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Feasibility of predicting allele 
specific expression from DNA 
sequencing using machine learning
Zhenhua Zhang1,2, Freerk van Dijk1,2,3, Niek de Klein2, Mariëlle E van Gijn2, Lude H Franke2, 
Richard J Sinke2, Morris A Swertz1,2 & K Joeri van der Velde1,2*

Allele specific expression (ASE) concerns divergent expression quantity of alternative alleles and is 
measured by RNA sequencing. Multiple studies show that ASE plays a role in hereditary diseases 
by modulating penetrance or phenotype severity. However, genome diagnostics is based on DNA 
sequencing and therefore neglects gene expression regulation such as ASE. To take advantage of ASE 
in absence of RNA sequencing, it must be predicted using only DNA variation. We have constructed 
ASE models from BIOS (n = 3432) and GTEx (n = 369) that predict ASE using DNA features. These 
models are highly reproducible and comprise many different feature types, highlighting the complex 
regulation that underlies ASE. We applied the BIOS-trained model to population variants in three 
genes in which ASE plays a clinically relevant role: BRCA2, RET and NF1. This resulted in predicted 
ASE effects for 27 variants, of which 10 were known pathogenic variants. We demonstrated that ASE 
can be predicted from DNA features using machine learning. Future efforts may improve sensitivity 
and translate these models into a new type of genome diagnostic tool that prioritizes candidate 
pathogenic variants or regulators thereof for follow-up validation by RNA sequencing. All used code 
and machine learning models are available at GitHub and Zenodo.

Allele-specific expression (ASE) concerns the divergent expression quantity of alternative allelic  copies1,2. ASE can 
be the result of X-chromosome  inactivation3,  imprinting4,  stochasticity5, nonsense-mediated  decay6, or genomic 
 regulation7. ASE is  heritable8 and typically measured by quantifying RNA expression differences between hap-
lotypes at heterozygous loci of diploid organisms.

ASE has been implicated in disease etiology, even though the underlying mechanisms are not yet fully under-
stood. Around one-third of all non-synonymous single nucleotide polymorphisms are allelically imbalanced 
and nonsense variants are consistently lower expressed than control  sites9, establishing a clear link between 
pathogenic DNA variation and ASE. Specifically, ASE likely plays a role in pathogenesis or phenotype modulation 
of many diseases, including  autism10, colorectal  cancer11,  leukemia12, breast  cancer13, Hirschsprung  disease14, 
frontotemporal lobar  degeneration15,  asthma16 neurofibromatosis type  117 and Silver–Russell  syndrome18. Inter-
estingly, ASE provides protection against autosomal dominant retinitis  pigmentosa19, underscoring its complex 
role in both causing and preventing disease, and thus overall medical relevance.

ASE is measured by RNA sequencing, while DNA sequencing has become the standard for routine genetic 
 testing20. RNA sequencing yields great promise for molecular  diagnostics21–26, but it is not a part of current 
diagnostic genetic testing  routine27 because of many challenges concerning analytical validity, clinical validity 
and clinical  utility28.

In absence of RNA measurements, we must resort to predicting ASE effects to inform genome diagnostics. 
Computationally estimated ASE effects could help to identify or reject candidate pathogenic variants, including 
coding variants that cause nonsense-mediated decay detected as  ASE29, and cis-acting non-coding variants that 
regulate transcription of pathogenic  alleles30. For cis-acting variants, there are two possibilities to consider. First, 
heterozygous pathogenic variants in recessive disease genes could be prioritized if the ASE effect of a cis-acting 
variant is predicted to silence the ’healthy’ allele. Second, when testing for pathogenic variants in families, incom-
plete penetrance may be explained if the ASE effect of a cis-acting variant is predicted to silence the pathogenic 
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allele, causing a rescue effect. RNA sequencing or other biochemical tests such as PCR can then be performed 
on the suspected functional defect to reach a final molecular diagnosis.

Here, we present a feasibility study for predicting ASE effects using genomic annotations of autosomal DNA 
variation. While many studies have used machine learning on genomes to predict gene expression and other 
 phenotypes31–40, to our knowledge, we are the first to predict allele-specific expression specifically. This was 
accomplished by constructing a machine learning model that predicts whether a DNA variant occurs together 
with ASE or not. To test the reproducibility of this model, we trained an additional model with the same DNA 
features on an independent cohort. Using both models, we carried out cross prediction to find out how much of 
their predictive power remains under new circumstances. We also examined the DNA features of both models 
to find the main contributors to predicting ASE, and compared feature importance. Furthermore, we tested 
whether the predictive models have any bias towards gene molecular function by comparing enrichment profiles 
of predicted ASE against randomly sampled ASE. Finally, we evaluated the potential role of ASE as a modifier 
for disease. Genetic modifiers are known to affect the penetrance and modulation of rare Mendelian  disease41. 
To achieve this, we applied the ASE prediction model to clinical genes with substantial numbers of population 
variants where ASE is linked to disease penetrance in case of  BRCA213 and  RET14, or phenotype modulation in 
case of  NF117 (Fig. 1).

Results
BIOS model ASE predictions. We trained a machine learning model on the BIOS cohort to recognize 
the difference between DNA sites where ASE was occurring versus sites without ASE. Figure 2A shows that this 
model achieved an average Area Under the Receiver Operating Characteristic curve (AUROC) of 0.806 with a 
standard deviation of 0.003 on the independent BIOS test dataset. At a threshold of 0.5, we find a positive pre-
dictive value (PPV) of 0.73, a negative predictive value (NPV) of 0.91, a sensitivity of 0.29, and a specificity of 
0.99. See Table 1.

BIOS versus GTEx cross prediction. To find out whether predicting ASE effects is also possible for a dif-
ferent cohort, we trained a machine learning model on the GTEx dataset under equal conditions. As shown in 
Fig. 2B, this model achieved an average AUROC of 0.793 with a standard deviation of 0.002 on an independent 
GTEx test dataset with a PPV of 0.82, a NPV of 0.91, a sensitivity of 0.26, and a specificity of 0.99.

To evaluate to what degree the ASE predictions models are specific to their training dataset of origin, we 
applied the BIOS model to the GTEx dataset, and vice versa. The BIOS model achieved an average AUROC of 
0.802 with a standard deviation of 0.002 on the full GTEx dataset (Fig.  2C) with a PPV of 0.63, a NPV of 0.91, 
a sensitivity of 0.41, and a specificity of 0.98. And lastly, the GTEx model achieved an average AUROC of 0.812 
with a standard deviation of 0.0005 on the full BIOS dataset (Fig. 2D) with a PPV of 0.65, a NPV of 0.92, a sensi-
tivity of 0.37, and a specificity of 0.97. All performance metrics are calculated at a threshold of 0.5. A confusion 
matrix of all test predictions is shown in Table 1.

Feature importance comparison. We examined the relative importance of DNA features to identify the 
strongest contributors for predicting ASE and elucidate any differences between the BIOS and GTEx models. 
Figure 3 shows the feature importance according to the BIOS model along with the corresponding GTEx feature 
importance. The GerpN feature (neutral evolution score defined by GERP++) is the most important in both 
models. Upon inspection we find that low GerpN scores, indicating a high tolerance to substitution, correspond 
to positive ASE predictions. High substitution tolerance means that spontaneous mutations at low GerpN loci 
are most likely under low selection pressure and have therefore a chance to be established as SNVs in a popula-
tion. This makes sense since ASE can neither be detected nor predicted without the presence of heterozygous 
DNA variation to distinguish the expressed alleles. The features that follow in highest importance are a mixture 
of various evolutionary, functional and epigenetic features, such as bStatistic (background selection score), Dist-

Figure 1.  Genomic location of SNVs and their ASE effects. Each dot represents an SNV that is present in both 
BIOS and GTEx. The genomic location (GRCh37) of each SNV is plotted along the X-axis. The ASE effect, 
estimated as the log10 P-value, is plotted along the Y-axis. The color of each dot indicates the cohort in which 
a significant ASE effect was detected. The dotted line indicates the FDR 0.05 threshold. Plot was produced by 
 Matplotlib68 version 3.0.0 under  Python69 version 3.5.1.
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2Mutation (distance between the closest gnomAD SNV up and downstream), cDNApos (base position from 
transcription start), MinDistTSE (distance to closest transcribed sequence end), cHmmReprPCWk (proportion 
of cell types in weak repressed polycomb chromatic state) and cHmmQuies (proportion of cell types in quiescent 
chromatic state). Overall, most features contribute a significant amount of predictive power to both models, and 
except for a few differences, their relative feature importance is comparable.

Model bias test. We compared gene enrichment profiles of predicted ASE-SNVs, i.e. observed, versus ran-
dom ASE-SNVs, i.e. expected. We first obtained the profile of the 116 genes belonging to 806 BIOS-unique 
ASE-SNVs that were correctly predicted by the GTEx-trained model in the complete set of 2092 BIOS-unique 
ASE-SNVs in 1039 genes. This profile was then compared to profiles of genes belonging to 806 randomly sam-
pled BIOS-unique ASE-SNVs. Figure  4A shows the top-10 gene enrichment terms of this profile including 

Figure 2.  ROC curves of ASE prediction models. ROC curves to measure the performance of ASE prediction 
models on test sets with tenfold application for standard deviation. (A) shows the BIOS-trained model applied 
to 10% ‘leave out’ BIOS test sets. (B) shows the GTEx-trained model applied to 10% ‘leave out’ GTEx test sets. 
(C) shows the BIOS-trained model applied to the full GTEx set. (D) shows the GTEx-trained model applied to 
the full BIOS set. Plot was produced by  Matplotlib68 version 3.0.0 under  Python69 version 3.5.1.
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expected-by-chance distributions from tenfold random resampling. Evidence of bias would present itself when 
the observed ranks, shown as red X’s, were to strongly and consistently deviate from the expected ranks, shown 
as black violins. Conversely, if the observed ranks be overlapping with or close to the expected ranks, there would 
be no evidence of bias.

The cohorts are reversed for the second analysis. We obtained the gene enrichment profile of the 107 genes 
belonging to 341 GTEx ASE-SNVs that were correctly predicted by the BIOS-trained model in the complete 
set of 1582 GTEx ASE-SNVs in 727 genes. This profile was then compared to profiles of genes belonging to 341 
randomly sampled GTEx-unique ASE-SNVs. Figure 4B shows the top-10 gene enrichment terms of this profile 
including expected-by-chance distributions from tenfold random resampling.

Application to clinical genes. We have applied the BIOS model to gnomAD population variants from 
three clinical genes, BRCA2, RET and NF1, in which ASE plays a role in disease penetrance or modulation. Out 
of 8957 SNVs tested in total, 27 were predicted to undergo ASE effects: 8 out of 3316 for BRCA2, 8 out of 1700 
for RET and 11 out of 3941 for NF1. All predicted ASE-SNVs have very low minor allele frequencies, and all 
except two are either intronic or stop gained variants. Of the 27 variants, 12 have been described in ClinVar, of 
which 10 are classified as Pathogenic.

Being able to predict ASE effects for these particular genes may help to elucidate the variable disease pen-
etrance of pathogenic  BRCA213 and  RET14 mutations. It may also help to explain the high variation of disease 
severity in NF1 patients, which is observed even in familial cases, where all affected members carry the same 
 mutation17. See Table 2 for a complete overview of these variants.

Discussion
We have proven that ASE can be predicted from DNA features using machine learning models, with high 
specificity, albeit with low sensitivity. These models were benchmarked on independent test sets and further 
validated by applying the BIOS model on the GTEx dataset, and vice versa. All benchmarks result in similar 
performance in terms of AUROC, PPV, NPV, sensitivity and specificity. Also, the feature importance of both 
models is comparable. Therefore, we conclude that is indeed feasible to reproducibly predict ASE effects using 

Table 1.  Confusion matrix of ASE predictions across cohorts and test sets at a probability threshold of 0.5.

Train Test Truth

Prediction (thr. 
0.5)

ASE Non-ASE

BIOS (90%) BIOS (10%) ASE 95 231

BIOS (90%) BIOS (10%) Non-ASE 35 2414

BIOS (90%) GTEx (full) ASE 882 2140

BIOS (90%) GTEx (full) Non-ASE 518 22,249

GTEx (90%) BIOS (full) ASE 1242 2101

GTEx (90%) BIOS (full) Non-ASE 667 23,739

GTEx (90%) GTEx (10%) ASE 77 220

GTEx (90%) GTEx (10%) Non-ASE 17 2265

Figure 3.  Feature importance of BIOS and GTEx models. The boxes indicate the relative importance of the 
used features for BIOS (blue) and GTEx (orange). The whiskers indicate quartile variance according to the 
tenfold training. The features on the X-axis are sorted most to least important based on BIOS, with GTEx 
importance added for comparison. Plot was produced by  Matplotlib68 version 3.0.0 under  Python69 version 
3.5.1.
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genomic annotations of DNA variation. The fact that many different types of features are used to make these 
predictions seems to highlight the complex regulation that underlies ASE.

We evaluated potential bias towards gene molecular function in the prediction models by comparing gene 
enrichment profiles. If the profiles of predicted ASE-SNVs significantly deviated from the profiles of randomly 
sampled ASE-SNVs, there would be evidence for a prediction bias. Despite a few deviations, overall agreement 
is high, therefore no evidence for a prediction bias was found.

When applying the BIOS-trained model to variants in three clinical genes, we predict ASE effects for 27 
variants. Most of the stop gained variants have been classified as Pathogenic (9 out of 12), and are undergoing 
ASE most likely due to nonsense-mediated decay, especially since none are located within the last exon of their 
transcript. The other variants, including 12 unclassified intronic variants, are potentially ASE regulators via other 
mechanisms and present interesting candidates for further elucidation of disease etiology.

The benchmark achieved relatively high values for PPV, NPV and specificity, though performance in terms of 
sensitivity is low. These metrics were obtained by applying an arbitrary probability threshold of 0.5. This stringent 
threshold may be suitable in circumstances where certainty is preferred over recall, e.g. when limited capacity 
for functional followups is available. These metrics can of course be optimized for different purposes by adjust-
ing the probability threshold. In addition, model performance can most likely be further improved by adding 
more genomics features of different types. This is exemplified by the fact that we manually added pLI_score as 
a feature, which turned out to be a significant contributor to the model.

While we did not find a prediction bias, the resampling analysis did reveal a striking pattern. The top-3 
ranking terms for both BIOS and GTEx ASE-SNVs gene enrichment are serine-type endopeptidase activ-
ity (GO:0004252), immunoglobulin receptor binding (GO:0034987) and serine-type peptidase activity 
(GO:0008236). None of these terms are enriched (Adj.P-val < 0.05) in the full set of blood expressed genes in 
either BIOS (6275) or GTEx (7941). A potential explanation is that immunoglobulin genes are subject to strong 
ASE mechanisms such as allelic  exclusion42,43. We further hypothesize that this effect may also apply to genes 
involved in serine proteases which are also key components of the human immune  system44,45.

There are a number of limitations to our current approach that must be acknowledged.
First, the models we constructed here are based on variants within expressed transcripts. As a consequence, 

their predictions are probably not informative for variants outside of genes, and neither is such a model capable 
of predicting ASE effects on a whole-gene level. Our approach could be complemented with whole-genome 
sequencing (WGS) data so that the learning procedure can be informed by variants that are not part of expressed 

Figure 4.  Bias test of BIOS and GTEx models. (A) Each violin represents the distribution of expected GO 
Molecular Function term ranks based on 10× random resampling of BIOS ASE-SNVs using the same number 
of predicted ASE-SNVs. Each X indicates the observed rank of a GO Molecular Function term in the gene 
enrichment profile of BIOS ASE-SNVs correctly predicted by the GTEx model. For instance, the expected 
rank of endopeptidase activity (GO:0004175) lies around 3–4, and was observed at rank 4. (B) Each violin 
represents the distribution of expected GO Molecular Function term ranks based on 10× random resampling of 
GTEx ASE-SNVs using the same number of predicted ASE-SNVs. Each X indicates the observed rank of a GO 
Molecular Function term in the gene enrichment profile of GTEx ASE-SNVs correctly predicted by the BIOS 
model. For instance, the expected rank of serine-type peptidase activity (GO:0008236) lies around 2, and was 
observed at rank 3. Plot was produced by  R70 version 3.3.0 using packages  ggplot271 (v2.2.1), gridExtra (v2.3) 
and stringr (v1.3.1).
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transcripts. Furthermore, variants can be phased using WGS data, enabling the prediction of whole-gene ASE 
as well as allelic direction of these effects.

Second, we used whole-blood derived bulk transcriptomics in which we detected SNVs from 6275 expressed 
genes covering 33% of clinical genes (1374/4122) in the BIOS cohort. Adding additional tissue types and using 
single-cell sequencing will further inform ASE predictors of tissue-specific46 and even cell type-specific47 gene 
expression, enabling tailored predictions that may be more informative for anatomically localized-acting diseases.

We have demonstrated that predicting ASE using machine learning models is indeed feasible. A number of 
obstacles must be addressed before such models can be translated into practical tools, including performing 
clinical validation and providing implementation guidelines. Nevertheless, we are convinced that ASE predictors 
would perfectly complement existing in silico tools that infer all kinds of information from DNA variation, for 
example, tools that predict  splicing48, evolutionary  pressure49 or estimate  pathogenicity35. Such tools are already 
an established part of diagnostic variant  interpretation50. ASE predictions represent an additional piece of the 
diagnostic puzzle that is crucial in choosing most informative functional follow-up test after DNA sequencing 
is done to increase overal testing effectiveness.

Methods
RNA isolation and genotyping. We reused data from Biobank-Based Integrative Omics Studies (BIOS) 
and Genotype-Tissue Expression (GTEx) cohorts, which we describe below. The BIOS Consortium (BBMRI-NL, 
https:// www. bbmri. nl/ acqui sition- use- analy ze/ bios) hosts genetic and transcriptomic data on approximately 
4000 individuals from 6 Dutch biobanks: CODAM (Cohort on Diabetes and Atherosclerosis Maastricht), LIFE-
LINES (multigenerational cohort study of the northern Dutch population), LLS_PARTOFFS (Leiden Longevity 
Study, Offspring and their partners), PAN: (Prospective ALS study the Netherlands), RS (Rotterdam Study) and 
VUNTR (Netherlands Twin Register). RNA was extracted from whole blood of 3432 Dutch individuals collected 
in the BIOS cohort, available from the European Genome-phenome Archive (EGA) under accession number 
EGAC00001000277. Isolation and sequencing of RNA material was performed as described by Zhernakova 

Table 2.  GnomAD variants in clinical genes for which the BIOS-trained model predicts ASE effects. The 
ClinVar classifications shown are: P for Pathogenic, LB for Likely Benign, and VUS for Variant of Unknown 
Significance. The asterisks indicate the review status of ClinVar, where zero is the worst and four is the best. 
The MAF (Minor Allele Frequency) values are taken from GnomAD exomes r2.1.1. A MAF of zero means 
the variant was detected but there were no high-confidence genotype calls made. The RS identifiers are 
supplemented with base changes in ambiguous cases. GRCh37 coordinates are used if no RS identifiers exist 
for an SNV.

Gene RsID/GRCh37 MAF Conseq. ClinVar

BRCA2 rs748508287 3.99E−06 Stop gained P***

BRCA2 rs80358556 4.01E−06 Stop gained P***

BRCA2 rs80358851 3.99E−06 Stop gained P***

BRCA2 rs766337502 4.60E−06 Intronic –

BRCA2 rs753979600 4.56E−06 Intronic –

BRCA2 rs779588681 4.69E−06 Intronic –

BRCA2 rs80359003 7.95E−06 Stop gained P***

BRCA2 rs776353983 (C>A) 3.98E−06 Stop gained P***

NF1 rs764079291 4.00E−06 Stop gained P**

NF1 rs1316926587 4.00E−06 Stop gained P*

NF1 rs761199437 0 Stop gained –

NF1 rs1282299543 0 Stop gained P*

NF1 rs376576925 (C>A) 1.59E−05 Synonymous LB/VUS*

NF1 rs376576925 (C>T) 3.98E−06 Stop gained P**

NF1 17:29576138G>A 3.98E−06 Splice donor P**

NF1 rs748461474 8.04E−06 Intronic –

NF1 rs776167625 4.02E−06 Intronic –

NF1 rs1481561333 4.02E−06 Intronic –

NF1 rs756300767 8.32E−06 Intronic –

RET rs754967305 3.12E−05 Intronic LB**

RET 10:43596200T>C 0 Intronic –

RET rs1452567543 4.38E−05 Intronic –

RET rs1198523793 0 Intronic –

RET rs979417275 3.67E−05 Intronic –

RET rs1471253713 0 Intronic –

RET rs1476675800 0 Stop gained –

RET rs775711017 0 Stop gained –

https://www.bbmri.nl/acquisition-use-analyze/bios
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et al.51. Alignment, read mapping, genotype calling quality control was performed on genome build GRCh37 as 
described by De Klein et al.52. Phasing information was absent because whole-genome sequencing was not avail-
able for the majority of samples, so the first and second most common allele were taken as reference allele and 
alternative allele, respectively. For the BIOS dataset in total, we identified 111,959 heterozygous loci with exactly 
two alleles in autosomal exonic regions. These SNVs (Single-Nucleotide Variants) were located in 6275 genes. 
To assess how many clinical genes were covered, we compared these 6275 genes to Clinical Genomic  Database53 
containing 4122 genes in the 15 oct 2020 release, resulting in an overlap of 1374 genes.

We also requested and downloaded allelic reads from 369 whole blood samples collected in the GTEx Project, 
available from the database of Genotypes and Phenotypes (dbGaP) under accession number phs000424.v8.p2. 
The GTEx Project collected blood samples from around 900 individuals with 24 h after death for WGS genotyp-
ing and quantification of gene expression through RNA  sequencing54. The procedure for data processing and 
genotype calling was performed as described by the GTEx  Project55. In total, we identified 89,022 heterozygous 
loci with exactly two alleles in autosomal exonic regions for the GTEx dataset. These SNVs are located in 7941 
unique genes, of which 4877 overlapping with the 6275 genes found in BIOS. We did not consider allosomal 
reads in order to capture mechanisms other than X-inactivation, which has been studied  extensively56, including 
in the  BIOS57 and  GTEx58 cohorts.

ASE effect calling. We assessed the number of uniquely mapped reads per sample at each locus. The prob-
ability of identifying an alternative allele at a given locus was modelled based on the beta-binomial distribution. 
Maximum likelihood estimation was used to aggregate all expression information for each heterozygous locus 
in the cohort, followed by performing a log-likelihood ratio test to determine the difference between the null 
model, i.e. loci without ASE-SNV effects, and the alternative model, i.e. loci with ASE-SNV effects. To control 
errors, p-values were adjusted using FDR (False Discovery Rate). Only loci with an FDR lower than 0.05 were 
considered to show an ASE effect. Out of all BIOS SNVs, 27,749 SNVs were found in 5 or more individuals, 
and of those, 3343 SNVs were identified as sites undergoing ASE. These ASE-SNVs were located in 1477 genes.

To identify ASE effects in the GTEx dataset, reads were quantified and analyzed using the exact same statisti-
cal methods and criterion as applied for the BIOS cohort. Out of all GTEx SNVs, 25,789 SNVs were found in 5 
or more individuals and of those, 3022 SNVs were identified as sites undergoing ASE.

Between BIOS (3343) and GTEx (3022), there is an overlap of 777 ASE-SNVs. The GTEx ASE-SNVs are 
located in 1387 genes, of which 513 overlapping with the 1477 genes found in BIOS. The SNVs shared between 
BIOS and GTEx and their ASE effects are plotted in Fig. 1. Overlap between BIOS and GTEx is limited in terms 
of the number of matching ASE-SNVs and genes, presumably due to many intrinsic differences. However, ASE 
effect distribution of both cohorts appears quite similar in Fig. 1, perhaps implying that genomic ‘ASE hotspots’ 
are nonetheless maintained.

It should be noted that there are around 130 well-established imprinted  genes59 that were not detectable, 
because in our experimental setup, genotype calling was performed on expressed transcripts only. When only 
one allele is expressed as a result of monoallelic silencing through imprinting, only homozygous genotypes are 
called, on which ASE by definition does not apply.

ASE prediction model samples and features. The target variable for prediction is the probability of 
a variant undergoing ASE as part of a transcript. Therefore, the number of training SNVs for BIOS is 27,749, 
of which 24,406 SNVs not having ASE and 3343 SNVs having ASE. For GTEx, the number of training SNVs is 
25,789, of which 22,767 SNVs not having ASE and 3022 SNVs having ASE. Ten percent of the SNVs for both 
BIOS and GTEx was left out to serve as independent test sets.

These training examples are annotated with features to allow the learning process to construct a predictor. A 
total of 109 genomic features were considered, 107 from Combined Annotation Dependent Depletion (CADD)49 
v1.4 for GRCh37 plus pLI_score from ExAC r0.360 and gnomAD_AF from gnomAD Genomes r2.0.261. The 
pLI_scores represent the tolerance of a given gene to loss of function, and the gnomAD_AF is the allele frequency 
calculated for variants genotyped in 15,708 whole-genomes from the Genome Aggregation Database (gnomAD). 
Details on the CADD features can found at https:// cadd. gs. washi ngton. edu. We evaluated all features on missing 
values, their functional role in the genome, and potential correlation with ASE detectability. Removing the lat-
ter prevents the model from being biased towards ASE effects that are easier to detect due to higher expression 
or allele frequency. After evaluation, 39 features were removed and 70 features were used in training the final 
model. The removed features were: (1) Non-functional features: Chrom, Pos, Length, ConsScore, ConsDetail, 
motifEName, FeatureID, GeneID, GeneName, CCDS, Intron, Exon. (2) Features with over 40% missing values: 
motifECount, motifEHIPos, motifEScoreChng, Dst2Splice, Dst2SplType, targetScan, mirSVR-Score, mirSVR-E, 
mirSVR-Aln, TFBS, TFBSPeaks, TFBSPeaksMax, tOverlapMotifs, motifDist, dbscSNV-ada_score, dbscSNV-rf_
score (3) Features that potentially correlate with ASE detectability: EncExp, gnomAD_AF, Freq100bp, Rare100bp, 
Sngl100bp, Freq1000bp, Rare1000bp, Sngl1000bp, Freq10000bp, Rare10000bp, Sngl10000bp. Missing values of 
selected features were imputed using the empirical value according to CADD v1.4 release notes. Non-numerical 
annotations were encoded as category or binary variables.

ASE prediction model construction. A machine learning model was constructed using numpy v1.15.3, 
scipy v1.1.0, pandas v0.23.4, matplotlib v3.0.0, scikit-learn v0.20.0, imbalanced-learn v0.4.0, and prince v0.6.0 
for Python 3.5.1. To discover which approach worked best for predicting ASE, we built models using multi-
ple ensemble classifiers including random forest (AUROC = 0.796, BIOS), balanced random forest (AUROC = 
0.778, BIOS), adaptive boosting (AUROC = 0.775, BIOS) and gradient boosting (highest AUROC, see “Results” 

https://cadd.gs.washington.edu
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section). These models were all constructed with default parameters and similar training strategies. All built 
models are available via Zenodo as Python pickle files (PKL, see “Data availability”).

The gradient  boosting62 approach was chosen for the following reasons: (1) allows a mixture of discrete and 
continuous features, (2) is less prone of over-fitting or under-fitting, (3) allows interpretation of feature impor-
tance in contrast to algorithms such as support vector machines, (4) computationally efficient by exploiting 
multiple threads, (5) showed the best performance in terms of AUROC. Gradient boosting combines multiple 
weak learners, i.e. decision trees in our case, while tenfold cross validation was used to prevent overfitting. The 
final machine learning procedure was configured with 100 iterations, inner 6 cross-validation, outer 10 cross-
validation, and equally applied to the BIOS and GTEx datasets. When the resulting models are supplied with a 
set of input DNA features for a locus, they calculate a probability P between 0 and 1 that an ASE effect will occur 
at that locus, and conversely P-1 that ASE will not occur.

ASE prediction model evaluation. Gini importance was chosen as a measure for feature importance 
because it is simple and fast to  compute63. In scikit-learn, Gini importance is implemented as the impurity impor-
tance when using the Gini index as the splitting criterion in classification  trees64. It is calculated as the decrease of 
node impurity, i.e. label homogeneity, weighted by the proportion of samples that reach a certain node, averaged 
over all classification trees. To evaluate overall model performance, we use Area Under the Receiver Operating 
Characteristic curve (AUROC), allowing for an unbiased overview of the trade-off between true positive rate 
(TPR) and false positive rate (FPR) at all decision thresholds. Furthermore, we calculated positive predictive 
value (PPV), negative predictive value (NPV), sensitivity (i.e. true positive rate or recall) and specificity (i.e. true 
negative rate or selectivity) as additional metrics to show model behaviour at specific thresholds.

Model bias test. To test if the prediction models have any bias in terms of gene molecular function, we pre-
dicted BIOS ASE-SNVs with the GTEx model, and vice versa. We only considered ASE-SNVs unique to a cohort 
to allow independent back-prediction. We then compared gene enrichment profiles of predicted ASE-SNVs to 
profiles of randomly sampled ASE-SNVs from the same set. A gene enrichment profile is a list of ranked GO 
Molecular Function gene annotation terms, for which the term at rank 1 is has the strongest overrepresention 
in a given set of genes. If these profiles would look exactly or about the same, it would mean that the predictions 
resemble random draws, and thus have no bias. We obtained the gene enrichment profiles by supplying lists of 
genes to the Enrichr  webtool65,66, set to ‘GO Molecular Function 2018’, selecting ‘Table’ output, and downloading 
the results using ‘Export entries to table’.

Application to clinical genes. For our exploration of population variant ASE in clinical genes, we obtained 
lists of variants from gnomAD exomes release 2.1.161 using the following hg19/b37 coordinates, and retaining 
only SNVs: BRCA2 at chr 13 from 32,889,617 to 32,973,809 (3316 variants), RET at chr 10 from 43,572,517 to 
43,625,797 (1700 variants), and NF1 at chr 17 from 29,421,945 to 29,704,695 (3941 variants). For each of these 
these variants we predicted whether or not they are undergoing ASE by applying the BIOS-trained model using 
a probability threshold of 0.5. Any SNVs with positive ASE predictions are queried in  ClinVar67, accessed 8 oct 
2020.

Data availability
The datasets used for the analyses described in this manuscript were obtained from the European Genome-
phenome Archive (EGA) at https:// www. ebi. ac. uk/ ega through accession number EGAC00001000277 for BIOS, 
and from the database of Genotypes and Phenotypes (dbGaP) at http:// www. ncbi. nlm. nih. gov/ gap through 
dbGaP accession number phs000424.v8.p2 for GTEx. All used code and dependencies are available on GitHub 
at https:// github. com/ zhenh ua- zhang/ asep. The codebase is also available as an archive at https:// zenodo. org/ 
record/ 43017 55. The constructed machine learning models are available at https:// zenodo. org/ record/ 47002 37.
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