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Feasibility of predicting allele
specific expression from DNA
sequencing using machine learning

Zhenhua Zhang'?, Freerk van Dijk%%3, Niek de Klein?, Mariélle E van Gijn?, Lude H Franke?,
Richard J Sinke?, Morris A Swertz? & K Joeri van der Velde%?**

Allele specific expression (ASE) concerns divergent expression quantity of alternative alleles and is
measured by RNA sequencing. Multiple studies show that ASE plays a role in hereditary diseases

by modulating penetrance or phenotype severity. However, genome diagnostics is based on DNA
sequencing and therefore neglects gene expression regulation such as ASE. To take advantage of ASE
in absence of RNA sequencing, it must be predicted using only DNA variation. We have constructed
ASE models from BIOS (n = 3432) and GTEx (n = 369) that predict ASE using DNA features. These
models are highly reproducible and comprise many different feature types, highlighting the complex
regulation that underlies ASE. We applied the BIOS-trained model to population variants in three
genes in which ASE plays a clinically relevant role: BRCA2, RET and NF1. This resulted in predicted
ASE effects for 27 variants, of which 10 were known pathogenic variants. We demonstrated that ASE
can be predicted from DNA features using machine learning. Future efforts may improve sensitivity
and translate these models into a new type of genome diagnostic tool that prioritizes candidate
pathogenic variants or regulators thereof for follow-up validation by RNA sequencing. All used code
and machine learning models are available at GitHub and Zenodo.

Allele-specific expression (ASE) concerns the divergent expression quantity of alternative allelic copies™*. ASE can
be the result of X-chromosome inactivation?, imprinting?, stochasticity®, nonsense-mediated decayé, or genomic
regulation’. ASE is heritable® and typically measured by quantifying RNA expression differences between hap-
lotypes at heterozygous loci of diploid organisms.

ASE has been implicated in disease etiology, even though the underlying mechanisms are not yet fully under-
stood. Around one-third of all non-synonymous single nucleotide polymorphisms are allelically imbalanced
and nonsense variants are consistently lower expressed than control sites’, establishing a clear link between
pathogenic DNA variation and ASE. Specifically, ASE likely plays a role in pathogenesis or phenotype modulation
of many diseases, including autism'?, colorectal cancer'!, leukemia'?, breast cancer'®, Hirschsprung disease'®,
frontotemporal lobar degeneration', asthma'® neurofibromatosis type 1'” and Silver-Russell syndrome'®. Inter-
estingly, ASE provides protection against autosomal dominant retinitis pigmentosa'’, underscoring its complex
role in both causing and preventing disease, and thus overall medical relevance.

ASE is measured by RNA sequencing, while DNA sequencing has become the standard for routine genetic
testing?®. RNA sequencing yields great promise for molecular diagnostics?!%, but it is not a part of current
diagnostic genetic testing routine?” because of many challenges concerning analytical validity, clinical validity
and clinical utility®.

In absence of RNA measurements, we must resort to predicting ASE effects to inform genome diagnostics.
Computationally estimated ASE effects could help to identify or reject candidate pathogenic variants, including
coding variants that cause nonsense-mediated decay detected as ASE*, and cis-acting non-coding variants that
regulate transcription of pathogenic alleles®. For cis-acting variants, there are two possibilities to consider. First,
heterozygous pathogenic variants in recessive disease genes could be prioritized if the ASE effect of a cis-acting
variant is predicted to silence the "healthy” allele. Second, when testing for pathogenic variants in families, incom-
plete penetrance may be explained if the ASE effect of a cis-acting variant is predicted to silence the pathogenic

'Genomics Coordination Center, University of Groningen and University Medical Center Groningen,
Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. 2Department of Genetics, University
of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen,
The Netherlands. 3Prinses Maxima Center for Child Oncology, Heidelberglaan 25, 3584 CS Utrecht, The
Netherlands. *email: k.j.van.der.velde@umcg.nl

Scientific Reports |

(2021) 11:10606 | https://doi.org/10.1038/s41598-021-89904-y nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-89904-y&domain=pdf

www.nature.com/scientificreports/

© euGsEs coe Sem  ComBS @0 5 80 0 6I0NSE B WIECEE S EE PO MG ©ENSWIES W O 06 000 SEES (B® W GO ENEes & Guc e = ®ecm comm Gommenme s  cEesems: ® em

2o =gy

ASE effect estimation (log10 of P-value)

. . 1 :}
3 L] ot G L 8
{1 ‘h .o § S DRI B o8 3R
. 4 s '} . Y o & S S,
» ¥ 3 | - Rk A I IR P K]

. % 8 Iy e Y
* - § L & ] .
CFY - S S P A0 R G QK. [T €40 S W IR TR S - A8 8 | A

00000 0o e caB @0 ™ BI®W s CW WO ¢ W® SES O ED ® W SWE WE 0 W 0 SOE W G ¢ BIGEWIE: W e @& o © S0 - e e smms o cosmmseme ® ow

Figure 1. Genomic location of SNVs and their ASE effects. Each dot represents an SNV that is present in both
BIOS and GTEx. The genomic location (GRCh37) of each SNV is plotted along the X-axis. The ASE effect,
estimated as the log10 P-value, is plotted along the Y-axis. The color of each dot indicates the cohort in which
a significant ASE effect was detected. The dotted line indicates the FDR 0.05 threshold. Plot was produced by
Matplotlib®® version 3.0.0 under Python® version 3.5.1.

allele, causing a rescue effect. RNA sequencing or other biochemical tests such as PCR can then be performed
on the suspected functional defect to reach a final molecular diagnosis.

Here, we present a feasibility study for predicting ASE effects using genomic annotations of autosomal DNA
variation. While many studies have used machine learning on genomes to predict gene expression and other
phenotypes®, to our knowledge, we are the first to predict allele-specific expression specifically. This was
accomplished by constructing a machine learning model that predicts whether a DNA variant occurs together
with ASE or not. To test the reproducibility of this model, we trained an additional model with the same DNA
features on an independent cohort. Using both models, we carried out cross prediction to find out how much of
their predictive power remains under new circumstances. We also examined the DNA features of both models
to find the main contributors to predicting ASE, and compared feature importance. Furthermore, we tested
whether the predictive models have any bias towards gene molecular function by comparing enrichment profiles
of predicted ASE against randomly sampled ASE. Finally, we evaluated the potential role of ASE as a modifier
for disease. Genetic modifiers are known to affect the penetrance and modulation of rare Mendelian disease?'.
To achieve this, we applied the ASE prediction model to clinical genes with substantial numbers of population
variants where ASE is linked to disease penetrance in case of BRCA2'? and RET", or phenotype modulation in
case of NF1'7 (Fig. 1).

Results

BIOS model ASE predictions. We trained a machine learning model on the BIOS cohort to recognize
the difference between DNA sites where ASE was occurring versus sites without ASE. Figure 2A shows that this
model achieved an average Area Under the Receiver Operating Characteristic curve (AUROC) of 0.806 with a
standard deviation of 0.003 on the independent BIOS test dataset. At a threshold of 0.5, we find a positive pre-
dictive value (PPV) of 0.73, a negative predictive value (NPV) of 0.91, a sensitivity of 0.29, and a specificity of
0.99. See Table 1.

BIOS versus GTEXx cross prediction. To find out whether predicting ASE effects is also possible for a dif-
ferent cohort, we trained a machine learning model on the GTEx dataset under equal conditions. As shown in
Fig. 2B, this model achieved an average AUROC of 0.793 with a standard deviation of 0.002 on an independent
GTEXx test dataset with a PPV of 0.82, a NPV of 0.91, a sensitivity of 0.26, and a specificity of 0.99.

To evaluate to what degree the ASE predictions models are specific to their training dataset of origin, we
applied the BIOS model to the GTEx dataset, and vice versa. The BIOS model achieved an average AUROC of
0.802 with a standard deviation of 0.002 on the full GTEx dataset (Fig. 2C) with a PPV of 0.63, a NPV of 0.91,
a sensitivity of 0.41, and a specificity of 0.98. And lastly, the GTEx model achieved an average AUROC of 0.812
with a standard deviation of 0.0005 on the full BIOS dataset (Fig. 2D) with a PPV of 0.65, a NPV of 0.92, a sensi-
tivity of 0.37, and a specificity of 0.97. All performance metrics are calculated at a threshold of 0.5. A confusion
matrix of all test predictions is shown in Table 1.

Feature importance comparison. We examined the relative importance of DNA features to identify the
strongest contributors for predicting ASE and elucidate any differences between the BIOS and GTEx models.
Figure 3 shows the feature importance according to the BIOS model along with the corresponding GTEx feature
importance. The GerpN feature (neutral evolution score defined by GERP++) is the most important in both
models. Upon inspection we find that low GerpN scores, indicating a high tolerance to substitution, correspond
to positive ASE predictions. High substitution tolerance means that spontaneous mutations at low GerpN loci
are most likely under low selection pressure and have therefore a chance to be established as SNVs in a popula-
tion. This makes sense since ASE can neither be detected nor predicted without the presence of heterozygous
DNA variation to distinguish the expressed alleles. The features that follow in highest importance are a mixture
of various evolutionary, functional and epigenetic features, such as bStatistic (background selection score), Dist-
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Figure 2. ROC curves of ASE prediction models. ROC curves to measure the performance of ASE prediction
models on test sets with tenfold application for standard deviation. (A) shows the BIOS-trained model applied
to 10% ‘leave out’ BIOS test sets. (B) shows the GTEx-trained model applied to 10% ‘leave out’ GTEXx test sets.
(C) shows the BIOS-trained model applied to the full GTEx set. (D) shows the GTEx-trained model applied to
the full BIOS set. Plot was produced by Matplotlib® version 3.0.0 under Python® version 3.5.1.

2Mutation (distance between the closest gnomAD SNV up and downstream), cDNApos (base position from
transcription start), MinDistTSE (distance to closest transcribed sequence end), cHmmReprPCWk (proportion
of cell types in weak repressed polycomb chromatic state) and cHmmQuies (proportion of cell types in quiescent
chromatic state). Overall, most features contribute a significant amount of predictive power to both models, and
except for a few differences, their relative feature importance is comparable.

Model bias test. We compared gene enrichment profiles of predicted ASE-SNVs, i.e. observed, versus ran-
dom ASE-SNVs, ie. expected. We first obtained the profile of the 116 genes belonging to 806 BIOS-unique
ASE-SNVs that were correctly predicted by the GTEx-trained model in the complete set of 2092 BIOS-unique
ASE-SNVs in 1039 genes. This profile was then compared to profiles of genes belonging to 806 randomly sam-
pled BIOS-unique ASE-SNVs. Figure 4A shows the top-10 gene enrichment terms of this profile including
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Prediction (thr.

0.5)
Train Test Truth ASE | Non-ASE
BIOS (90%) BIOS (10%) | ASE 95 231
BIOS (90%) | BIOS (10%) | Non-ASE | 35 2414
BIOS (90%) GTEx (full) ASE 882 2140
BIOS (90%) GTEx (full) | Non-ASE |518 | 22,249
GTEx (90%) BIOS (full) ASE 1242 | 2101
GTEx (90%) |BIOS (full) | Non-ASE |667 | 23,739
GTEx (90%) GTEx (10%) | ASE 77 220
GTEx (90%) GTEx (10%) | Non-ASE |17 2265

Table 1. Confusion matrix of ASE predictions across cohorts and test sets at a probability threshold of 0.5.
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Figure 3. Feature importance of BIOS and GTEx models. The boxes indicate the relative importance of the
used features for BIOS (blue) and GTEx (orange). The whiskers indicate quartile variance according to the
tenfold training. The features on the X-axis are sorted most to least important based on BIOS, with GTEx
importance added for comparison. Plot was produced by Matplotlib®® version 3.0.0 under Python® version
3.5.1.

expected-by-chance distributions from tenfold random resampling. Evidence of bias would present itself when
the observed ranks, shown as red X’s, were to strongly and consistently deviate from the expected ranks, shown
as black violins. Conversely, if the observed ranks be overlapping with or close to the expected ranks, there would
be no evidence of bias.

The cohorts are reversed for the second analysis. We obtained the gene enrichment profile of the 107 genes
belonging to 341 GTEx ASE-SNVs that were correctly predicted by the BIOS-trained model in the complete
set of 1582 GTEx ASE-SNVs in 727 genes. This profile was then compared to profiles of genes belonging to 341
randomly sampled GTEx-unique ASE-SNVs. Figure 4B shows the top-10 gene enrichment terms of this profile
including expected-by-chance distributions from tenfold random resampling.

Application to clinical genes. We have applied the BIOS model to gnomAD population variants from
three clinical genes, BRCA2, RET and NF1, in which ASE plays a role in disease penetrance or modulation. Out
of 8957 SNV tested in total, 27 were predicted to undergo ASE effects: 8 out of 3316 for BRCA2, 8 out of 1700
for RET and 11 out of 3941 for NF1. All predicted ASE-SNVs have very low minor allele frequencies, and all
except two are either intronic or stop gained variants. Of the 27 variants, 12 have been described in ClinVar, of
which 10 are classified as Pathogenic.

Being able to predict ASE effects for these particular genes may help to elucidate the variable disease pen-
etrance of pathogenic BRCA2'* and RET' mutations. It may also help to explain the high variation of disease
severity in NF1 patients, which is observed even in familial cases, where all affected members carry the same
mutation'”. See Table 2 for a complete overview of these variants.

Discussion

We have proven that ASE can be predicted from DNA features using machine learning models, with high
specificity, albeit with low sensitivity. These models were benchmarked on independent test sets and further
validated by applying the BIOS model on the GTEx dataset, and vice versa. All benchmarks result in similar
performance in terms of AUROC, PPV, NPV, sensitivity and specificity. Also, the feature importance of both
models is comparable. Therefore, we conclude that is indeed feasible to reproducibly predict ASE effects using
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A Gene enrichment of BIOS ASE-SNVs predicted by GTEx model B Gene enrichment of GTEx ASE-SNVs predicted by BIOS model

10004 10004

j=)

£

=

£

©

(%3

o

>

Qo

e

£ 100+ 1004

153

o

Qo

x

[0}

n

£

o

>

o

o 4 4

g 10 X X 10 4 % X

Uv_)) x i

Qo

[

n

x

x

< X 0

@

11 X 11 X
& . 5~ P P ~ 0 5. _ 5~ 8 PR .~ g . —
£y s 88 2 58 5 =8 @ 38 % 55 8§ g8 2 58 © 52 35 8 52
BN 3o S =P am @ SN o S« L o A S S~ oo o oo o= = 20
o oY 2 Sin o 8o o & o= 5Q o oS 2o oo o = S 8o > oo
29 2o =] © N o m © S 2% 5 — o w© =] 2o a9 29 © N o0 5 —~ o IR=] PN 8%
8o cQ 2o o= oo <9 8=} e =] <o c9 5o g=] o= [oR=] oS go px=} =N 29
sQ £9 39 a < = rX=} =9 £2 20 €0 £9Q 5Q ad a2 Re(=] 5% -9 a9 88 2
$0O 30 Yol 88 PYe] 80 20 =M GO 20 20 50, 20 S8 Y} N » O 80 % 20
PECIC) $8 32 8@ §2 =CQ TS 22 QO 00, 02 S0 72 O TS 8C &€ 28 28
o Do T 9 S co S o %S o= 2> 2o o s, 2 Q ° > 89S o > co 20 S5
2 ec o a0 OF sc og 2 gE 2= 2 2= sy a0 e = oL sc <} £ c
o= 55 £2 9= R L35 I L o= o2 535 b2 £ 2 R T2 e g2 L3 £ 235
23 Ec o3 2 =3 oc Sc [9) 3% a5 Ec c3 23 2 =35 o =38 oc 3 S
T ® g9 » © ) © oo o 25 c® © = T © » o o © s © a9 -5 -1
8 = = © = 8 =
GO Molecular Function in gene enrichment profiles GO Molecular Function in gene enrichment profiles

Figure 4. Bias test of BIOS and GTEx models. (A) Each violin represents the distribution of expected GO
Molecular Function term ranks based on 10x random resampling of BIOS ASE-SNVs using the same number
of predicted ASE-SNVs. Each X indicates the observed rank of a GO Molecular Function term in the gene
enrichment profile of BIOS ASE-SNVs correctly predicted by the GTEx model. For instance, the expected
rank of endopeptidase activity (GO:0004175) lies around 3-4, and was observed at rank 4. (B) Each violin
represents the distribution of expected GO Molecular Function term ranks based on 10x random resampling of
GTEx ASE-SNVs using the same number of predicted ASE-SNVs. Each X indicates the observed rank of a GO
Molecular Function term in the gene enrichment profile of GTEx ASE-SNVs correctly predicted by the BIOS
model. For instance, the expected rank of serine-type peptidase activity (GO:0008236) lies around 2, and was
observed at rank 3. Plot was produced by R” version 3.3.0 using packages ggplot2”! (v2.2.1), gridExtra (v2.3)
and stringr (v1.3.1).

genomic annotations of DNA variation. The fact that many different types of features are used to make these
predictions seems to highlight the complex regulation that underlies ASE.

We evaluated potential bias towards gene molecular function in the prediction models by comparing gene
enrichment profiles. If the profiles of predicted ASE-SNV’s significantly deviated from the profiles of randomly
sampled ASE-SNVs, there would be evidence for a prediction bias. Despite a few deviations, overall agreement
is high, therefore no evidence for a prediction bias was found.

When applying the BIOS-trained model to variants in three clinical genes, we predict ASE effects for 27
variants. Most of the stop gained variants have been classified as Pathogenic (9 out of 12), and are undergoing
ASE most likely due to nonsense-mediated decay, especially since none are located within the last exon of their
transcript. The other variants, including 12 unclassified intronic variants, are potentially ASE regulators via other
mechanisms and present interesting candidates for further elucidation of disease etiology.

The benchmark achieved relatively high values for PPV, NPV and specificity, though performance in terms of
sensitivity is low. These metrics were obtained by applying an arbitrary probability threshold of 0.5. This stringent
threshold may be suitable in circumstances where certainty is preferred over recall, e.g. when limited capacity
for functional followups is available. These metrics can of course be optimized for different purposes by adjust-
ing the probability threshold. In addition, model performance can most likely be further improved by adding
more genomics features of different types. This is exemplified by the fact that we manually added pLI_score as
a feature, which turned out to be a significant contributor to the model.

While we did not find a prediction bias, the resampling analysis did reveal a striking pattern. The top-3
ranking terms for both BIOS and GTEx ASE-SNVs gene enrichment are serine-type endopeptidase activ-
ity (GO:0004252), immunoglobulin receptor binding (G0:0034987) and serine-type peptidase activity
(G0O:0008236). None of these terms are enriched (Adj.P-val < 0.05) in the full set of blood expressed genes in
either BIOS (6275) or GTEx (7941). A potential explanation is that immunoglobulin genes are subject to strong
ASE mechanisms such as allelic exclusion*>*. We further hypothesize that this effect may also apply to genes
involved in serine proteases which are also key components of the human immune system***.

There are a number of limitations to our current approach that must be acknowledged.

First, the models we constructed here are based on variants within expressed transcripts. As a consequence,
their predictions are probably not informative for variants outside of genes, and neither is such a model capable
of predicting ASE effects on a whole-gene level. Our approach could be complemented with whole-genome
sequencing (WGS) data so that the learning procedure can be informed by variants that are not part of expressed
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Gene RsID/GRCh37 MAF Conseq. ClinVar
BRCA2 | rs748508287 3.99E-06 | Stop gained | P***
BRCA2 rs80358556 4.01E-06 | Stop gained prex
BRCA2 | rs80358851 3.99E-06 | Stop gained | P***
BRCA2 | 15766337502 4.60E-06 | Intronic -
BRCA2 1rs753979600 4.56E-06 | Intronic -
BRCA2 1s779588681 4.69E-06 | Intronic -
BRCA2 | 1580359003 7.95E-06 | Stop gained | P***
BRCA2 rs776353983 (C>A) | 3.98E-06 | Stop gained peex
NF1 rs764079291 4.00E-06 | Stop gained p**
NF1 11316926587 4.00E-06 | Stop gained | P*
NF1 1s761199437 0 Stop gained -
NF1 rs1282299543 0 Stop gained p*
NF1 1s376576925 (C>A) | 1.59E-05 | Synonymous | LB/VUS*
NF1 rs376576925 (C>T) | 3.98E-06 | Stop gained pr*
NF1 17:29576138G>A 3.98E-06 | Splice donor | P**
NF1 15748461474 8.04E-06 | Intronic -
NF1 1s776167625 4.02E-06 | Intronic -
NF1 rs1481561333 4.02E-06 | Intronic -
NF1 15756300767 8.32E-06 | Intronic -
RET rs754967305 3.12E-05 | Intronic LB**
RET 10:43596200T>C 0 Intronic -
RET 151452567543 4.38E-05 | Intronic -
RET rs1198523793 0 Intronic -
RET rs979417275 3.67E-05 | Intronic -
RET rs1471253713 0 Intronic -
RET rs1476675800 0 Stop gained | -
RET 1rs775711017 0 Stop gained | -

Table 2. GnomAD variants in clinical genes for which the BIOS-trained model predicts ASE effects. The
ClinVar classifications shown are: P for Pathogenic, LB for Likely Benign, and VUS for Variant of Unknown
Significance. The asterisks indicate the review status of ClinVar, where zero is the worst and four is the best.
The MAF (Minor Allele Frequency) values are taken from GnomAD exomes r2.1.1. A MAF of zero means
the variant was detected but there were no high-confidence genotype calls made. The RS identifiers are
supplemented with base changes in ambiguous cases. GRCh37 coordinates are used if no RS identifiers exist
for an SNV.

transcripts. Furthermore, variants can be phased using WGS data, enabling the prediction of whole-gene ASE
as well as allelic direction of these effects.

Second, we used whole-blood derived bulk transcriptomics in which we detected SN'V's from 6275 expressed
genes covering 33% of clinical genes (1374/4122) in the BIOS cohort. Adding additional tissue types and using
single-cell sequencing will further inform ASE predictors of tissue-specific*® and even cell type-specific*’ gene
expression, enabling tailored predictions that may be more informative for anatomically localized-acting diseases.

We have demonstrated that predicting ASE using machine learning models is indeed feasible. A number of
obstacles must be addressed before such models can be translated into practical tools, including performing
clinical validation and providing implementation guidelines. Nevertheless, we are convinced that ASE predictors
would perfectly complement existing in silico tools that infer all kinds of information from DNA variation, for
example, tools that predict splicing*®, evolutionary pressure*® or estimate pathogenicity®. Such tools are already
an established part of diagnostic variant interpretation®’. ASE predictions represent an additional piece of the
diagnostic puzzle that is crucial in choosing most informative functional follow-up test after DNA sequencing
is done to increase overal testing effectiveness.

Methods

RNA isolation and genotyping. We reused data from Biobank-Based Integrative Omics Studies (BIOS)
and Genotype-Tissue Expression (GTEx) cohorts, which we describe below. The BIOS Consortium (BBMRI-NL,
https://www.bbmri.nl/acquisition-use-analyze/bios) hosts genetic and transcriptomic data on approximately
4000 individuals from 6 Dutch biobanks: CODAM (Cohort on Diabetes and Atherosclerosis Maastricht), LIFE-
LINES (multigenerational cohort study of the northern Dutch population), LLS_PARTOFFS (Leiden Longevity
Study, Offspring and their partners), PAN: (Prospective ALS study the Netherlands), RS (Rotterdam Study) and
VUNTR (Netherlands Twin Register). RNA was extracted from whole blood of 3432 Dutch individuals collected
in the BIOS cohort, available from the European Genome-phenome Archive (EGA) under accession number
EGAC00001000277. Isolation and sequencing of RNA material was performed as described by Zhernakova
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et al.’!. Alignment, read mapping, genotype calling quality control was performed on genome build GRCh37 as
described by De Klein et al.*2. Phasing information was absent because whole-genome sequencing was not avail-
able for the majority of samples, so the first and second most common allele were taken as reference allele and
alternative allele, respectively. For the BIOS dataset in total, we identified 111,959 heterozygous loci with exactly
two alleles in autosomal exonic regions. These SNVs (Single-Nucleotide Variants) were located in 6275 genes.
To assess how many clinical genes were covered, we compared these 6275 genes to Clinical Genomic Database®
containing 4122 genes in the 15 oct 2020 release, resulting in an overlap of 1374 genes.

We also requested and downloaded allelic reads from 369 whole blood samples collected in the GTEx Project,
available from the database of Genotypes and Phenotypes (dbGaP) under accession number phs000424.v8.p2.
The GTEx Project collected blood samples from around 900 individuals with 24 h after death for WGS genotyp-
ing and quantification of gene expression through RNA sequencing®. The procedure for data processing and
genotype calling was performed as described by the GTEx Project™. In total, we identified 89,022 heterozygous
loci with exactly two alleles in autosomal exonic regions for the GTEx dataset. These SN'Vs are located in 7941
unique genes, of which 4877 overlapping with the 6275 genes found in BIOS. We did not consider allosomal
reads in order to capture mechanisms other than X-inactivation, which has been studied extensivel}r%, including
in the BIOS*” and GTEx"® cohorts.

ASE effect calling. We assessed the number of uniquely mapped reads per sample at each locus. The prob-
ability of identifying an alternative allele at a given locus was modelled based on the beta-binomial distribution.
Maximum likelihood estimation was used to aggregate all expression information for each heterozygous locus
in the cohort, followed by performing a log-likelihood ratio test to determine the difference between the null
model, i.e. loci without ASE-SNV effects, and the alternative model, i.e. loci with ASE-SNV effects. To control
errors, p-values were adjusted using FDR (False Discovery Rate). Only loci with an FDR lower than 0.05 were
considered to show an ASE effect. Out of all BIOS SNVs, 27,749 SNVs were found in 5 or more individuals,
and of those, 3343 SNVs were identified as sites undergoing ASE. These ASE-SNV's were located in 1477 genes.

To identify ASE effects in the GTEx dataset, reads were quantified and analyzed using the exact same statisti-
cal methods and criterion as applied for the BIOS cohort. Out of all GTEx SNVs, 25,789 SNVs were found in 5
or more individuals and of those, 3022 SNV's were identified as sites undergoing ASE.

Between BIOS (3343) and GTEx (3022), there is an overlap of 777 ASE-SNVs. The GTEx ASE-SNVs are
located in 1387 genes, of which 513 overlapping with the 1477 genes found in BIOS. The SNV shared between
BIOS and GTEx and their ASE effects are plotted in Fig. 1. Overlap between BIOS and GTEx is limited in terms
of the number of matching ASE-SNV's and genes, presumably due to many intrinsic differences. However, ASE
effect distribution of both cohorts appears quite similar in Fig. 1, perhaps implying that genomic ‘ASE hotspots’
are nonetheless maintained.

It should be noted that there are around 130 well-established imprinted genes® that were not detectable,
because in our experimental setup, genotype calling was performed on expressed transcripts only. When only
one allele is expressed as a result of monoallelic silencing through imprinting, only homozygous genotypes are
called, on which ASE by definition does not apply.

ASE prediction model samples and features. The target variable for prediction is the probability of
a variant undergoing ASE as part of a transcript. Therefore, the number of training SNVs for BIOS is 27,749,
of which 24,406 SNVs not having ASE and 3343 SNVs having ASE. For GTEx, the number of training SNVs is
25,789, of which 22,767 SNVs not having ASE and 3022 SNVs having ASE. Ten percent of the SN'Vs for both
BIOS and GTEx was left out to serve as independent test sets.

These training examples are annotated with features to allow the learning process to construct a predictor. A
total of 109 genomic features were considered, 107 from Combined Annotation Dependent Depletion (CADD)*
v1.4 for GRCh37 plus pLI_score from ExAC r0.3°° and gnomAD_AF from gnomAD Genomes r2.0.2°'. The
pLI_scores represent the tolerance of a given gene to loss of function, and the gnomAD_AF is the allele frequency
calculated for variants genotyped in 15,708 whole-genomes from the Genome Aggregation Database (gnomAD).
Details on the CADD features can found at https://cadd.gs.washington.edu. We evaluated all features on missing
values, their functional role in the genome, and potential correlation with ASE detectability. Removing the lat-
ter prevents the model from being biased towards ASE effects that are easier to detect due to higher expression
or allele frequency. After evaluation, 39 features were removed and 70 features were used in training the final
model. The removed features were: (1) Non-functional features: Chrom, Pos, Length, ConsScore, ConsDetail,
motifEName, FeatureID, GenelD, GeneName, CCDS, Intron, Exon. (2) Features with over 40% missing values:
motifECount, motifEHIPos, motifEScoreChng, Dst2Splice, Dst2SplType, targetScan, mirSVR-Score, mirSVR-E,
mirSVR-Aln, TEBS, TFBSPeaks, TFBSPeaksMax, tOverlapMotifs, motifDist, dbscSNV-ada_score, dbscSNV-rf_
score (3) Features that potentially correlate with ASE detectability: EncExp, gnomAD_AF, Freq100bp, Rare100bp,
Sngl100bp, Freq1000bp, Rare1000bp, Sngl1000bp, Freq10000bp, Rare10000bp, Sngl10000bp. Missing values of
selected features were imputed using the empirical value according to CADD v1.4 release notes. Non-numerical
annotations were encoded as category or binary variables.

ASE prediction model construction. A machine learning model was constructed using numpy v1.15.3,
scipy v1.1.0, pandas v0.23.4, matplotlib v3.0.0, scikit-learn v0.20.0, imbalanced-learn v0.4.0, and prince v0.6.0
for Python 3.5.1. To discover which approach worked best for predicting ASE, we built models using multi-
ple ensemble classiflers including random forest (AUROC = 0.796, BIOS), balanced random forest (AUROC =
0.778, BIOS), adaptive boosting (AUROC = 0.775, BIOS) and gradient boosting (highest AUROC, see “Results”
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section). These models were all constructed with default parameters and similar training strategies. All built
models are available via Zenodo as Python pickle files (PKL, see “Data availability”).

The gradient boosting®? approach was chosen for the following reasons: (1) allows a mixture of discrete and
continuous features, (2) is less prone of over-fitting or under-fitting, (3) allows interpretation of feature impor-
tance in contrast to algorithms such as support vector machines, (4) computationally efficient by exploiting
multiple threads, (5) showed the best performance in terms of AUROC. Gradient boosting combines multiple
weak learners, i.e. decision trees in our case, while tenfold cross validation was used to prevent overfitting. The
final machine learning procedure was configured with 100 iterations, inner 6 cross-validation, outer 10 cross-
validation, and equally applied to the BIOS and GTEx datasets. When the resulting models are supplied with a
set of input DNA features for a locus, they calculate a probability P between 0 and 1 that an ASE effect will occur
at that locus, and conversely P-1 that ASE will not occur.

ASE prediction model evaluation. Gini importance was chosen as a measure for feature importance
because it is simple and fast to compute®. In scikit-learn, Gini importance is implemented as the impurity impor-
tance when using the Gini index as the splitting criterion in classification trees®. It is calculated as the decrease of
node impurity, i.e. label homogeneity, weighted by the proportion of samples that reach a certain node, averaged
over all classification trees. To evaluate overall model performance, we use Area Under the Receiver Operating
Characteristic curve (AUROC), allowing for an unbiased overview of the trade-off between true positive rate
(TPR) and false positive rate (FPR) at all decision thresholds. Furthermore, we calculated positive predictive
value (PPV), negative predictive value (NPV), sensitivity (i.e. true positive rate or recall) and specificity (i.e. true
negative rate or selectivity) as additional metrics to show model behaviour at specific thresholds.

Model bias test. To test if the prediction models have any bias in terms of gene molecular function, we pre-
dicted BIOS ASE-SNVs with the GTEx model, and vice versa. We only considered ASE-SNV's unique to a cohort
to allow independent back-prediction. We then compared gene enrichment profiles of predicted ASE-SNVs to
profiles of randomly sampled ASE-SNVs from the same set. A gene enrichment profile is a list of ranked GO
Molecular Function gene annotation terms, for which the term at rank 1 is has the strongest overrepresention
in a given set of genes. If these profiles would look exactly or about the same, it would mean that the predictions
resemble random draws, and thus have no bias. We obtained the gene enrichment profiles by supplying lists of
genes to the Enrichr webtool®>%, set to ‘GO Molecular Function 2018, selecting ‘Table’ output, and downloading
the results using ‘Export entries to table’

Application to clinical genes.  For our exploration of population variant ASE in clinical genes, we obtained
lists of variants from gnomAD exomes release 2.1.1°' using the following hg19/b37 coordinates, and retaining
only SNVs: BRCA2 at chr 13 from 32,889,617 to 32,973,809 (3316 variants), RET at chr 10 from 43,572,517 to
43,625,797 (1700 variants), and NF1 at chr 17 from 29,421,945 to 29,704,695 (3941 variants). For each of these
these variants we predicted whether or not they are undergoing ASE by applying the BIOS-trained model using
a probability threshold of 0.5. Any SNV with positive ASE predictions are queried in ClinVar®, accessed 8 oct
2020.

Data availability

The datasets used for the analyses described in this manuscript were obtained from the European Genome-
phenome Archive (EGA) at https://www.ebi.ac.uk/ega through accession number EGAC00001000277 for BIOS,
and from the database of Genotypes and Phenotypes (dbGaP) at http://www.ncbi.nlm.nih.gov/gap through
dbGaP accession number phs000424.v8.p2 for GTEx. All used code and dependencies are available on GitHub
at https://github.com/zhenhua-zhang/asep. The codebase is also available as an archive at https://zenodo.org/
record/4301755. The constructed machine learning models are available at https://zenodo.org/record/4700237.
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