

j=1

FERj ,

Figure 2.  An overview of MDA. After every unsuccessful decoding attempt, Bob reveals bits to Alice, after 
which Alice will attempt to decode again. This goes on until either the decoding is successful or the maximum 
amount of decoding attempts has been reached.
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per decoding attempt, i.e., Di = 400 . As before, all relevant parameters are mentioned in the simulation set-up 
section of “Methods”. Figure 3 shows the FER and SKR against the percentage of bits revealed, with 0% bits 
revealed being the conventional protocol (see Fig. 1). Figure 3 shows that revealing 6% of the information bits, 
which corresponds to a code with rate Rc = 0.0188 and β = 0.883 , gives the largest increase in SKR. The increase 
is 8.5%, and comes with a 10% decrease in FER. It is interesting to note that there is a jump between 5% and 6% 
bits revealed. This jump will be discussed in the “Discussion” section.

Figure 3 shows that MDA outperforms the conventional one in regards to SKR. However, for this figure, the 
amount of decoding iterations is quite large, with D = 480 . In order to see how well MDA compares to the con-
ventional one for similar decoding complexity, we have simulated both the conventional and MDA for a range 
of average decoding iterations. Recall that the amount of decoding iterations per decoding step is the same for 
both decoding attempts.

Figure 4 compares both the FER and the SKR of MDA to the conventional one. The FER of MDA converges 
to the error floor of the Rc = 0.0188 code (6% of bits revealed) for high enough D , which suggests that the FER 
of MDA is lower bounded by the error floor of the lowest rate code used in the protocol. The right side of the 
figure shows the SKR, where MDA is shown to outperform the conventional one after roughly 190 decoding 
iterations. This crossing point is before the SKR curve of the conventional protocol levels off, which is at around 

Figure 3.  FER and SKR of MDA with n = 2 . The rate Rc of the first code is 0.02. The rate of the second code 
used depends on the amount of bits revealed, where zero bits revealed (white markers) is equivalent to the 
conventional protocol. The simulations were performed at SNR = −15.23 dB.

Figure 4.  (a) FER of MDA compared to an LDPC code with Rc = 0.02, and to an LDPC code with Rc = 0.0188 
as a function of the average amount of decoding iterations. All the simulations were performed at an SNR of 
−15.23 dB. (b) SKR of MDA compared to an LDPC code with Rc = 0.02, and to an LDPC code with Rc = 0.0188 
as a function of the average amount of decoding iterations. All the simulations were performed at an SNR of 
−15.23 dB.
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225 iterations. MDA levels off at around 250 iterations. The conventional protocol with the rate Rc = 0.0188 code 
performs the best out of the three until 140 iterations, although in general for the conventional protocol more 
than 140 decoding iterations are  used14,15.

Early termination. Early termination (ET) is a method often used during error correction to reduce the 
processing latency (i.e., D ). Due to the use of multiple decoding attempts, ET is expected to have a greater impact 
on the performance of MDA when compared to the conventional protocol. This is because with the additional 
decoding attempts, we continue the decoding from where we left off after the previous decoding attempt. So 
the decoder should be closer to converging at the start of the current decoding attempt, and should therefore 
require fewer decoding iterations when compared to the previous decoding attempt. We have implemented an 
ET protocol that is inspired by the sign-change-ratio method used for Turbo  codes23. During decoding, we track 
the changes in the output bits of the recovered codeword over the iterations. If, for a certain amount iterations (in 
our case 5), we do not sense any change in the output bits of our decoder, we assume that the decoder has con-
verged. This approach proves to be more effective than the ET based on the parity check equations when working 
with applications with a high FER. ET based on the parity check equations can only detect correctly decoded 
codewords. Our method, however, can also perform ET on codewords where decoding is not successful, which 
is especially useful for MDA and CV-QKD in general.

Figure 5 shows the results obtained by ET for both the conventional protocol and MDA. Figure 5 shows that 
with ET the FER and SKR of the proposed are the same as without ET, which suggests that ET has little to no 
effect on the performance. With ET, the SKR levels off at 131 iterations for the conventional protocol and at 139 
iterations for the proposed one. Which means that ET has a slightly larger effect on when then SKR levels off for 
MDA (44.4% decrease in D ) when compared to the conventional protocol (41.7% decrease in D ), confirming that 
the second decoding attempt requires fewer decoding iterations. With ET, MDA outperforms the conventional 
protocol with the Rc = 0.02 code for any amount of decoding iterations. The conventional protocol with the 
Rc = 0.0188 code performs the best out of the three until about 125 iterations.

Latency of MDA. One additional factor that has to be taken into account when comparing the conventional 
protocol with MDA is the additional delay introduced by Bob divulging information bits to Alice. Every addi-
tional decoding attempt requires a back-and-forth two-way communication between Alice and Bob, and there-
fore introduces a transmission delay. This transmission delay is approximately equal to the transmission delay 
caused by starting the reconciliation over again with a new codeword, as both require a back-and-forth between 
Alice and Bob. So the transmission delay caused by MDA when we attempt to decode a codeword twice is equal 
to when we try to decode two different codewords once each, as this requires the same amount of back-and-
forths. So if we want to compare the transmission delay of MDA to that of the conventional protocol, we need to 
look at how many decoding attempts are required for creating a secret key for both protocols.

We compare the transmission delays of both protocols by means of a numerical example. For the sake of sim-
plicity, we only look at the transmission delays, so any other delays caused by post-processing or the transmission 
and measurement of quantum states is not taken into account. In privacy amplification, secret keys are generated 
by hashing a block of length Nprivacy bits. This block of length Nprivacy is construed from the information bits of the 

Figure 5.  (a) FER of MDA compared to an LDPC code with Rc = 0.02, and to an LDPC code with Rc = 0.0188 
as a function of the average amount of decoding iterations with ET. All the simulations were performed at an 
SNR of −15.23 dB. (b) SKR of MDA compared to an LDPC code with Rc = 0.02, and to an LDPC code with Rc = 
0.0188 as a function of the average amount of decoding iterations with ET. All the simulations were performed 
at an SNR of −15.23 dB.
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correctly decoded codewords. In order to limit any finite size effects, Nprivacy is often chosen in the order of 1012
14. For the conventional protocol with R = 0.02 and N = 106 , 20,000 information bits are recovered from every 
correctly decoded codeword. So 1012/20, 000 = 5 · 107 codewords need to be decoded correctly in order to create 
one block for the privacy amplification. Looking at our results from Fig. 3, where the conventional protocol has 
an FER of 19%, the expected number of codewords that need to be transmitted in order to move on to privacy 
amplification equals 5 · 107/0.81 = 6.17 · 107 . Because there is only one decoding attempt in the conventional 
protocol, the total amount of expected decoding attempts is therefore also equal to 6.17 · 107.

For MDA, our results in Fig. 3, where we have n = 2 decoding attempts, indicate that the FER for MDA 
equals 19% after the first decoding attempt and 9% after the second decoding attempt. This means that 19% of 
all codewords move on to the second decoding attempt and that of the correctly decoded codewords, 89% were 
decoded correctly after the first attempt and 11% after the second attempt. The number of information bits that 
are retrieved from a codeword is 20,000 for codewords that were correctly decoded after the first attempt and 
18,800 for codewords that were correctly decoded after the second attempt. This is because we discard the 6% 
of information bits that we reveal during MDA, which is equivalent to 1200 bits. On average, that would mean 
that 0.89 · 20, 000+ 0.11 · 18, 800 = 19, 868 bits are retrieved per correctly decoded codeword. The expected 
number of codewords that need to be decoded correctly for a single block in the privacy amplification is then 
equal to 1012/19, 868 = 5.03 · 107 . With an FER of 9%, the expected number of codewords that need to be 
transmitted in order to move on to privacy amplification equals 5.03 · 107/0.91 = 5.53 · 107 , 10% less than 
for the conventional protocol. Of these codewords, 81% ( 4.48 · 107 ) require one decoding attempt, and 19% 
( 1.05 · 107 ) move on to the second decoding attempt, so the total amount of decoding attempts is then equal to 
4.48 · 107 + 2 · 1.05 · 107 = 6.58 · 107 . This is an increase of only 6.7% in decoding attempts when compared 
to the conventional protocol. If we assume that each decoding attempt has an equal contribution to the latency, 
this will be a small increase of 6.7% in latency.

In reality, the difference in total delay between the two protocols will smaller and almost negligible. This is 
because there are additional delays which we have not taken into account in the analysis: The processing delay 
caused by the decoder is usually smaller for the second decoding attempt when compared to the first decoding 
attempt, as the second decoding attempt requires fewer decoding iterations. Additionally, for the second decod-
ing attempt, no new quantum states measurements are required unlike in the conventional case when we try to 
decode a new codeword. As the total amount of codewords that need to be transmitted is 10% less for MDA, 
this also means that 10% fewer quantum states need to be transmitted and measured. This transmission and 
measurements of quantum states induces a further delay for the conventional protocol.

Discussion
A new reconciliation protocol was proposed in this paper. This protocol shows an improvement in SKR over 
the conventional protocol of up to 8.5% (see Fig. 3). We have only shown one simple implementation of the 
new protocol, and despite the fact that the parameters still need to be optimized, MDA still outperforms the 
conventional one. With further research on how the different hyper parameters affect MDA, the gap between 
them should grow ever larger.

In general MDA works better than the conventional protocol for higher D . For the low D region the con-
ventional protocol with the lower rate performs the best, and with ET, MDA only overtakes the conventional 
protocol after 125 decoding iterations. MDA is therefore more suited for CV-QKD systems where decoding 
latency with D > 125 is allowed.

A very important factor to the performance of MDA is the type of code used. Here, we used low rate MET-
LDPC codes. However, the code we used in the paper has a high error  floor14. Normally, this is not of importance 
for the reconciliation, as we work around the waterfall region of the codes. For MDA, however, the codes used 
in subsequent decoding attempts operate in their error floor region. If we were to design codes with lower error 
floors and use them for MDA, it would lead to a larger increase in SKR.

In another version of MDA we discarded all of the messages within the LDPC decoder for each decoding 
attempt, effectively restarting the entire decoding process. This, however, proved to be inferior to keeping the 
messages within the decoder with a new decoding attempt, which is similar to continuing the previous decoding 
attempt. Other ways to use the messages within the decoder to our advantage need to be further investigated.

Finally, we have also considered different strategies for which bits to reveal. Currently, we randomly choose 
which bits to reveal. This method leads to a sudden jump in FER, similar to a waterfall region (see Fig. 3). This 
behavior is under further investigation. We have also tried choosing which bits to reveal based on the LLRs of 
the information bits at the end of a decoding attempt. This bit revealing strategy gave a significant improvement 
in regards to performance, however it is very likely that doing this gives away information to Eve and potentially 
renders the reconciliation less secure. Another method considered was choosing which bits to reveal based on 
the absolute values of Bob’s measurement outcomes. This is similar to post  selection24, however, once again, it 
has not been proven yet that this is has no effect on the security of the reconciliation.

Methods
CV-QKD. The CV-QKD protocol consists of four  steps20, as shown in Fig.  6: transmission and measure-
ment of quantum states, sifting, reconciliation and privacy amplification. During quantum transmission, Alice 
prepares quantum states to be transmitted to Bob. The information is modulated onto the amplitude and phase 
operators of the coherent state and then transmitted to Bob over the quantum channel. Although Gaussian mod-
ulation is often  used20, in this paper we assume that Alice and Bob make use of the four-state  protocol5, as in sys-
tems implemented in real hardware transmitting over large distances, using Gaussian modulation is  difficult25. 
Although there is still no unconditional security proof of the four-state protocol, a more recent security analysis 
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has paved the way to a full security proof and has shown that the four state protocol can achieve secret key rates 
comparable to that of the Gaussian  modulation26. This, however, does not mean that MDA is restricted to only 
the four-state protocol. MDA can be used in conjunction with an arbitrary modulation format.

After Bob has measured Alice’s transmitted quantum states, they both move onto sifting. During sifting, 
depending on whether homodyne (sifting) or heterodyne (no sifting) detection is used, Bob and Alice discard 
some of their measurement outcomes. Alice and Bob are now left with their sequences of modulation values and 
measurement outcomes, x and y , respectively. In reconciliation, error correction is performed to ensure that Bob 
and Alice are left with the same sequence of bits, i.e., s = ŝ (see Fig. 6). During reconciliation, x and y will be 
used to demodulate and modulate the bit sequences respectively, which will be used to form the secret key. We 
will go into more detail about how the reconciliation works later in the “Methods” section. Finally, during the 
privacy amplification, a hashing function is applied to Bob’s and Alice’s bit sequences. The sequence Alice and 
Bob are left with at the end of the privacy amplification is the key that can be used for the encryption. Concrete 
analysis of the privacy amplification is outside the scope of this paper.

Reconciliation. There are two types for reconciliation: forward reconciliation and reverse reconciliation. In 
forward reconciliation, Alice creates the codeword and Bob attempts to decode it, while in reverse reconciliation 
the roles are reversed. Reverse reconciliation is the preferred method, as forward reconciliation heavily limits the 
transmission  distance20, therefore this paper considers reverse reconciliation. An overview of the reconciliation 
protocol is shown in Fig. 7.

Because we are assuming the use of a four-state protocol, the reconciliation is one-dimensional. At the start of 
the protocol, Alice has a sequence of randomly generated modulation values x = (xI1, x

Q
1 , x

I
2, x

Q
2 , · · · , x

I
N/2, x

Q
N/2) 

to prepare a sequence of N/2 QPSK coherent states, where N is the block length of the code that will be used 
for the reconciliation. Here, xIi is the real part and xQi  is the imaginary part of the QPSK modulation for the ith 
transmitted coherent state, respectively. As we make use of the four-state protocol, xi is a randomly chosen QPSK 
symbol. In the following, we use the normalized x as E[|X|2] = 1.

On the receiver side, Bob has his sequence of measured outcomes of the detected quantum signals as 
y = (yI1, y

Q
1 , y

I
2, y

Q
2 , · · · , y

I
N/2, y

Q
N/2) , where once again I and Q represent the real and imaginary parts of the 

measured outcomes, respectively, and y is also normalized with condition E[|X|2] = 1 . During the reconcilia-
tion protocol we consider the quantum channel to be an additive white Gaussian noise (AWGN) channel, where 
y = x + z with z = (zI1, z

Q
1 , z

I
2, z

Q
2 , · · · , z

I
N/2, z

Q
N/2) , and ZI

i ∼ N(0, σ 2
z /2) and ZQ

i ∼ N(0, σ 2
z /2) are independent 

Gaussian random variables. Here, N(µ,σ 2 ) represents a Gaussian distribution with mean µ and variance σ 2 , 
and σ 2

z  is the noise variance of ZI
i + jZ

Q
i  . Note that upper case letters represent random variables and lower case 

letters their respective realizations. For ease of use, from now on we will represent x as (x1, x2, · · · , xN ) , where 
x1 = xI1 , x2 = x

Q
1  , · · · , xN−1 = xIN/2 , xN = x

Q
N/2 . The same notation applies to y and z.

Bob generates a random sequence of bits s = (s1, s2, · · · , sRc ·N ) of length Rc · N using, for instance, a quantum 
random number generator (QRNG). Bob then encodes s using an LDPC encoder, which results in a codeword 
c = (c1, c2, · · · , cN ) . The LDPC codes used during reconciliation are systematic for the sake of the hashing per-
formed later in the reconciliation. Bob modulates c using the invertible function

Figure 6.  An overview of the CV-QKD protocol based on four different stages; transmission and measurements 
of quantum states, sifting, reconciliation, and privacy amplification. Eve has full access to classical channel and 
full control over the quantum channel. The purpose of the protocol is to ensure that at the end Alice and Bob are 
left with the same secret keys.
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The output m of this function is transmitted to Alice over the classical channel (see Fig. 2). We assume that 
the classical channel adds no errors and that Eve has full access to it.

Alice receives m and demodulates it as

The variable ri in Eq. (5) is effectively the output of a binary input AWGN (BI-AWGN) channel with a signal 
to noise ratio (SNR) of SNR = 1

σ 2
z
 . This BI-AWGN channel allows us to use the very efficient error correction 

codes compatible with this type of channel. Using r , Alice calculates the log-likelihood ratios (LLRs) of her 
received sequence. The LLRs for one-dimensional reconciliation using the four-state protocol are given by

Alice attempts to decode the codeword using the LLRs. At the end of her attempt, she is left with an estimate 
of the original codeword ĉ . To ascertain whether this codeword is correct Alice first calculates the syndrome of 
ĉ : ĉHT . If this is not equal to the zero vector, the decoding attempt has failed, and Alice will notify Bob of this 
failure. They then both discard their codewords and the reconciliation starts anew. If ĉHT = 0 , it means ĉ is a 
valid codeword. This, however, does not imply that ĉ is equal to c.

To check whether ĉ is actually equal to c , Alice first discards the parity bits of her codeword, leaving her with 
ŝ . She then applies a universal hashing function on ŝ and transmits the result of this hashing function ( hŝ ) to Bob. 
Bob checks the result of his own hashing function ( hs ) to that of Alice. If they are not the same, the decoding was a 
failure and Bob will notify Alice of this and they both discard their codewords. If the hashing results are the same, 
the reconciliation was successful, and Bob notifies Alice. They can now continue with the privacy amplification.

LDPC coding and decoding. An LDPC code is defined by its parity-check H of size dimH = M × N , 
where M = (1− Rc) · N . The codewords belong to the null space of H . The entry at row i and column j of H is 
denoted as Hi,j . Let Vj = {i ∈ {1, . . . ,M} : Hi,j = 1} denote the set containing the positions of nonzero entries 
in column j of H and Ci = {j ∈ {1, . . . ,N} : Hi,j = 1} denote the set containing the positions of nonzero entries 
in row i of H.

The LDPC code used in this paper is an MET-LDPC code with Rc = 0.02 code as proposed in Ref.15 with 
degree distributions

and

(4)mi = yi(−1)ci , i = 1, 2, . . . ,N .

(5)ri =
mi

xi
=

(−1)ci yi

xi
=

(−1)ci (xi + zi)

xi
= (−1)ci + (−1)ci

zi

xi
.

(6)li = log
P(Ri = ri|Ci = 0)

P(Ri = ri|Ci = 1)
=

2Ri

σ 2
z

.

(7)ν(x) = 0.0225 · x21x
57
2 x03 + 0.0175 · x31x

57
2 x03 + 0.96 · x01x

0
2x

1
3 ,

Figure 7.  An overview of the one-dimensional reconciliation protocol for CV-QKD considered in this paper. 
The goal of reconciliation is for Alice and Bob to have the same sequence after error correction (e.g., s = ŝ ) 
using their sequences of measurement outcomes ( x and y ) respectively. Eve has full access to the classical 
channel.
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where ν(x) and µ(x) are the degree distributions of the variable nodes and the check nodes,  respectively16. For 
our simulations, we randomly sample parity check matrices that satisfy these degree distributions. This can be 
achieved using the graph representation of the code. To each of the N columns of H , we assign a so-called variable 
node and to each of the M rows, we assign a so-called check nodes. Each node is equipped with (colored) sockets 
of three different types (type 1, 2, and 3). The multivariate polynomial ν(x) defines the nodes and sockets in the 
following way: the monomial νi · x

di,1
1 x

di,2
2 x

di,3
3  indicates that a fraction ν1 of the variable nodes are equipped with 

di,1 sockets of type 1, di,2 sockets of type 2 and di,3 sockets of type 3. Similarly, the monomial µi · x
di,1
1 x

di,2
2 x

di,3
3  indi-

cates that a fraction µi of the M check nodes are equipped with di,j sockets of type j. A bipartite graph is formed 
by randomly connecting an empty variable node socket of type i with an empty check node socket of the same 
type, such that parallel edges are avoided. The socket counts at variable and check nodes match if Rc = 1− M

N  . 
The parity-check matrix H of the code contains a “1” at row j and column i if and only if check node j is connected 
to variable node i via an edge. Further details on the construction can be found in Ref.16 and references therein.

For the decoding of the MET-LDPC codes we use belief-propagation. Two of the most well known algorithms 
for this are the sum-product  algorithm27 and the min-sum  algorithm28. The min-sum algorithm is less complex 
than the sum-product algorithm, but has a worse error correction performance. Normally, min-sum is often 
used due to its reduced complexity, but at the low operational SNR of the QKD system, the drop in performance 
by using it is too  significant29,30. Because of this, the sum-product algorithm is preferred in QKD systems and 
is used for our simulations.

In the sum-product algorithm, we iteratively update messages that allow us to improve the reliability of 
single bits of the codewords. We first initialize the so-called variable node messages with Alice’s calculated LLRs

where L(qj,i)〈k〉 denotes the message corresponding to row i and column j of H at decoding iteration k. These 
messages are used to calculate

These so-called check messages are then used again to update

The output LLRs are also immediately calculated using the check node messages

The output bit Ĉi is a 0 if L(Qi) ≥ 0 and a 1 if not.
In MDA, after a failed decoding attempt, Bob reveals the value of some of the information bits to Alice. Now 

that Alice knows the values of these bits, she sets the l these bits to an arbitrarily large value, 1010 if the bit is a 
zero, −1010 if it is a one. We call this new sequence of LLRs lnew . When Alice attempts to decode again, she does 
not start over from the beginning, but continues decoding from where she left off, with the only difference being 
that li in Eqs. (11) and 12 is now replaced with lnewi .

Simulation set-up. We have 300 simulation instances for every point in our figures. Our protocol employs 
the QPSK modulation with coherent state |αei(k+1)π/4� ( k = 0, 1, 2, 3 ) and heterodyne detection (i.e. no sifting). 
We derive the key rate based on the security analysis in Refs.25,31,32, where the Holevo information between Bob 
and Eve for the QPSK signal is bounded by that for the Gaussian modulation signal. Though this approach has 
limitation on the security in the sense that it needs to assume linear channels, it makes the analysis of the quan-
tum part rather simple. We use Eqs. (7) and (9)  from32 for the calculation of IAB and χBE respectively. We use the 
following parameters: variance for the Gaussian modulation VA = 2|α|2 = 0.5 , detection efficiency ηeff = 0.5 , 
channel excess noise ǫ = 0.01 and detector’s electric noise vel = 0.1 . The value of channel transmittance T var-
ies depending on the SNR of the BI-AWGN channel, which is defined in Reconciliation part, with the relation

For example, T = 0.131 for SNR = −15.23 dB. We assume that we work with a quantum channel that has 
a transmission loss α equal to 0.2 dB/km (standard single mode fiber). As the transmittance is related to the 
distance in kilometers d by T = 10−

αd
10 , an SNR of −15.23 dB corresponds to a distance of approximately 84 km. 

All simulations were implemented in MATLAB®.

Received: 13 November 2020; Accepted: 26 April 2021

(8)µ(x) = 0.010625 · x31x
0
2x

0
3 + 0.009375 · x71x

0
2x

0
3 + 0.6 · x01x

2
2x

1
3 + 0.36 · x01x

3
2x

1
3 ,

(9)L(qi,j)
�0� = li , ∀i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M},

(10)L(rj,i)
�k� = 2 tanh−1





�

i′∈Cj\{i}

tanh

�

1

2
L(qi′ ,j)

�k−1�

�



, ∀j ∈ {1, . . . ,M},∀i ∈ Ci .

(11)L(qi,j)
�k� = li +

∑

j′∈Vi\{j}

L(rj′ ,i)
�k�, ∀i ∈ {1, . . . ,N},∀j ∈ Vj .

(12)L(Qi)
�k� = li +

∑

j∈Vi

L(rj,i)
�k�.

(13)SNR =
1

σ 2
z

=
T · VA

T · ǫ + 2 1+vel
ηeff

.
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