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Light‑based methods for predicting 
circadian phase in delayed 
sleep–wake phase disorder
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Nicole Lovato2,7, Krutika Ambani1, Delwyn J. Bartlett2,3,5, David J. Kennaway8, 
Leon C. Lack2,7, Ronald R. Grunstein2,3,5, Steven W. Lockley1,2,3,9,10, 
Shantha M. W. Rajaratnam1,2,3,9,10 & Andrew J. K. Phillips1,2*

Methods for predicting circadian phase have been developed for healthy individuals. It is unknown 
whether these methods generalize to clinical populations, such as delayed sleep–wake phase disorder 
(DSWPD), where circadian timing is associated with functional outcomes. This study evaluated two 
methods for predicting dim light melatonin onset (DLMO) in 154 DSWPD patients using ~ 7 days of 
sleep–wake and light data: a dynamic model and a statistical model. The dynamic model has been 
validated in healthy individuals under both laboratory and field conditions. The statistical model was 
developed for this dataset and used a multiple linear regression of light exposure during phase delay/
advance portions of the phase response curve, as well as sleep timing and demographic variables. 
Both models performed comparably well in predicting DLMO. The dynamic model predicted DLMO 
with root mean square error of 68 min, with predictions accurate to within ± 1 h in 58% of participants 
and ± 2 h in 95%. The statistical model predicted DLMO with root mean square error of 57 min, with 
predictions accurate to within ± 1 h in 75% of participants and ± 2 h in 96%. We conclude that circadian 
phase prediction from light data is a viable technique for improving screening, diagnosis, and 
treatment of DSWPD.

Humans possess an endogenous circadian clock that is responsible for synchronization of many physiologi-
cal and behavioral  processes1. Quantitative techniques, such as mathematical models and machine-learning 
approaches, have been developed to predict the timing of circadian rhythms from non-invasive ambulatory 
 signals2. Commonly used ambulatory signals include activity and  light3–6, skin  temperature7,8, and heart rate or 
heart rate  variability9. Mathematical models, such as the Jewett-Kronauer  model3, quantify the characteristics of 
the circadian clock and its response to light, in particular the phase-dependent sensitivity of the clock to light. 
These models have been developed and tested in healthy individuals under laboratory and field conditions to 
predict circadian phase markers such as core body temperature minimum (CBTmin)3,10 and dim light melatonin 
onset (DLMO)4. It is currently unknown, however, whether these models can accurately predict circadian phase 
in clinical populations, such as those with circadian rhythm sleep disorders.

One such disorder, delayed sleep–wake phase disorder (DSWPD), is thought to be driven by an underlying 
delay in the timing of the circadian clock relative to the required sleep–wake  schedule11,12. Despite this etiology, 
current diagnostic criteria do not mandate an objective measure of circadian phase. Rather, diagnosis is based 
on measures of sleep  timing13 with delayed timing of sleep onset and wake times considered indicative of a delay 
in the biological  clock12,13. This is problematic, as sleep and/or wake times can be delayed despite no underlying 
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circadian  delay14. For example, we have shown previously that 43% of DSWPD patients, using current diagnostic 
criteria, do not have a circadian phase delay relative to the desired sleep–wake  schedule14, with others reporting 
similar  findings15. This apparent discrepancy can occur because the relationship between the onset of the evening 
rise in melatonin (a gold-standard circadian phase  marker16) and sleep is highly variable, with an inter-individual 
range of up to 5 h between melatonin onset and sleep onset in healthy  populations17–19. This range can be even 
greater in sleep disordered populations, with a difference of up to 8 h seen in patients with  insomnia20.

Currently, circadian phase assessments using salivary DLMO are not widely applied in clinical practice due to 
the cost, lack of insurance reimbursement, perceived inconvenience of the procedures, and complicated analytical 
interpretation of  results21. While simpler biochemical measures are being  developed22–24, this clinical gap could 
be addressed by less invasive techniques that attempt to predict circadian timing using ambulatory monitoring 
of activity and light, given that light is the primary synchronizing agent for the circadian  clock25.

Here we evaluated the utility of a statistical regression model for predicting circadian phase in a sample 
of patients clinically diagnosed with DSWPD. To evaluate the performance of the model, we compared its 
performance against a dynamic  model3 that has been shown to accurately predict circadian phase in healthy 
 individuals4,10.

Results
Participant characteristics. Participants (N = 154) were 30.1 ± 10.7 years of age (range 16–64 years) with 
body mass index (BMI) of 24.6 ± 4.0 kg/m2. Average DLMO time was 22:07 (range 18:42–2:24), average bedtime 
was 0:40, and average wake time was 8:44 (see Table 1). There were no significant differences between the test 
and training datasets for sex, age, DLMO time, desired bedtime-DLMO phase angle, bed and wake times, com-
posite morningness–eveningness questionnaire (cMEQ), or clinical global impression (CGI) scale. BMI differed 
modestly between the training and test datasets (23.8 vs. 25.3 kg/m2), although both groups were still within the 
healthy range.

Phase predictions. Previously, others have used a cutoff of ± 1.5 h error between actual and predicted 
DLMO (3 h range) to determine accuracy of phase  predictions26. Permitting such a wide range to be considered 
as a successful prediction (3 h from a total population range of 7.7 h, N = 154) may not be optimal for practical 
use. We therefore based our assessment of prediction accuracy on a 2 h range, i.e., within ± 1 h of actual DLMO.

Performance of the default dynamic model (i.e., the model previously validated against healthy participants) 
had root mean square error (RMSE) of 83 min using the default 60-min epochs for light data. Performance of the 
dynamic model was improved by training on the DSWPD dataset, which resulted in selection of the following 
optimal parameters: τ = 24.4 h for intrinsic circadian period; k = 0.45 to determine shape of the PRC; G = 37 to 
determine amplitude of the PRC; maximum allowed missing data interval of 2 h, using mean of previous 2 h for 
filling missing intervals; and binning light in 60-min windows to the maximum value within the bin.

Performances of the statistical and dynamic models on training and test datasets, respectively, are summarized 
in Table 2. On the test dataset, the mean absolute errors for the statistical model and dynamic model were 44 and 
57 min, respectively. The RMSE for the statistical model and dynamic model were 57 and 68 min, respectively. 
The statistical model predicted 39% within ± 30 min, 75% within ± 1 h, and 96% within ± 2 h of actual DLMO, 
while the dynamic model predicted 25% within ± 30 min, 58% within ± 1 h, and 94% within ± 2 h. Actual DLMO 
was significantly correlated with both the statistical model test predictions  (R2 = 0.61, p < 0.001) and the dynamic 

Table 1.  Participant characteristics of the overall, training and test datasets. BMI = Body Mass Index, 
DLMO = Dim Light Melatonin Onset, DBT-DLMO PAD = Desired Bedtime –Dim Light Melatonin Onset 
Phase Angle Difference, CGI = Clinical Global Impressions scale, cMEQ = Composite Morningness-
Eveningness Questionnaire; Data is represented as mean ± SD. *Average objective bed and wake times over 5–7 
days. ˄ Reduced n.

Overall data set Training set Test set p

N 154 77 77

Sex n (%) 70 M (45.5), 84 F (54.5) 31 M (40.3), 46 F (59.7) 39 M (50.6), 38 F (49.4) 0.20

Age (y) M ± SD 30.1 ± 10.7 29.6 ± 11.4 30.5 ± 10.1 0.61

BMI (kg/m2) M ± SD 24.5 ± 4.0 23.8 ± 3.6 25.3 ± 4.2 0.02

DLMO time (hh:mm), M ± SD 22:07 ± 1:26 22:11 ± 1:22 22:04 ± 1:31 0.61

DBT-DLMO PAD (h), M ± SD  − 0:19 ± 1:17  − 0:11 ± 1:15  − 0:25 ± 1:18 0.28

Bedtime (hh:mm), M ± SD* 0:41 ± 1:19 0:41 ± 1:13 0:40 ± 1:24 0.94

Wake time (h:mm), M ± SD* 8:46 ± 1:21 8:49 ± 1:17 8:42 ± 1:26 0.71

CGI˄

Mildly ill 74 (48.7) 31 (40.8) 43 (56.6) 0.05

Moderately-severely ill 78 (51.3) 45 (59.2) 33 (43.4)

cMEQ

Moderately evening 23 (14.9) 8 (10.4) 15 (19.5) 0.11

Definitely evening 131 (85.1) 69 (89.6) 62 (80.5)
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model test predictions  (R2 = 0.48, p < 0.001). The addition of advance and delay light regions, based on average 
DLMO timing, significantly increased the amount of variance explained compared to when only habitual bed 
or wake time were included in the regression model  (R2 = 0.49 vs.  R2 = 0.61).

Examination of the correlations between actual and predicted DLMO between the training and test datasets 
within each approach showed that the training and test predictions did not differ significantly from one another 
for either approach (statistical model, Z = 0.18, p = 0.86; dynamic model, Z = 0.41, p = 0.68). A comparison of the 
correlations between the two models for test predictions also showed no significant difference (statistical model 
vs. dynamic model, Z =  − 1.15. p = 0.25). Similarly, the slopes of the regression lines for the two models did not 
significantly differ (slope for statistical model = 0.60 vs. slope for dynamic model = 0.62, p = 0.85).

As a comparative method, DLMO was also predicted by subtracting 2 h from actigraphically derived bedtime 
(averaged over 5–7 days) for each participant, which is reported to be the average phase angle between DLMO 
and habitual bedtime in a healthy  population18–20,27. DLMO predicted in this way significantly correlated with 
actual DLMO  (R2 = 0.40, p < 0.001), with RMSE of 129 min. When this correlation was compared with the final 
models, there was a significant difference to the statistical model (Z =  − 0.02, p < 0.05), but not the dynamic 
model (Z =  − 0.64, p = 0.52).

Figure 1 shows predicted and actual DLMO for each participant for each method, with actual DLMO ranked 
from earliest to latest onset time. Both methods illustrate a tendency to underestimate population variability, 
regressing very early or very late individuals towards the population mean.

A comparison was made to determine whether the same participants were being predicted within ± 1 h 
between the two models (Table 3). Combining the training and test datasets, there were 93 (60%) participants 
who were predicted within ± 1 h in both models, 32 (21%) participants whose predictions fell in different cat-
egories between the dynamic and statistical models, and 28 (18%) participants who were inaccurately predicted 
(> 1 h error) by both models. There were no significant differences in functional outcomes (mood and daytime 
function, illness severity) or circadian phase (DLMO time, DBT-DLMO phase angle) between the 28 participants 
who were inaccurately predicted by both models and the 93 participants who were accurately predicted by both 
models within ± 1 h.

As a test of the potential clinical utility of these methods, predicted DLMO was used to classify participants 
as circadian or non-circadian DSWPD using criteria previously  described14. Briefly, a circadian classification was 
given if DLMO occurred 30 min before, or any time after, desired bedtime, while a non-circadian classification 
was given if DLMO occurred more than 30 min prior to desired bedtime. Performance of the two models in 
the test dataset was comparable, with similar numbers of true positives, true negatives, false positives, and false 

Table 2.  Model summary with count and percent of predictions within ± 0.5 h, 1 h, 1.5 h, 2 h and greater than 
2 h for the statistical and dynamic model training and tests datasets.

Statistical model

Training dataset (n = 77) Test dataset (n = 77)

Mean error ± SD (min) 0.02 ± 52.51  − 4.39 ± 56.87

Mean absolute error ± SD (min) 39.62 ± 34.15 44.58 ± 35.21

Root mean square error (min) 52.17 56.67

R 0.766 0.778

R2 0.587 0.605

n n Cumulative % %Cumulative n n Cumulative % %Cumulative

Predictions within ± 0.5 h 37 37 48.05 48.05 30 30 38.96 38.96

Predictions within ± 1 h 25 62 32.47 80.52 28 58 36.36 75.33

Predictions within ± 1.5 h 9 71 11.69 92.21 12 70 15.58 90.91

Predictions within ± 2 h 4 75 5.2 97.4 4 74 5.2 96.1

Predictions > 2 h 2 77 2.6 100 3 77 3.9 100

Dynamic model

Training Dataset (n = 76) Test Dataset (n = 77)

Mean Error ± SD (min)  − 1.22 ± 63.15  − 4.11 ± 67.91

Mean Absolute Error ± SD (min) 47.53 ± 40.20 48.40 ± 40.20

Root Mean Square Error (min) 62.74 67.60

R 0.655 0.692

R2 0.430 0.479

n n Cumulative % %Cumulative n n Cumulative % %Cumulative

Predictions within ± 0.5 h 29 29 38.16 38.16 19 19 24.68 24.68

Predictions within ± 1 h 24 53 31.58 69.74 26 45 33.76 58.44

Predictions within ± 1.5 h 13 66 17.11 86.84 18 63 23.38 81.82

Predictions within ± 2 h 5 71 6.58 93.42 10 73 12.99 94.81

Predictions > 2 h 5 76 6.58 100 4 77 5.19 100
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negatives (see Table 4). The sensitivity for predicting group classification was 74% for the statistical model and 
64% for the dynamic model; specificity was 63% for the statistical model and 66% for the dynamic model. The 
F1 scores were 0.71 and 0.65 for the statistical and dynamic models, respectively.

Discussion
State-of-the-art methods for predicting circadian timing have yet to be tested in clinical populations. We evalu-
ated and compared a novel statistical regression model and a previously validated dynamic model for predict-
ing DLMO time in a clinically diagnosed DSWPD patient population. Both methods for performed similarly. 
The statistical model accounted for a slightly greater proportion of the variance in actual DLMO time than the 
dynamic model (60% vs. 48%), but the statistical model also required knowledge of the average DLMO time 
for the sample to define its PRC regions. The two models were similarly accurate for classifying circadian vs. 
non-circadian DSWPD (69% vs. 65%). Both models were moderately reliable in predicting circadian phase to 
within ± 1 h (75% and 58%).

Our study showed that a regression model using mean light exposure during the delay and advance portions 
of the human PRC, in combination with sex, age, bed/wake times, and chronotype, could predict DLMO signifi-
cantly more accurately than using bed/wake times alone. Self-reported sleep timing information has previously 
been used in regression analyses to predict circadian phase in DSWPD, whereby the combination of variables 
accounted for 77% of the variance in  DLMO26. The previous study, however, achieved only 79% of predictions 
within ± 1.5 h, whereas 91% of our regression model estimates were within ± 1.5 h. Additionally, a recent study 
in which the temporal stability of the melatonin profile over time was examined in 8 DSWPD patients and 5 
healthy controls found that DLMO time could be accurately predicted using wake time and the time of morning 
light  onset28 Specifically, average actigraphically derived wake time and light onset (averaged across the 3 days 
prior to DLMO) explained 89% of the variance in DLMO timing. Similar findings were reported by Crowley and 
 colleagues29, who estimated DLMO in an adolescent population with healthy sleep. Three separate regression 
analyses were conducted in which the independent variables were either bed, wake, or mid-sleep times. DLMOs 
were predicted to within ± 1 h for 78–82% of participants using bedtime, 82–86% using mid-sleep time, and 
80–81% using wake time. Our application of a similar statistical model for estimating DLMO in an adult, patient 
population with a larger sample extends these previous studies, demonstrating the generalizability of such an 
approach to a clinical setting. Additionally, the current study supports the potential use of objective measures 
of light exposure, in addition to bed and wake times, for estimating circadian phase timing. The combination of 
these findings indicates not only that simpler, less invasive methods for estimating circadian phase are a viable 
alternative, but also that the addition of light is valuable for improving prediction accuracy.

While the statistical model we present here appears promising, it requires further validation before it is to be 
generalized to clinical settings. The current implementation of the statistical model requires knowledge of the 
group average DLMO time, which may not be known. Furthermore, the average DLMO time in our sample of 
DSWPD patients was relatively early compared with other published studies in DSWPD patients. Applying this 

Table 3.  Number of participants (N = 153) accurately predicted in both approaches (grey highlight).

Dynamic model

Within ± 0.5 h  >  ± 0.5 h

Statistical model

Within ± 0.5 h 32 35

 >  ± 0.5 h 16 68

Within ± 1 h  >  ± 1 h

Within ± 1 h 93 27

 >  ± 1 h 5 28

Within ± 1.5 h  >  ± 1.5 h

Within ± 1.5 h 126 14

 >  ± 1.5 h 3 10

Within ± 2 h  >  ± 2 h

Within ± 2 h 141 7

 >  ± 2 h 3 2

Table 4.  Sensitivity, specificity, F1 scores and accuracy of the final (test) models for group classification 
(circadian/non-circadian) using predicted DLMOs (true positives = circadian, true negatives = non-circadian).

Statistical model Dynamic model

Sensitivity 74.4% 64.1%

Specificity 63.2% 65.8%

F1 Score 0.71 0.65

Accuracy 0.69 0.65



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10878  | https://doi.org/10.1038/s41598-021-89924-8

www.nature.com/scientificreports/

average DLMO time to other samples could therefore lead to less accurate predictions with the statistical model. 
In future work, the statistical model should be tested in other DSWPD samples to determine its accuracy, and 
to determine whether the new sample’s average DLMO time must first be determined. In practice, this DLMO 
testing could be performed in a subsample to obtain an estimate of the average timing, rather than needing to 
test the entire sample.

The dynamic model of the circadian pacemaker was originally developed and validated under lab conditions 
in healthy  participants3,4. It has since been demonstrated to also perform accurately in healthy participants in 
the field under a range of  conditions30,31, making it the best validated model of the human circadian  clock2. To 
date, however, it has not been tested in any patient populations. Individuals with DSWPD appear, on average, to 
have physiological predispositions to phase delay, including a longer intrinsic circadian  period32 and increased 
sensitivity to phase-delaying  light33. Consistent with this, we found that the default model (i.e., using parameters 
fit against healthy individuals) predicted DLMO time systematically too early. When we allowed parameters to 
be refit against the Training dataset, we found that a significantly better fit was obtained for DSWPD patients 
by lengthening the intrinsic circadian period and by slightly increasing the size of the phase-delay region of the 
phase response curve. With these modifications, the accuracy of the model (RMSE = 68 min) was similar to that 
reported in the field in healthy  populations2.

There are many proponents for circadian phase assessments to occur in a clinical setting for diagnosis of cir-
cadian rhythm sleep  disorders16,34–36. It is acknowledged, however, that there are practical barriers to this occur-
ring, including the costs and logistical difficulties involved in conducting DLMO  assessments21. The results of 
the current study show that, in addition to predicting actual DLMO timing for the majority of patients within ± 1 
h, both models perform equally well at classifying patients with circadian  DSWPD14. Currently there is no sim-
ple method for clinicians to determine if and when a DLMO assessment should be conducted for diagnosis of 
DSWPD. The models presented here could be valuable clinical screening tools to classify patients as high or low 
risk for circadian misalignment, enabling efficient identification of those who need further formal phase assess-
ment. Moreover, they could be used to help optimize the timing of interventions, such as  light37 or  melatonin38.

For both of the models that we tested, we observed that accuracy tended to be highest for individuals with 
DLMO times close to the group average, and less accurate for individuals with more extreme DLMO times. 
This same phenomenon has been reported in other applications of phase prediction  models2. This tendency for 
models to regress towards the mean and underestimate population variability is a natural consequence of them 
being fit at the group, rather than the individual, level. Using an average DLMO time for the entire sample to 
calculate an average CBTmin time (for the statistical model), as well as the assumption that this population has 
normal phase relationships between DLMO and sleep or CBTmin (for both models), would both tend to increase 
accuracy for individuals who are closer to the average. In defining the light bins relative to average DLMO, par-
ticipants whose actual DLMO occurred closer to the average likely had the most accurately defined lights bins. 
Similarly, the dynamic model has physiological parameters (e.g., tau) that are fit at the group level. Individuals 
whose physiology is closer to the average would therefore be likely to have their circadian timing predicted more 
accurately than for individuals with more extreme physiological parameters. Individuals who are more extreme 
in their physiological parameters may also experience great intra-individual differences in circadian  timing39, 
which could contribute to less accurate predictions. Improved individual-level estimates of model parameters 
are likely to yield more accurate predictions for individuals who deviate further from the population mean.

There are a number of ways to potentially improve the prediction accuracy of the dynamic and statistical 
models. These include consideration of inter-individual differences in light  sensitivity40,41, which have been 
theoretically demonstrated as a means of capturing inter-individual differences in DLMO  time42. In defining 
the light inputs for the statistical regression model, we assumed that the DSWPD population has a similar 
light phase response curve to the healthy population. There is evidence that patients with DSWPD may have a 
hypersensitivity to evening  light33,41. Establishing the light phase response curve in a DSWPD population could 
therefore help to improve the models. Using an average DLMO time for the entire sample to calculate an average 
CBTmin time (for the statistical model) and the assumption that this population has normal phase relationships 
between DLMO and sleep or CBTmin (for both models) are also potential areas of improvement. Although 
there is some suggestion that phase angle is not altered between sleep and circadian phase markers in DSWPD 
patients when allowed to sleep at their habitual times compared to healthy  individuals11, it has not been well 
characterized, particularly when bed and wake times are shifted to an earlier desired time. Finally, both models 
were based on photopic illuminance measured at wrist level, which is known not to accurately represent the 
effect of light on the circadian pacemaker under all  conditions43,44. Presently, wrist-based actigraphy remains the 
standard method for collecting patterns of light exposure, but an alternative method that measures light closer 
to the eye and measure impacts on all photoreceptors in the circadian phototransduction pathway could help 
improve prediction  accuracy45.

A measure of circadian timing is important for the diagnosis and appropriate treatment of DSWPD in a clini-
cal setting. Here we have shown that modeling approaches that rely on light–dark and sleep–wake information 
produce reasonably accurate estimates of circadian phase in up to 75% of participants. Both the dynamic and 
statistical models show good utility as screening tools in DSWPD and use information that is already routinely 
collected in diagnostic approaches for DSWPD and other circadian rhythm sleep disorders.

Methods
This study was conducted as part of the delayed sleep on melatonin (DelSoM) Study (ACTRN12612000425897)14,46, 
a randomized controlled trial testing the efficacy of exogenous melatonin for DSWPD. As the study was a multi-
center trial, approval was given by the following human research ethics committees: Monash University Human 
Research Ethics Committee, The University of Sydney Human Research Ethics Committee, Southern Adelaide 
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Clinical Human Research Ethics Committee, and The University of Adelaide Human Research Ethics Committee. 
All research was performed in accordance with the ethical regulations and practices stipulated by each ethics 
committee. Written informed consent was provided by participants prior to study engagement and they were 
reimbursed for study-related  expenses14,46.

Participants. Data from this study have previously been  reported14,46,47. Briefly, data were included from 
182 (89 M, 93 F) participants with clinically diagnosed DSWPD. Participants were recruited at three study sites 
(Melbourne, Sydney, Adelaide) from the community via radio, newspaper, and poster advertising, and from 
clinics through referrals from sleep physicians and psychologists.

Participants were aged 16–65 years, with a body mass index > 18 and < 35 kg/m2. Additionally, participants 
were required to work or study ≥ 5 consecutive days each week. Participants who reported any of the following 
were excluded: comorbid sleep disorder (except insomnia); drugs of abuse or concurrent medication likely to 
affect sleep; history of psychiatric disorder in the past 12 months, other than depression; caffeine consump-
tion > 300 mg per day; alcohol consumption > 14 standard drinks per week; history of substance abuse in past 
12 months; investigational drug use in past 60 days; pregnancy or lactation; night shift work in past 6 months; 
transmeridian travel in the past 2 months; allergies to any medicines, foods, preservatives, or dyes; and liver, 
kidney, or autoimmune disease. More detailed inclusion and exclusion criteria have been reported  elsewhere14.

Screening. Potential participants completed a preliminary online eligibility questionnaire to assess risk of 
DSWPD. Those deemed as high risk completed further screening after providing consent. Participants were 
assessed by a sleep physician to confirm a diagnosis of DSWPD, according to current International Classification 
of Sleep Disorders diagnostic criteria at the time of  study48, and also completed questionnaires relating to health 
and lifestyle, sleep habits, mood, and daytime function. Participants also completed the Composite Morning-
ness-Eveningness Questionnaire (cMEQ)49,50, a 13-item questionnaire measuring an individual’s preferences for 
the timing of mental and physical activity.

Sleep/wake and light assessment. Participants recorded sleep and wake times at home for 7 days using 
a sleep diary and wrist actigraphy (Actiwatch-L, Actiwatch-2, or Actiwatch Spectrum; Philips Respironics, Bend, 
OR, USA). Participants were instructed to maintain their normal sleep–wake schedules and record bed and 
wake times, time to fall asleep, and any awakenings after sleep onset each morning upon waking in the sleep 
diary provided.

Actigraphy devices, worn on the non-dominant wrist, were used to obtain light (white light, lux) and activity 
measures in 1-min epochs. Software sensitivity was set to medium (40 activity counts/minute) to determine each 
1-min epoch as sleep or wake (Actiware 5 software, Philips Respironics Inc, Bend, OR, USA). To limit loss of light 
data, participants were instructed to keep the device uncovered (e.g., by sleeves) at all times. Bed and wake times 
in actigraphy were identified using the times reported in sleep diaries. In the case of discrepancies between sleep 
diaries and actigraphy, the following process was applied: if subjective bedtime was reported as ≥ 60 min before 
a substantial reduction in activity and light levels, bedtime was adjusted to the time of decrease in activity and 
light. If reported wake time was ≥ 60 min after a substantial increase in activity and light, wake time was shifted 
to the start of the sustained activity and light increase. These timings were determined via visual inspection by 
an independent researcher and then reviewed by two study researchers for consensus (JM and MM). From these 
data, bedtime and wake time were computed for main sleep  episodes14,46.

For both the dynamic and statistical models, white light (photopic illuminance) was  used51. Light data were 
extracted from the adjusted actigraphy data files in 1-min epochs for each participant. Light data were further 
cleaned, with removal of data with values < 1 lux during wake, as it was assumed that this was likely due to the 
device being  covered52. Additionally, light levels during sleep were set to zero, as the eyelids are closed during 
sleep, minimizing retinal light  exposure53.

Circadian phase assessment. Immediately following the 7 days of at-home sleep/wake and light assess-
ment, participants attended a laboratory session to undertake a circadian phase assessment measuring salivary 
dim light melatonin onset (DLMO). Participants arrived at the laboratory 6 h prior to their subjectively reported 
habitual bedtime and following admission, were seated in dim lighting (< 3 lux). From 5 h prior to habitual bed-
time until 2 h after habitual bedtime, saliva samples were taken every hour. DLMO was calculated as the time 
that melatonin concentrations crossed and remained above a threshold of 2.3 pg/mL, calculated from linear 
interpolation between the samples immediately before and after the  threshold54. Details of this procedure have 
been reported  previously14,46.

Dynamic model. The dynamic model used a mathematical model that has been previously tested and 
validated against data from carefully screened healthy humans in laboratory  conditions4, as well as in field 
 conditions10,30. The model includes light processing in the retina by photoreceptors, the effects of light (photic 
drive) and the effects of sleep/wake patterns (non-photic drive) on the circadian clock, and a limit-cycle oscil-
lator model of the central circadian clock. For the full model equations and parameter values, see the original 
 publication4.

The model includes the following equation for the photic drive to the circadian pacemaker

B = Gα(1− n)(1− bx)
(

1− by
)

,
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Figure 1.  Distribution of actual DLMO time with corresponding predicted DLMO time. Left: Actual DLMO 
(black squares), ranked from earliest to latest, with corresponding predicted DLMO (open circles) and; Right: 
error of predictions (0 represents actual DLMO) ranked in the same order, for the statistical model training 
(panel a), and test (panel b) datasets, and the dynamic model training (panel c) and test (panel d) datasets. 
Prediction error indicated by shaded areas:   =  ± 30 min,   =  ± 1 h,   =  ± 1.5 h.
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where G is a constant of proportionality determining amplitude of the light PRC, α(1− n) is the rate at which 
retinal photoreceptors are being activated, b is a constant determining the overall shape of the light PRC, and x 
and y are the variables of the circadian pacemaker. All parameters of the model have been previously fit against 
healthy participant data. The model generates predicted times of minima in the endogenous core body tempera-
ture rhythm. DLMO is estimated to occur 7 h before these minima, which is based on the average phase angle 
difference between DLMO and  CBTmin55.

Here, the model was first used in its default form to predict DLMO times for all participants to determine 
whether the model fit against healthy participants could generalize to this patient population. In other papers 
that have used versions of the Jewett-Kronauer model, light data have either been input in 1-min  epochs10 or 
set to the maximum value in 60-min  epochs40. A range of epoch choices were therefore used here, with 60-min 
epochs for testing default parameters.

Subsequently, the model was trained against the DSWPD dataset to determine if model performance could 
be improved. The dataset was split into training (50%) and test (50%) sets, split evenly within each of the three 
test sites. For training, the following modifications were permitted: (1) changes in the intrinsic circadian period 
in steps of 0.05 h, allowing values equal to or above the default 24.15 h, given empirical evidence for longer tau 
in this  population32; (2) changes in the parameter b , in steps of 0.05, allowing values equal to or above the default 
0.40, given empirical evidence for greater phase delays in this  population33; (3) changes in the parameter G,in 
steps of 5%, allowing values equal to or greater than the default 37, given empirical evidence for greater light sen-
sitivity in this  population33,41; (4) binning of light data in 1, 2, 5, 10, 15, 30, 60, or 120 min bins, to either the mean 
value or maximum value in the bin; (5) since the model requires continuous light data with no missing values, 
we allowed missing intervals to be filled with either a value of 0 lux or with the average value for the previous 2 
h. The maximum allowed gap length was allowed to be in the range 1–6 h, in steps of 1 h. The longest continuous 
portion of the light time series with no missing values was then used as input to the model. No other changes to 
model parameters or equations were made. The non-photic component of the model was driven by sleep/wake 
state. For each participant, light data were input repeatedly for 60 days, allowing the model to approach a steady 
cycle, as in previous papers using the  model10,31. Predicted DLMO time was the average predicted DLMO time 
across the final input cycle.

Statistical model. A statistical model for predicting circadian phase was developed based on a multiple lin-
ear regression analysis, with DLMO as the dependent variable. The following predictors were included: (1) light 
data from the advance and delay portions of the PRC (Figure 2); (2) demographic information (age, sex); (3) 
actigraphically derived bedtime and wake time and; (4) composite morningness-eveningness score (cMEQ)50. 
Variables (2)–(4) were included in the model as covariates based on previous reports that these variables are 
associated with circadian  phase56–59. All variables, with the exception of sex and cMEQ, were continuous vari-
ables. cMEQ was treated as a categorical variable with two levels: extreme evening type (scores between 16–30) 
and moderately evening type (scores between 31–41). The statistical model was applied to the same training and 
test datasets as those described for the dynamic model above.

To quantify the time points at which light would have maximal circadian effects, we used a PRC for  light55 
(Fig. 1) and classified the 6 h prior to core body temperature minimum (CBTmin) as the interval corresponding 
to the delay zone and the 6 h after CBTmin as the advance zone. Light data were  log10-transformed, as has been 
done by others previously, to account for brief periods of high light exposure that may have skewed the  data52 
and zero values were assigned a value of 0.001 lux to allow transformation. As we did not have an actual measure 

Figure 2.  Phase response curve for light. A reference phase response curve (based  on50) was used for 
determining phase in the regression model. Phase shifts are plotted (solid black line) against the circadian 
timing of light exposure. Positive values on the y-axis indicate a phase advance and negative values indicate a 
phase delay. Zero on the x-axis represents core body temperature minimum. For the current study, the dark grey 
bar indicates the “delay zone”, which encompasses the circadian time at which light will induce a maximal phase 
delay. The light grey bar represents the “advance zone”, and encompasses the time at which light will induce a 
maximal phase advance.
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of CBTmin in this study, to determine CBTmin we assumed a phase angle between DLMO and CBTmin of 7 h, 
as reported in other  studies55,60,61. CBTmin was thus estimated by adding 7 h to the average DLMO time for the 
total sample (N = 154); average DLMO time for the sample was 22:10 h, and average estimated CBTmin time 
was 5:10 h. This CBTmin time was then applied to all participants to determine the delay and advance zones. 
Average light exposure in the delay and advance zones was then calculated for each individual on each day with 
valid data (minimum 5 consecutive days, maximum 7 consecutive days; 6.83 ± 0.47 days). The average delay and 
advance light zones from each day were then averaged across the days of recording, with each participant having 
one measure of delay light and one measure of advance light.

Data analysis and statistical methods. Matlab R2018a (Natick, Massachusetts) was used for the 
dynamic model simulations, using ode15s for solving differential equations and using a custom grid search 
method for finding optimal parameter values. SPSS Statistics Version 20.0 (IBM, Armonk, New York) was used 
for the statistical model and all other data analysis. Data are expressed as mean ± standard deviation (SD) unless 
otherwise stated. Significance level was set at 0.05. Variables were compared between training and test datasets 
using a chi-squared (goodness of fit) test or independent samples t-test. To evaluate the predictive performance 
of each method, the mean error, mean absolute error, and root mean square error of the difference between 
actual DLMO and predicted DLMO were calculated. Pearson’s correlation coefficients were computed between 
actual DLMO and predicted DLMO for the dynamic and statistical models and regression lines were fit for 
each correlation. To determine whether there were significant differences between Pearson’s correlation coef-
ficients for the dynamic and statistical models, a Fisher’s r to z transformation was used. The regression slopes 
were also compared to determine whether there were significant differences between models. We additionally 
calculated the percentage of participants for whom predicted DLMO was within ± 30, ± 60, ± 90, ± 120, or > 120 
min of actual DLMO.

The predictive value of each model was also assessed by classifying participants as “circadian” or “non-cir-
cadian” DWSPD, based on a previously published classification  scheme14. Circadian DSPWD participants were 
defined as individuals whose DLMO time was within half an hour before, or any time after, desired bedtime, 
while non-circadian DSPWD participants were defined as those whose DLMO occurred more than half an 
hour before desired  bedtime14. Sensitivity, specificity, F1, and accuracy scores were calculated for both models.

Data retention. Out of 182 participants, 28 participants (15%) were excluded. Participants were excluded 
from the dynamic modeling approach, due to (1) irregular actigraphy data (n = 3) in which the pattern of light 
exposure and/or activity was highly irregular with no discernable diurnal rhythm, or (2) actigraphy recordings 
that did not occur in the 7 days immediately prior to the circadian phase assessment (n = 25).

To ensure comparability between the dynamic and statistical models, the same participants were excluded 
from the statistical model. As such, the total number of participants included was 154. One participant was 
excluded from the dynamic model test dataset due to inability to construct at least 1 day of consecutive valid 
light data due to gaps in the dataset.

Data availability
Materials and data in this publication can be requested via the CRC for Alertness, Safety and Productivity (Alert-
ness CRC) by emailing inquiries@alertnesscrc.com.
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