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Machine learning based
differentiation of glioblastoma
from brain metastasis using MRI
derived radiomics
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Few studies have addressed radiomics based differentiation of Glioblastoma (GBM) and intracranial
metastatic disease (IMD). However, the effect of different tumor masks, comparison of single versus
multiparametric MRI (mp-MRI) or select combination of sequences remains undefined. We cross-
compared multiple radiomics based machine learning (ML) models using mp-MRI to determine
optimized configurations. Our retrospective study included 60 GBM and 60 IMD patients. Forty-five
combinations of ML models and feature reduction strategies were assessed for features extracted
from whole tumor and edema masks using mp-MRI [T1W, T2W, T1-contrast enhanced (T1-CE), ADC,
FLAIR], individual MRI sequences and combined T1-CE and FLAIR sequences. Model performance was
assessed using receiver operating characteristic curve. For mp-MRI, the best model was LASSO model
fit using full feature set (AUC 0.953). FLAIR was the best individual sequence (LASSO-full feature set,
AUC 0.951). For combined T1-CE/FLAIR sequence, adaBoost-full feature set was the best performer
(AUC 0.951). No significant difference was seen between top models across all scenarios, including
models using FLAIR only, mp-MRI and combined T1-CE/FLAIR sequence. Top features were extracted
from both the whole tumor and edema masks. Shape sphericity is an important discriminating feature.

Glioblastoma (GBM) and intracranial metastatic disease (IMD) together constitute the vast majority of malignant
brain neoplasms"* Gliomas account for about 25.5% of all primary brain and other CNS tumors and approxi-
mately 80.8% of primary malignant brain tumors. Of these, GBM is the most common, accounting for over half
of the gliomas (57.3%) with an annual age-adjusted incidence rate of 3.22 per 100,000 population in the United
States®. IMD on the other hand has an incidence rate of approximately 10 per 100,000 population and are more
common than GBM'.

The distinction between GBM and IMD is important since it has diagnostic, therapeutic and prognostic
implications®>*°. Histopathological tissue confirmation is considered the gold standard for diagnosis, but is not
always optimal, with misdiagnosis and under grading of tumors reported in 9.2 and 28% of lesions respectively®.
The reported biopsy complication rate varies between 6 and 12% with mortality rate of 0-1.7%’.

On conventional imaging, factors such as multiplicity of lesions, morphology, cerebellar localization and
known history of underlying primary cancer can be helpful to differentiate IMD from GBM!?. However, brain
metastases may present as a solitary lesion in approximately half of the patients or be associated with undiagnosed
systemic malignancy in about 15-30%®°. Thus, conventional imaging alone may be insufficient for accurate clas-
sification. Prior studies using advanced MRI imaging techniques such as perfusion imaging'®-'%, spectroscopy,
diffusion-weighted and tensor imaging'?, new diffusion weighted techniques like neurite orientation dispersion
and density imaging'4, and more recently other advanced sequences like non-contrast inflow-based vascular-
space-occupancy MR imaging'® have been used to distinguish amongst these entities with variable success'®%.
However, these advanced imaging sequences are not performed universally, and conventional imaging is still
the mainstay in clinical practice. Radiomics is a technique applied on medical images to extract quantitative
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GBM | METASTASES
Patients (120) 60 60; Breast (20); Lung (40)
Age years (mean  SD) 62+11 |62+10
Gender
Male 36 27
Female 24 33
Localization
Supratentorial 58 Breast (10); Lung (25)
Infratentorial 2 Breast (6); Lung (8)
Both 0 Breast (4); Lung (7)
Multiplicity
Single 53 Breast (12); Lung (24)
Two 5 Breast (2); Lung (7)
>Two (Multiple) 2 Breast (6); Lung (9)
Necrosis
Yes 59 Breast (12); Lung (24)
No 1 Breast (8); Lung (16)

Table 1. Patient demographics and tumor characteristics. GBM-Glioblastoma.

features invisible to human eye?!. These features may provide a complimentary tool for the expert human reader.
These radiomic features have been employed in multiple prior studies for tumor grading, classification and
prognosis®' 4. The advantage of radiomics is that it can be applied to routinely acquired conventional clinical
images®.

The application of radiomics based machine learning techniques (MLT) to differentiate GBM from IMD has
only been explored in a few prior studies, mostly using limited MRI sequences and MLT"**?%-%°_The superior-
ity of having one, a few, or all conventional MRI sequences (T1 WI, T2 WI, ADC, FLAIR and T1-CE) as well as
the impact of feature reduction and type of machine learning models remain largely unexplored. In this study,
we aimed to determine the optimal radiomics based MLT for this specific two-class problem using routinely
available conventional MRI sequences.

Results

Patient characteristics. There were 120 patients (males 63, females 57) in the study population (GBM 60,
metastases 60). The majority of metastatic tumors were from lung cancer (40) followed by breast cancer (20). The
demographic and tumor characteristics are provided in Table 1.

Model performance on mp-MRI.  Using mp-MRI, the two best performing models were the LASSO
(least absolute shrinkage and selection operator) and elastic net fit to the full feature set. The LASSO classifier
had mean cross-validated area under the curve (AUC) of 0.953 and the elastic net classifier had a mean cross-
validated AUC of 0.952. Figure 1 displays the mean cross-validated AUC for all 45 MLT combinations fit using
all sequences.

Model performance on individual sequences. For the models fit to each sequence separately, the
LASSO and elastic net fit to the full feature set again were the top performing models, with both being fit to
the FLAIR sequence. Interestingly, seven of the top 10 best performing sequence-specific models were derived
from the FLAIR sequence. The LASSO classifier on the FLAIR sequence had mean cross-validated AUC of 0.951
while the elastic net classifier had a mean cross-validated AUC of 0.948. Figure 2 shows the mean AUC for all
models fit using the FLAIR sequence as many of the top performing individual sequence models came from this
sequence. Table 2 displays the mean and standard deviation of AUC for the 10 best performing models for mp-
MRI and individual sequences.

Model performance from combined T1-CE and FLAIR sequences. For the models fit to the T1-CE
and FLAIR sequences in combination, the adaBoost and LASSO models fit to the full feature set were the top
performing models. The adaBoost classifier had mean cross-validated AUC of 0.951. The LASSO classifier had
mean cross-validated AUC of 0.950. Figure 3 shows the mean AUC for all models fit using the combined T1-CE
and FLAIR sequences. Table 3 displays the mean and standard deviation of AUC for the 10 best performing
models for T1-CE and FLAIR combination.

Comparison of predictive performance between mp-MRI, individual sequence, and combina-
tion of T1-CE with FLAIR. Overall, the best performing model using mp-MRI (LASSO fit to the full fea-
ture set), FLAIR sequence (LASSO full) and combined T1-CE and FLAIR sequences (adaBoost full) had similar
predictive performance (p- value>0.05 for all) (Table 4). These results indicate no statistically significant differ-
ences in predictive performance between the top models in each of the three scenarios.
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Figure 1. Diagnostic performance using multiparametric MRI. Mean cross-validated ROC AUC for all 45
machine learning and feature reduction combinations using all sequences.
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Figure 2. Diagnostic performance using FLAIR sequence. Mean AUC for all models fit using the FLAIR
sequence as many of the top performing models came from this sequence.

Feature importance for the models. Features with higher relative importance were derived from both
the whole tumor and edema masks. The shape sphericity was the most important feature in all sequence combi-
nations. A boxplot showing the distribution of this feature for the two tumor types on FLAIR sequence is shown
in Fig. 4. Supplementary tables S1-S3 (and supplementary Fig. 1-3) display the ranking by variable importance
for the ten most important features for the two best models for mp-MRI, FLAIR and combination of T1-CE and
FLAIR sequence. Supplementary Fig. 4 shows the heatmap of feature importance for mp-MRI models (features
with relative importance greater than 40 were included).

Discussion

Our study showed that radiomics based MLT can differentiate GBM and IMD with excellent performance. We
found LASSO and elastic net as the top performing models. Another key observation from our study was that
the diagnostic performance for best models was similar for mp-MRI, FLAIR sequence and combined T1-CE
and FLAIR sequence. Finally, radiomic features with high relative importance were derived from both the whole
tumor and edema masks and shape sphericity was the most important feature.

LASSO and elastic net models are both penalized regression models®. LASSO model forces the coefficient
estimates of the variables with limited contribution to the outcome to be exactly zero. Elastic net is an exten-
sion of LASSO and forces those estimates of minor importance variables to be zero or very close to zero. Elastic
net model is also robust to extreme correlations among predictors®>*!. Both of these models help reduce data
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All sequences Sequence-specific

Model Feature reduction | ROC AUC mean (SD) | Model | Feature reduction | Sequence | ROC AUC mean (SD)
Lasso Full 0.953 (0.041) Lasso Full F 0.951 (0.049)
Enet Full 0.952 (0.038) Enet Full F 0.948 (0.049)
GBRM Full 0.940 (0.040) RF Full F 0.947 (0.042)
RF Full 0.937 (0.046) ada Full F 0.945 (0.038)
ada Full 0.933 (0.045) Lasso Full CE 0.943 (0.041)
Ridge Full 0.928 (0.053) GBRM | Full F 0.943 (0.045)
GBRM Corr 0.925 (0.056) GBRM | Lincomb F 0.943 (0.045)
SVMRad Full 0.921 (0.042) Lasso Full T1 0.941 (0.046)
RF Corr 0.920 (0.045) Enet Full T1 0.941 (0.041)
MLP Full 0.919 (0.055) GBRM | Corr F 0.940 (0.046)

Table 2. Top ten best performing models using all sequence and sequence-specific features sets ordered
by ROC AUC. Enet: elastic net; Lasso (least absolute shrinkage and selection operator; GBRM: generalized
boosted regression model; RF: random forest; ada: boosting of classification trees with adaBoost; SVMRad:
SVM with a radial kernel; MLP: multi-layer perceptron; full: full feature set; corr: High correlation filter;
lincomb: linear combinations filter; F: FLAIR; CE: T1-CE.
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Figure 3. Diagnostic performance using combined T1- contrast enhanced (T1-CE) and FLAIR sequence. Mean
AUC for all models fit using the combined T1-CE and FLAIR sequences.

overfitting. In addition, the nested cross-validation used in our study helps in model hyperparameter optimiza-
tion and reduce bias in model selection, thereby improving generalizability of the model*%.

The diagnostic performance for majority of the top performing models in our study for all sequence combina-
tions ranged between AUC 0.936- 0.953. This highlights the fact that albeit small, model performance can vary
depending upon the combination of chosen classifier and feature reduction method. Additionally, compared
to few prior radiomics studies showing multilayer perceptron (MLP)* and support vector machine (SVM)* as
high performing models in GBM and IMD classification we also found MLP (AUC 0.919) and SVM (AUC 0.921)
as high performing models. In our study, performance of MLP model was similar (AUC 0.919) compared to a
prior study by Ortiz et al?® (AUC 0.912). Similarly, SVM model in our study performed superior (AUC 0.921) to
a prior study by Qian et al”’ where performance of SVM model was AUC 0.900). However, both MLP and SVM
were not among the highest performing models in our study and we obtained the best result using embedded
LASSO model. These observations suggest that model performance depends upon the available data at hand.
As such, reliance on a single classifier type approach may be suboptimal and comprehensive model evaluation
should be performed.

Our results also compared favorably to other previously reported studies that also evaluated performance of
multiple MLT and feature reduction strategies in classification of GBM versus IMD (supplementary table S4). Bae
et al? evaluated seven machine learning classifiers and five feature reduction methods based on radiomics features
extracted from T1-CE and T2W images and reported an AUC of 0.890 with an accuracy of 83%. Chen et al*
evaluated thirty feature reduction and model combinations for their radiomics study and extracted features only
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Combination of CE and F sequences

Model Feature reduction ROC AUC mean (SD)
ada Full 0.951 (0.040)
Lasso Full 0.950 (0.042)
GBRM Corr 0.950 (0.040)
Enet Full 0.948 (0.041)
MLP Full 0.948 (0.042)
GBRM Full 0.944 (0.043)
RF Full 0.943 (0.044)
ada Corr 0.941 (0.037)
RF Corr 0.939 (0.039)
SVMRad Full 0.936 (0.042)

Table 3. Top ten best performing models using combination of T1-CE and FLAIR sequences ordered by

ROC AUC. ada: boosting of classification trees with adaBoost; Lasso (least absolute shrinkage and selection
operator; GBRM: generalized boosted regression model; Enet: elastic net; MLP: multi-layer perceptron; rf:
random forest;; SVMRad: SVM with a radial kernel; full: full feature set; corr: High correlation filter; F: FLAIR;

CE: T1-CE.

Model

LASSO full Elastic net full | LASSO full Elastic net full | adaBoost full | LASSO full
Performance metric | All Seqs All Seqs F F CE+F CE+F
Brier 0.088 (0.036) | 0.088 (0.036) 0.083 (0.042) | 0.088 (0.043) 0.086 (0.040) 0.102 (0.026)
Accuracy 0.892 (0.061) | 0.892 (0.063) 0.897 (0.054) | 0.885 (0.054) 0.888 (0.063) 0.887 (0.070)
ROC AUC 0.953 (0.041) | 0.952 (0.038) 0.951 (0.049) | 0.948 (0.049) 0.951 (0.040) 0.950 (0.042)
Sensitivity 0.887 (0.086) | 0.893 (0.092) 0.917 (0.064) | 0.903 (0.071) 0.900 (0.080) 0.907 (0.088)
Specificity 0.897 (0.073) | 0.890 (0.079) 0.877 (0.094) | 0.867 (0.102) 0.877 (0.111) 0.867 (0.115)

Table 4. Mean (SD) of performance metrics for two best performing models using all sequences, individual
sequences, and combined T1-CE and FLAIR sequences. LASSO (least absolute shrinkage and selection
operator; Enet: elastic net; ada: boosting of classification trees with adaBoost; F: FLAIR; CE: T1-CE.
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Figure 4. Feature importance. A boxplot showing the distribution of shape sphericity feature for the two tumor
types on FLAIR sequence.

from T1-CE sequence with an AUC of 0.80. In contrast, we reported forty-five combinations of feature reduction
and classifier MLT and reported a higher AUC of 0.953 and an accuracy of 89%. Our results were better likely
due to feature extraction from mp-MRI sequences. Bae et al. also evaluated deep neural network in their study
with an AUC of 0.956 and accuracy of 89%? Though, we did not evaluate deep neural network (DNN) due to its
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computational complexity, our results were comparable to the study by Bae et al. and suggest that mp-MRI, or
even just FLAIR/ FLAIR with T1 CE sequence derived features may provide similar results®.

Feature reduction is an integral part of model building process. An important finding of our study was the
higher performance of embedded classifier models (LASSO and elastic net) compared to a priori feature reduc-
tion. Embedded methods perform feature extraction at the time of model training process. Embedded models
have advantage in terms of better generalizability than filter and wrapper methods. They are also quick and
computationally less extensive compared to wrapper methods®. A priori filter feature reduction methods may
lead to loss of relevant features with a drop in model performance as seen in our study with high correlation and
linear combination filter reduction methods. Although, few of the top models also included filter-based methods
(Tables 2, 3), most of the top performing models were models with embedded feature selection.

In relation to the mask performance, we found that the most important features were often extracted both
from the whole tumor and edema masks. This was true for all sequence combinations (mp-MRI, individual
sequence, and from combined T1-CE and FLAIR sequence). Additionally, the most important radiomics feature
was shape sphericity. This is likely secondary to different peritumoral environment in GBM and IMD. Since GBM
is irregular with variable growth in different dimensions while IMD often has well-defined margins and a more
uniform shape, it is not surprising that shape sphericity was the most important discriminating feature. Addition-
ally, the peritumoral region in patients with IMD is invariably vasogenic edema while GBM shows neoplastic
infiltration®. This may explain the high performance of edema masks. Few prior studies have also shown morpho-
metrical analysis and peritumoral radiomic features as important parameters to differentiate GBM and IMD?>.

It is pertinent to note here that the model performance did not change when using FLAIR only, as compared
to FLAIR and T1-CE in our study. Also, the performance of FLAIR and combined FLAIR and T1-CE sequence
was comparable to mp-MRI. Even though it may appear that FLAIR sequence alone might suffice in terms of
providing robust discrimination, it is pertinent to note here that the lesion segmentation between enhancing
tumor and surrounding ‘edema’ requires both T1 CE and FLAIR images to generate the masks. At the very
minimum therefore, both these sequences would be required for differentiating between GBM and IMD and
achieving performance comparable to mp-MRI. This may also be relevant for future validation studies as analysis
of one or few MRI sequences is quicker and is easier to implement in terms of time and computational costs.
Prior radiomics studies have only assessed single or few MRI sequences for GBM and metastasis classification.
Our study provides evidence of comparable diagnostic performance of single MRI sequence versus mp-MRI.

There were several limitations in our study. This was a single center study with limited sample size, and we did
not perform external validation of our best performing model that could further establish model generalizability.
Secondly, deep neural networks were not evaluated in our study. Another limitation was a less heterogenous
group of brain metastases, since we only included two of the most common primary sites of malignancies (lung
and breast). It is possible that increasing radiomic heterogeneity could negatively impact model performance.
However, since shape sphericity was the most useful feature and is likely to remain consistent across metastasis
as a tumor-class, the impact of additional sub-types of metastasis may not be significant.

However, our study had several strengths including radiomics assessment from both mp-MRI and individual
or sequence combinations, different tumor and edema masks and comparison of forty-five different classifier
model and feature reduction combinations for each sequence/ combination of sequences. Our study also has
one of the best model performances reported for this specific two-class problem. Finally, our results would favor
using embedded feature selection over a priori feature reduction.

Conclusion

Radiomics based machine learning can classify GBM and IMD with excellent diagnostic performance. Model
performance can vary depending upon the chosen classifier and feature reduction combination and thus compre-
hensive model selection strategy should be chosen. The performance of mp-MRI and single FLAIR or combined
T1-CE and FLAIR sequence is comparable. Radiomic features with higher relative importance came from both
whole tumor and edema masks with shape sphericity being the most important feature across multiple models.

Materials and methods

This was a retrospective study approved by institutional review board (IRB) of University of lowa Hospitals and
requirement of informed consent was waived off by University of Iowa Hospitals’ IRB (IRB-ID 201912239). The
study was carried out in accordance with relevant guidelines and regulations. Between 2010 and 2016, patients
were identified from institutional cancer registries and electronic medical records. Eligibility criteria included
availability of pre-therapeutic/ pre-operative multiparametric MRI (mp-MRI) images (T1W, T2W, FLAIR, ADC,
T1-contrast enhanced (T1-CE), and the presence of a contrast-enhancing tumor measuring greater than 1 cm
in at least one axial dimension. Patients with non-enhancing tumors and motion artifact were excluded. This
yielded a total of 60 patients with GBM. A similar number of patients (n =60) with known lung (n=40) or breast
(n=20) primary tumor and intracranial metastatic disease were then consecutively selected from the same time
period, again using a combination of institutional registries and electronic medical records. In patients with mul-
tiple lesions, only the largest lesion was segmented since this approach can provide reliable results by including
regions containing a sufficient number of voxels and the same approach has also been utilized in prior studies***’.

Image acquisition. Preoperative imaging was performed on 1.5 T MRI system (Siemens, Erlangen, Ger-
many). The acquisition protocol for brain tumor evaluation at our hospital includes pre-contrast axial TIW, T2W,
FLAIR, DWI with ADC maps, gradient echo and tri-planar T1-CE images (details in supplementary Table S5).
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Image pre-processing. DICOM images were first anonymized and converted to NIfTI format. All images
were resampled to 1x1x5 mm?® voxel size using the AFNI package (https://afni.nimh.nih.gov/)*. All image
sequences acquired during same session were mutually registered to the TIW sequence using Advanced Nor-
malization Tools (ANTs) (http://stnava.github.io/ANTs/)**. After image resampling and registration, intensity
normalization was performed to [0,255] using the feature scaling method available in the ANTs registration
suite.

Tumor segmentation. 3-D tumor segmentation was performed on axial T1-CE and FLAIR images by two
radiologists (SP, GB) in consensus using an in-house developed semi-automatic tool ‘Layered Optimal Graph
Image Segmentation for Multiple Objects and Surfaces’ (LOGISMOS)* that first automatically identifies the
tumor surfaces followed by an efficient ‘just-enough interaction’ with an optional surface editing step which may
be invoked if needed. Two separate region of interests (masks) were created using T1-CE and FLAIR images: i)
whole tumor (enhancing plus necrotic); and ii) peritumoral edema. First, whole tumor mask was generated from
the T1-CE sequence. This was followed by generation of a mask from FLAIR images that included the entire
lesion (whole tumor and surrounding edema). Finally, edema mask was extracted by subtracting the T1-CE
derived whole tumor mask from FLAIR derived entire lesion mask. Both whole tumor and edema masks were
expert-identified. These masks were then superimposed on all five MRI sequences.

Texture features extraction. Features were extracted using Pyradiomics 3.0%.. For each tumor, features
were abstracted using above two masks and on each mask five MRI sequences were used. This resulted in 10
possible masks and sequence combinations, on each of which 107 radiomic features were obtained, yielding a
total of 1070 features.

Each set of 107 features included: 3D shape features (n=14), first order features (n=18), gray level co-
occurrence matrix features (n=24), gray level dependency matrix features (n=14), gray level run length matrix
features (n=16), gray level size zone matrix features (n=16) and neighboring gray tone difference matrix features
(n=5). The default value for the number of bins was fixed by bin width of 25 Gy levels. In rare cases where the
edema was minimal (7 patients (6%)) leading to absence of a corresponding mask, the value of the correspond-
ing feature was set to -9999.

Feature reduction. Since the number of features exceeded the sample size, feature reduction was per-
formed to reduce noise, collinearity and dimensionality. Three feature reduction methods were considered: a
linear combinations filter, a high correlation filter, and principal components analysis (PCA). The linear combi-
nations (lincomb) filter addresses both collinearity and dimension reduction by finding linear combinations of
two or more variables and removing columns to resolve the issue. This process is repeated until the feature set
is full rank. The high correlation (corr) filter removes variables from the feature set which have a large absolute
correlation. A user-specified threshold is given to determine the largest allowable absolute correlation (threshold
0.4 for mp-MRY, 0.6 for individual sequence, 0.5 for combined T1-CE and FLAIR). Lower thresholds were used
as the number of potential features increased for consistency in the number of potential features after filtering.
These thresholds led to 60-80 features remaining after high correlation filtering across all potential feature sets.

The number of components retained in the PCA transformation was determined by specifying the fraction
of the total variance that should be covered by the components (80% threshold for mp-MRI and 85% for both
individual sequence and combined T1-CE and FLAIR). These thresholds were chosen to sufficiently reduce the
dimensionality of the feature set for model fitting while retaining many of the important variables and as with
the high correlation filter, different thresholds were used to ensure similar numbers of PC’s being used in the
modeling process. These thresholds led to 25-30 PC’s used to be used in model fitting. These feature reduction
methods were implemented using the recipes package in R version 4.0.2**%. All variables were standardized, and
missing data was imputed using mean imputation prior to any feature reduction. Mean imputation was used for
simplicity as the amount of missing data was small. The feature reduction techniques, feature standardization,
and imputation were carried out within each cross-validated split of the data, so as not to bias the estimate of
predictive performance.

Model fitting. Twelve different machine learning models were fit to determine the best classifier for each
feature set. These models can be broadly classified as: linear classifiers, non-linear classifiers, and ensemble classi-
fiers. The linear classifiers used were linear, logistic, ridge, elastic net (enet), and LASSO (least absolute shrinkage
and selection operator) regression. The non-linear classifiers used were neural network, support vector machine
with a polynomial kernel (svmPoly), SVM with a radial kernel (svmRad), and multi-layer perceptron (MLP).
Finally, the ensemble classifiers used were random forest, generalized boosted regression model (GBRM), and
boosting of classification trees with adaBoost.

Classifier model performance evaluation. Each model was fit using the three feature reduction tech-
niques as well as the entire feature set (full), except for the linear regression, logistic regression, and the neural
network which cannot be fit with the full feature set due to numerical stability (linear and logistic) and compu-
tational complexity (neural network). The entire feature set was used to determine if embedded feature selection
of the machine learning model itself performed better than a priori feature reduction using either of the three
feature reduction techniques. This yielded 45 possible model/feature reduction combinations to be fit to each of
the possible feature sets. A fivefold repeated cross-validation with five repeats was then performed to evaluate
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MachineShop

Model Model constructor Parameters tuned Size of tuning grid

Linear LMModel N/A -

Logistic GLMModel N/A -

. GLMNetModel

Ridge Alpha=0 Lambda 5

Elastic Net GLMNetModel Alpha, 25
Lambda

GLMNetModel
LASSO Alpha=1 Lambda 5
Neural Network NNetModel IS)ize, 25
ecay

C,

SVM Poly SVMPolyModel Degree, 125
Scale

SVM Radial SVMRadialModel & 25
Sigma
Size,

MLP N/A Maxit, 27
learnFuncParams

Random Forest RandomForestModel Mtry 5
n.trees,

GBRM GBMModel interaction.depth %

Table 5. Summary of tuning for each model. LASSO: (least absolute shrinkage and selection operator);

SVM Poly: support vector machine with a polynomial kernel; SVM Radial; MLP: multi-layer perceptron;
LMModel: linear model; GLMModel: generalized linear model; GLMNetModel: generalized linear model with
penalized maximum likelihood; NNetModel: feed-forward neural networks; GBMModel: generalized boosted
regression; Lambda: regularization parameter; Alpha: elastic net mixing parameter; Size: number of units in
the hidden layer(s); Decay: parameter for weight decay; C: cost of constraints violation, regularization term

in the Lagrange formulation; Degree: degree of the polynomial kernel function; Scale: scaling parameter of
the polynomial kernel; Sigma: inverse kernel width; Maxit: maximum iterations to learn; learnFuncParams:
parameters of the learning function; Mtry: number of variables randomly sampled as candidates at each split;
n.trees: total number of trees to fit; interaction.depth: maximum depth of variable interactions.

the predictive performance of each model, giving 25 total estimates of prediction performance for each model/
feature reduction combination.

For models with tuning parameters, the important parameters were tuned using nested cross-validation,
which has been shown to provide unbiased performance estimates regardless of the sample size*®. Tuning of
important parameters was handled using the functionality of the MachineShop R package**. Tuning grids across
5 different values for each tuning parameter were used, except for the MLP model which used a grid across 3 dif-
ferent values for each tuning parameter due to the computational complexities of that model. Other parameters
were set to the package default values, which can be found in the online documentation for each model construc-
tor function®. For example, for the random forest model, the number of trees was 500 (default), the number of
variables randomly sampled as candidates at each split was tuned across a grid of five possible values, and the
minimum size of the terminal nodes was 1 (default). Although the MachineShop package offers users the ability
to choose the values in the tuning grid, we utilized the functionality of the package which automatically generates
the grid of possible values for the tuning parameters due to the large number of models under consideration.

Nested Cross-validation was implemented using the “resample” function in the MachineShop package using
the “TunedModel” constructor function to perform model tuning within each fold. This function automati-
cally creates cross-validated splits using different seeds, and an overall seed is provided to ensure the splits are
the same for each candidate model. Table 5 provides the MachineShop model constructor function name, the
parameters that were tuned, and the total length of the tuning grid for each of the models we considered. The
MLP is not implemented by default in MachineShop but was implemented using the package’s ability for users
to define a custom model to ensure it was evaluated on the same cross-validated splits as all of the other models.

Feature importance. Feature importance was calculated for the top models using the final model fit to the
entire data set from each of the three scenarios. Feature importance for the LASSO and elastic net models was
defined as the absolute value of the regression coefficients. As the features are standardized, larger values of the
coefficients correspond to higher importance. For the adaBoost model, the feature importance was determined
by finding the improvement in the Gini index attributed to a split on that feature in a tree and the weight of that
tree*’. Importance values were rescaled to range from 0 to 100, with the most important feature having a value
of 100.

Statistical analysis. The goal of this analysis was to determine the best model for tumor classification and
to determine if models fit using all five MRI sequences (mp-MRI) performed better than models fit to the indi-
vidual sequences or models fit using combined T1-CE and FLAIR sequences. For the models using mp-MRI,
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there were 1070 possible features (2 masks x 5 sequences x 107 features). For each sequence specific model, the
feature set included 214 (2 masks x 1 sequence x 107 features) possible features, and for the T1-CE and FLAIR
combination models, the feature set included 428 (2 masks x 2 sequences x 107 features) possible features.
Model fitting and cross-validated predictive performance was implemented using the MachineShop and
RSNNS packages in R version 4.0.2*%. Predictive performance was measured with the area under the receiver
operating characteristic curve (AUC) for interpretability. As models were formulated to predict GBM, AUC
estimates the probability that a randomly selected subject that had a GBM will have a greater predicted value
than a randomly selected subject that had a metastatic tumor. Higher AUC values indicate better predictive per-
formance. The mean AUC between each of these three models was compared using a paired t-test. We provide
the mean/SD of the AUC over the 25 cross-validated estimates to describe the distribution of AUC estimates.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.
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