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Radular force performance 
of stylommatophoran gastropods 
(Mollusca) with distinct body 
masses
Wencke Krings1,3*, Charlotte Neumann1, Marco T. Neiber2, Alexander Kovalev3 & 
Stanislav N. Gorb3

The forces exerted by the animal’s food processing structures can be important parameters when 
studying trophic specializations to specific food spectra. Even though molluscs represent the second 
largest animal phylum, exhibiting an incredible biodiversity accompanied by the establishment 
of distinct ecological niches including the foraging on a variety of ingesta types, only few studies 
focused on the biomechanical performance of their feeding organs. To lay a keystone for future 
research in this direction, we investigated the in vivo forces exerted by the molluscan food gathering 
and processing structure, the radula, for five stylommatophoran species (Gastropoda). The chosen 
species and individuals have a similar radular morphology and motion, but as they represent different 
body mass classes, we were enabled to relate the forces to body mass. Radular forces were measured 
along two axes using force transducers which allowed us to correlate forces with the distinct phases 
of radular motion. A radular force quotient, AFQ = mean Absolute Force/bodymass0.67, of 4.3 could 
be determined which can be used further for the prediction of forces generated in Gastropoda. 
Additionally, some specimens were dissected and the radular musculature mass as well as the radular 
mass and dimensions were documented. Our results depict the positive correlation between body 
mass, radular musculature mass, and exerted force. Additionally, it was clearly observed that the 
radular motion phases, exerting the highest forces during feeding, changed with regard to the ingesta 
size: all smaller gastropods rather approached the food by a horizontal, sawing-like radular motion 
leading to the consumption of rather small food particles, whereas larger gastropods rather pulled the 
ingesta in vertical direction by radula and jaw resulting in the tearing of larger pieces.

The typical force exerted by feeding organs is a useful parameter indicating specializations to distinct food 
types, as it correlates with the food spectrum (see e.g.1; for a review for stress-related puncture mechanics,  see2). 
This topic had been studied quite intensively in vertebrates (for a summary of the relevant literature,  see3): bite 
force analyses had been performed on mammals (e.g.4–8), reptiles (e.g.9–12), fish (e.g.13–15), and birds (e.g.16,17). 
Even though the majority of animal species belong to the invertebrates, unfortunately fewer work focused on 
the forces exerted by their structures involved in either gathering or acquiring food due to the difficulties of an 
experimental set-up for studies of small structures. Exceptions and pioneers in this field are studies performed 
on representatives of Arthropoda: spiders, crustaceans, scorpions, and  insects18–24.

For molluscs, even though they represent the second specious animal  group25 with around 80,000 recent spe-
cies only within the  Gastropoda26, only a few studies approached the forces exerted by their feeding organ, the 
radula. Since the species belonging to this animal phylum occupy almost any marine, freshwater or terrestrial 
environment and established extremely varied ecological  niches27, accompanied with feeding on a wide range 
of food sources with various mechanical properties, mollusc trophic specializations are of very high interest 
for evolutionary biologists. Their radula, one important molluscan autapomorphy and the interface between 
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the organism and its ingesta (food, minerals), is highly diverse and offers an immense opportunity to study the 
structural adaptations enabling feeding on distinct ingesta  types28.

The radula consists of a thin, chitinous membrane with rows of embedded, sometimes mineralized teeth 
which is supported by thick, underlying odontophoral cartilages and moved by numerous muscles of the buccal 
mass. The sometimes highly complex radular motion (see e.g.29–34) brings the tooth cusps in contact with the 
ingesta leading to the tearing, cutting, and gathering of food.

As the teeth are involved as actual organism-ingesta interface, usually the shape of teeth or overall morphology 
of the radula had been examined and related to the ingesta (e.g.35–49; also examined for the tooth anchorage:50). In 
the context of phenotypic plasticity, different shapes of radular teeth as an answer to shifts of the ingesta have also 
been  studied40,51–61. Sometimes these analyses are complemented by material property estimations of  teeth33,62–73. 
Additionally, ingesta consumption, grazing activity, food choice experiments, and fecal analyses for diverse gas-
tropod species have been investigated relating the gastropods with their preferred food, the abundance of food 
or other parameters of the microhabitat (74–80; for comprehensive reviews on diet of Heterobranchia,  see81,82).

The majority of previous studies have focused on the radular teeth themselves, but the forces exerted by this 
organ or its biomechanical performance have unfortunately only been investigated in a few papers devoted 
(1) to the feeding force calculations (83; or force calculations for radula-inspired gripping devices:84), (2) to the 
experiments revealing the forces needed to remove  algae85,86, or (3) to the first in vivo experiment performed 
on a single mollusc  species87.

Here, before the broad topic of trophic specialization in molluscs can be approached and, to lay a keystone 
for further studies, we investigated the in vivo radular forces while foraging for five different stylommatophoran 
species using force transducers following the protocol  of87. As the radular motion or radular morphology could 
potentially influence the forces exerted by the feeding organ we first selected species with a similar radular type 
(isodont) and similar radular motion to get a good impression on radular forces without being confronted with 
overflowing radular diversity, which could make results less comparable or prone to artefacts. Additionally, 
since the chosen gastropods however represent distinct body mass classes, we tested if and to which extend the 
chosen stylommatophoran specimens follow common laws and predictions for scaling of force and body mass.

Material and methods
For force measurements we have chosen five stylommatophoran species (Gastropoda: Heterobranchia) that were 
easy to obtain, as they are either often kept as pets or could be collected easily around Hamburg. Additionally, 
all these species possess a similar radular type with numerous, similar shaped (isodont), and small teeth, thus 
the direct influence of the tooth morphology on the forces produced is probably rather small. Also, stylom-
matophoran gastropods show a rather similar radular foraging motion, which can be described as a licking 
motion (for details on motion and radular type see e.g.34,87–93). There are surely differences in motion between 
species, because the arrangement or thickness of radular muscles might differ. Additionally, individual gastropods 
of the same species might also prefer a slightly different feeding motion, but the broad cycles of the pro- and 
retraction are comparable.

We have chosen the following gastropods, since they can be sorted to three distinct body mass classes (see 
Fig. 1 and below): mature Lissachatina fulica (Bowdich, 1822), mature Cepaea nemoralis (Linnaeus, 1758), mature 
Cepaea hortensis (Müller, 1774), mature Helix pomatia Linnaeus, 1758, and mature Arion vulgaris Moquin-
Tandon, 1855. Since no adult stylommatophoran species with a body mass between mature Helix and mature 

Figure 1.  Mollusc species used in this study. (A) Mature Lissachatina fulica. (B) Helix pomatia. (C) Immature 
Lissachatina fulica. (D) Arion vulgaris. (E) Cepaea nemoralis. Scale bar = 4 cm.
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Lissachatina fulica is easily obtainable, we selected immature Lissachatina fulica (one juvenile stage) for experi-
ments. Overall, 24 individuals were used; individuals of L. fulica were received from private animal breeders, the 
other species were collected in Hamburg, Germany, in May 2020. Species identification is based on the relevant 
literature.

The selected gastropods species were assigned to three different body mass classes: (A) large sized animals 
(whole body mass: 75–105 g) = mature L. fulica [N = 5 individuals]; (B) medium sized animals (whole body 
mass: 10–38 g) = H. pomatia and immature L. fulica [N = 10 individuals]; (C) small sized animals (whole body 
mass: 0.7–3.6 g) = C. nemoralis, C. hortensis, A. vulgaris [N = 9 individuals]); and cohorts (mature L. fulica [N = 5 
individuals], immature L. fulica [N = 9 individuals], mature H. pomatia [N = 1 individual], mature C. nemoralis 
[N = 2 individuals], mature C. hortensis [N = 1 individual], mature A. vulgaris [N = 6 individuals]). Before each 
experiment, individuals were weighed (body mass with shell) (see Supplementary Table 1).

Forces exerted by the radula were measured following the protocol  of87. Snails were placed on an acrylic plat-
form with a small hole of 4 mm diameter. The platform was attached to a laboratory jack so that the height could 
be adjusted. Food stripes (sliced to pieces of 3 [width] × 2 [length] × 20 or 40 [height] mm; either carrot (for all 
species except A. vulgaris) or fresh strawberry (for A. vulgaris), depending on the specific preference of the spe-
cies, were glued to a needle, which was mounted onto a force transducer FORT-10 (World Precision Instruments, 
Sarasota, FL, USA) and stuck through the hole so that the snail could feed on it, but without the involvement of 
the foot (Fig. 2). A 1000 g sensor was used for mature L. fulica, for all other individuals a 25 g sensor was used. 
Forces could only be measured in either vertical or horizontal direction, but not in both simultaneously. Thus 
the experimental set-up was remodeled to receive data for both directions (see  also87). The force transducers 
were connected to an amplifier (Biopac System, Inc., CA, USA) and a computer-based data acquisition and 
processing system (AcqKnowledge™, Biopac Systems, Inc., v.3.7.0.0, World Precision Instruments, Sarasota, FL, 

Figure 2.  Experimental set-up (drawn with Adobe Illustrator CS 6 and modified  from87) and characteristic 
radular force measurements. (A) Gastropods were placed on an acrylic platform with a hole of 2 mm diameter. 
The sliced food (e.g. carrot), glued to a needle, was firmly mounted to a force transducer connected with an 
amplifier and computer-based data acquisition and processing system. The food was stuck through the hole, 
so that animals could feed on it without involving their foot. (B) Image of the mouth opening taken through 
the glass platform, scale bar = 1 cm. (C) Characteristic radular force measurement curves, mN, of mature 
Lissachatina fulica, (above) and Arion vulgaris (below); left side: vertical direction (positive peaks = pulling up, 
negative peaks = pushing down), right side: horizontal direction (positive peaks = posterior direction, negative 
peaks = anterior direction). JA = jaw, FL = flour, FO = foot, LI = lip, RA = radula.
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USA). Not all force peaks were analyzed in AcqKnowledge™ due to the large sample size, but about 30 maximal 
and minimal force peaks were evaluated per feeding unit, which is the time needed for eating up the part of the 
carrot or strawberry that was not coated with glue. For the detailed quantity of evaluated force peaks per spe-
cies, individual, and direction see Supplementary Table 1; overall, 4407 force peaks were analyzed (see Fig. 2C 
for characteristic force peaks). Forces were either sorted to direction (negative force values = pushing, positive 
force values = pulling) or the absolute values summarized as Absolute Force (thus, regardless of the direction). 
Force values were corrected for mean body mass with shell to receive Relative Force I (force/mean body mass 
with shell, mN/g). Mean and standard deviations were calculated and all statistical analyses were performed with 
the program JMP Pro 14 (SAS Institute Inc., Cary, NC, 1989–2007) comparing the exerted forces between (a) 
the distinct body mass classes, (b) the cohorts, (c) the directions, (d) the individual animals. A Shapiro–Wilk 
test to test distribution was carried out and since data is non parametric a Kruskal–Wallis test was executed. For 
linear regression of Absolute Force and Relative Force I versus whole body mass, the mean and the values were 
displayed on logarithmic axes with excel 2013 (Microsoft Corporation, Redmond, USA) and trend lines were 
generated. A Radular Force Quotient, AFQ = mean Absolute Force/Bodymass0.67 and a Relative Force Quotient, 
RFQ = mean Relative Force I/Bodymass−0.33, were determined. Additionally, such quotients were also determined 
for Forces sorted to direction/Bodymass−0.33 and for mean Relative Force I sorted to direction/Bodymass−0.33.

Detailed radular motion, while feeding on a flat surface was documented with a Keyence VHX-500 digital 
microscope (KEYENCE, Neu-Isenburg, Germany) by placing the individual on an acrylic platform, providing 
flour paste as food (see  also34,87). The behavior, while foraging on a carrot, was documented with an iPad Pro 
(11 zoll; Apple Inc., Cupertino, USA) equipped with a 12 megapixel wide angle lens with 30 frames per second 
(see Supplementary Videos 1 and 2). Videos were cut and cropped with Adobe Premiere Pro 2020 (Adobe Inc., 
San Jose, USA).

Some animals (see Supplementary Fig. 8) were either killed by brief boiling (shelled animals) or by placing 
them in carbonated water (slugs). They were preserved in 70% EtOH and inventoried in the malacological col-
lection of the Zoological Museum Hamburg (ZMH) of the Centrum für Naturkunde (CeNak); Cepaea nemoralis: 
ZMH 154748/8, Helix pomatia: ZMH 154749/1, Lissachatina fulica: ZMH 154751/2, Cepaea hortensis: ZMH 
154754/1, Arion vulgaris: ZMH 154747/12.

The shells of dead specimens were removed and the soft parts were weighed to receive body mass without 
shell. Forces were corrected for body mass without shell to receive Relative Force II (force/body mass without 
shell, mN/g). To estimate the mass of the entire buccal mass (BRJ), the radula and jaw (RJ), and the buccal mass 
musculature (B) these specimens were dissected which was documented with a Keyence VHX-500 digital micro-
scope (KEYENCE, Neu-Isenburg, Germany). The BRJ was first extracted, freed from surrounding tissue (see 
Supplementary Fig. 7) and weighed in wet condition with an accuracy weighing machine (Sartorius Cubis, MSE, 
Sartorius AG, Göttingen, Germany). Subsequently the radula and jaw (RJ) were separated from the buccal mass 
musculature (B) manually; RJ and B were weighed in wet condition. B and RJ were then dried for one week and 
weighed again to obtain data on dry mass. Forces were corrected for dry B to receive Relative Force III (force/
dry B mass, mN/mg) and for dry RJ to receive Relative Force IV (force/dry RJ mass, mN/mg).

For scanning electron microscope (SEM) images radulae and jaws were rewetted and cleaned with protein-
ase K digesting food particles according to the protocol  of94, followed by a short ultrasonic bath. Structures 
were mounted on SEM stubs, coated with palladium and visualized with a Zeiss LEO 1525 (One Zeiss Drive, 
Thornwood, USA). Radular length, width, and area could be calculated. Forces were corrected for radular area 
to receive Relative Force V (force/radular area, mN/mm2).

Results
Radula and its teeth. All analyzed species possess an isodont radula (Supplementary Figs. 3–6). Lissa-
chatina fulica displays ~ 84 teeth per row (no central tooth, 16 lateral and 26 marginal teeth on each side), Helix 
pomatia ~ 87 teeth per row (one central tooth, 23 lateral and 20 marginal teeth on each side), Arion vulgaris ~ 75 
teeth per row (one central tooth, 16 lateral and 21 marginal teeth on each side), Cepaea nemoralis and C. hort-
ensis ~ 51 teeth per row (one central tooth, 12 lateral and 13 marginal teeth on each side). The jaws of all species 
are thick, curved, chitinous plates with ribs (i.e. odontognathous).

Radular motion. Video footage reveals the radular motion and feeding behaviour (see Supplementary 
Videos 1 and 2). While feeding, the radula is pushed simultaneously in ventral (vertical down) and anterior 
(horizontal anterior) direction, before the organ is finally pulled in dorsal (vertical up) and posterior (horizontal 
posterior) direction and the mouth is closed (see  also87). With the first part of the motion the radula loosens food 
items from the ground and collects particles, which are transported into the mouth opening in the latter phase 
of the feeding action. When feeding on larger ingesta (e.g. a piece of carrot; see Supplementary Video 1), the 
anterior part of the radula and the jaw act in concert as counter bearing squeezing and pulling the ingesta. When 
comparing the feeding behaviours of different individuals we can see that the large sized individuals can com-
pletely enclose the carrot piece with their lips, resulting in a dragging on the carrot in vertical direction, tearing 
large pieces, whereas the small and medium sized individuals are not as comfortable with this due to the small 
dimension of their mouth. These individuals usually nibble on edges of the item, cutting and slicing smaller 
pieces in rather horizontal direction employing their radula like a saw, sometimes involving additionally the foot 
as a clamp (Supplementary Video 2). They also drag the food in ventral direction, but this behaviour is not as 
pronounced and is not as forcefully as in the smaller specimens (Fig. 4). All gastropods were able to consume 
the food items offered, but small sized individuals needed to invest approximately 800–900% and medium sized 
ones 400–500% more time to consume the similar sized food items than large sized gastropods.
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Force measurements. Overall, 4407 individual force peaks were evaluated. For the quantity of evaluated 
peaks per species, individual, and direction see Supplementary Table 1. For the Absolute Forces exerted by each 
body mass class see Fig. 3; for the Absolute Forces exerted by each cohort see Fig. 4 and Supplementary Table 2; 
for the Absolute Forces of individual gastropods see Supplementary Figs. 1, 2, and Supplementary Tables 3, 4.

Force measurements of body mass classes. Comparing the Absolute Forces regardless of the direction 
between the three body mass classes of animals (Fig. 3A) we detect significant differences (p < 0.0001, ChiSquare: 
995.6664, df: 2). Large sized individuals are capable of exerting highest forces, followed by the medium sized, 
and finally small sized individuals (see Table 1). When comparing the Relative Force I regardless of the direc-
tion between the three body mass classes of animals (Fig. 3B) we detect significant differences between groups 
(p < 0.0001, ChiSquare: 409.7297, df: 2). Here, small sized individuals exhibited the highest Relative Force I, fol-
lowed by the medium sized, and finally large sized animals (see Table 1).

Absolute Forces sorted to direction (Fig. 3C) also differed significantly between body mass classes (see Table 1; 
for statistics see Table 2). For horizontal anterior direction, the highest forces were, however, exerted by the 
medium sized class, followed by the large, and finally small sized gastropods. For horizontal posterior direction, 
the highest forces were again exerted by the medium sized class, followed by the small sized gastropods, and 
finally large ones. In the direction vertical down, the large sized gastropods showed highest forces, followed by 

Figure 3.  Absolute Force (blue boxplots) and Relative Force I (red boxplots) for distinct body mass classes 
(large-, medium-, and small-sized gastropods). (A) Absolute Force (regardless of the direction of measurement). 
(B) Relative Force I (regardless of the direction of measurement). (C) Absolute Force sorted to directions) (D) 
Relative Force I sorted to directions. Pink = pushing of radula, grey = pulling of radula.
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the medium, and finally small gastropods. The same is found for vertical up: large gastropods, medium, and 
finally small ones.

When comparing the Relative Force I sorted to direction (Fig. 3D) we again detect significant differences 
between body mass classes (see Table 1; for statistics see Table 2). Here, for horizontal anterior direction, the 
highest Relative Force I was exerted by the small sized gastropods, followed by the medium, and finally large 
ones. For horizontal posterior direction, the highest Relative Force I was again exerted by the small, followed by 

Figure 4.  Absolute Force (blue boxplots) and Relative Force I (red boxplots) for distinct cohorts. (A) Absolute 
Force (regardless of the direction of measurement). (B) Relative Force I (regardless of the direction of 
measurement). (C) Absolute Force sorted to directions. (D) Relative Force I sorted to directions. For values of C 
and D see Supplementary Table 2. Pink = pushing of radula, grey = pulling of radula.
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the medium, and finally large sized class individuals. In the direction vertical down, the small sized gastropods 
showed highest Relative Force I, followed by the large, and finally medium gastropods. For vertical up direction, 
the large gastropods exerted highest Relative Force I, followed by the medium, and finally small ones.

Force measurements of cohorts. When comparing Absolute Forces regardless of the direction between 
cohorts (Fig. 4A) we found significant differences (p < 0.0001, ChiSquare: 1026.4480, df: 5). Highest forces were 
exerted by mature L. fulica, followed by H. pomatia, immature L. fulica, C. nemoralis, A. vulgaris, and finally C. 
hortensis (see Supplementary Table 2). When comparing Relative Force I regardless of the direction between 
cohorts (Fig. 4B) we found significant differences (p < 0.0001, ChiSquare: 499.1690, df: 5). Highest Relative Force 
I was exerted by C. hortensis, followed by C. nemoralis, A. vulgaris, immature L. fulica, H. pomatia, and finally 
mature L. fulica (see Supplementary Table 2).

Table 1.  For body mass classes: absolute force, mean ± SD (mN), obtained during measurements in both 
directions (vertical up, vertical down, horizontal posterior, horizontal anterior), and relative force I, mean ± SD 
(mN/g), with results from Kruskal–Wallis test, and quantity of evaluated radular force measurements (see also 
Fig. 4). SD, standard deviation.

Body mass classes Direction

Absolute force, 
mN

Kruskal–Wallis test

Relative force 
I, mN/g

Kruskal–Wallis test
Quantity of evaluated 
force measurementsMean  ± SD Mean  ± SD

Large sized individuals

All 73.96 62.49 0.84 0.74 1025

Vertical up 147.35 41.35

p < 0.0001, ChiSquare: 
744.5827, df: 3

1.69 0.54

p < 0.0001, ChiSquare: 
750.5548, df: 3

372

Vertical down − 22.77 17.79 0.25 0.21 107

Horizontal posterior 38.82 19.49 0.43 0.20 323

Horizontal anterior − 26.97 2.91 0.30 0.13 223

Medium sized individuals

All 41.44 49.18 2.47 2.94 2581

Vertical up 14.72 10.40

p < 0.0001, ChiSquare: 
1928.4320, df: 3

0.92 0.65

p < 0.0001, ChiSquare: 
1855.5616, df: 3

988

Vertical down − 3.94 2.30 0.24 0.17 440

Horizontal posterior 74.52 49.76 4.28 2.65 536

Horizontal anterior − 82.22 55.10 4.98 3.59 617

Small sized individuals

All 14.46 24.49 6.01 8.40 801

Vertical up 1.48 0.72

p < 0.0001, ChiSquare: 
636.3539, df: 3

0.85 0.51

p < 0.0001, ChiSquare: 
625.8867, df: 3

200

Vertical down − 0.86 0.44 0.50 0.28 210

Horizontal posterior 39.56 35.37 13.63 8.67 211

Horizontal anterior − 15.34 7.87 9.26 9.08 180

Table 2.  For body mass classes and cohorts: results from Kruskal–Wallis test for absolute force and relative 
force I.

Direction p ChiSquare df

Body mass classes

Absolut forces

Horizontal anterior

< 0.0001 3569.9093 11
Horizontal posterior

Vertical down

Vertical up

Relative force I

Horizontal anterior

< 0.0001 3455.7572 11
Horizontal posterior

Vertical down

Vertical up

Cohorts

Absolut forces

Horizontal anterior

< 0.0001 3674.4431 23
Horizontal posterior

Vertical down

Vertical up

Relative force I

Horizontal anterior

< 0.0001 3619.3924 23
Horizontal posterior

Vertical down

Vertical up
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Comparing the Absolute Forces sorted to direction between cohorts we found significant differences (Fig. 4B; 
for values see Supplementary Table 2; for statistics see Table 2). For horizontal anterior direction, the highest 
forces were exerted by H. pomatia, followed by the immature L. fulica, mature L. fulica, A. vulgaris, C. hortensis, 
and finally C. nemoralis. For horizontal posterior direction, the highest forces were exerted by H. pomatia, fol-
lowed by C. nemoralis, the immature L. fulica, mature L. fulica, A. vulgaris, and finally C. hortensis. For vertical 
down direction, the highest forces were exerted by mature L. fulica, followed by H. pomatia, the immature L. 
fulica, A. vulgaris, C. nemoralis, and finally C. hortensis. For vertical up direction, the highest forces were exerted 
by mature L. fulica, followed by the immature L. fulica, H. pomatia, C. nemoralis, A. vulgaris, and finally C. 
hortensis.

When comparing the Relative Force I sorted to direction between cohorts we found significant differences 
(Fig. 4C; for values see Supplementary Table 2; for statistics see Table 2). For horizontal anterior, the highest Rela-
tive Force I was exerted by C. hortensis, followed by A. vulgaris, the immature L. fulica, C. nemoralis, H. pomatia, 
and finally mature L. fulica. For horizontal posterior direction, the highest Relative Force I was exerted by C. 
nemoralis, followed by C. hortensis, A. vulgaris, the immature L. fulica, H. pomatia, and finally mature L. fulica. 
For vertical down direction, the highest Relative Force I was exerted by C. hortensis, followed by A. vulgaris, the 
immature L. fulica, mature L. fulica, C. nemoralis, and finally H. pomatia. For vertical up direction, the highest 
Relative Force I was exerted by mature L. fulica, followed by C. hortensis, the immature L. fulica, A. vulgaris, C. 
nemoralis, and finally H. pomatia.

Masses of body, radula, buccal mass musculature, and radular sizes. Highest whole body mass 
(see Supplementary Table 1) was measured for L. fulica mature number (no.) 1, followed by H. pomatia, L. fulica 
immature no. 9, C. nemoralis no. 1, A. vulgaris no. 2, 4, 5, C. nemoralis no. 2, A. vulgaris no. 1, and finally C. 
hortensis.

Overall, we found that the body mass (with and without shell) relates in proportion to the masses of the whole 
buccal mass (wet; BRJ), the radular musculature (buccal mass musculature, wet and dry; B), and the radula and 
jaw (wet and dry; RJ). When individuals were heavier, they usually possessed higher muscle mass, a heavier 
radula and jaw (see Supplementary Fig. 8 and Supplementary Table 6). Exceptions were: L. fulica immature no. 
9 (18 g body mass and 205.01 mg whole buccal mass) and H. pomatia (38 g body mass and 163.30 mg whole 
buccal mass), C. nemoralis no. 1 (3.60 g body mass and 27.20 mg whole buccal mass), and A. vulgaris no. 2 (3.50 
g body mass and 56.66 mg whole buccal mass). Comparing mature (mature 1: 78.00 g body mass and 286.80 mg 
BRJ) and immature L. fulica (immature no. 9: 18.00 g body mass and 205.01 mg BRJ) we found that the body 
mass increases for the factor ~ 4 and BRJ increases for the factor 1.4.

We found that smaller gastropods are capable of exerting higher forces per whole buccal mass, radular mus-
cle, and radula and jaw mass, dry as well as wet, (see Supplementary Fig. 9 and Supplementary Table 6). Cepaea 
hortensis exerted the highest force per radular musculature mass, followed by C. nemoralis no. 1, A. vulgaris no. 4 
and 5, C. nemoralis no. 2, H. pomatia, L. fulica mature no. 1, L. fulica immature no. 9, and finally A. vulgaris no. 1 
and 2. The same sequence was also found for force per body mass without shell. With the exception of A. vulgaris 
no. 4 and 5, exerting the highest forces per radula and jaw mass, we detected the same order for this parameter.

The radular length and width (see Supplementary Fig. 8 and Supplementary Table 5) do not consistently cor-
relate with body mass, the highest radular width was measured for L. fulica mature no. 1, followed by A. vulgaris 
no. 5, L. fulica immature no. 9, H. pomatia, A. vulgaris no. 4, A. vulgaris no. 1, A. vulgaris no. 2, C. nemoralis no. 
2, C. nemoralis no. 1, and finally C. hortensis. Both gastropods with the largest width possessed shorter radulae 
than all other specimens. L. fulica immature no. 9 possessed the largest radular area, followed by H. pomatia, 
L. fulica mature no. 1, A. vulgaris no. 4, A. vulgaris no. 2, A. vulgaris no. 5, C. nemoralis no. 1, A. vulgaris no. 1, 
C. nemoralis no. 2, and finally C. hortensis. The radular area again did not consistently correlate with the whole 
body mass.

Force quotients. We found that the stylommatophoran species perfectly follow the predictions for scaling 
of force and body mass as the mean Absolute radular Force (regardless of the direction) scales to body  mass0.67 
with the quotient 4.25 and the mean Relative Force I (regardless of the direction) scales to body  mass−0.33 with the 
quotient 4.35 (Fig. 5A,B). When the variance of the Absolute Force (regardless of the direction) is scaled to body 
 mass0.67 and the variance of the Relative Force I (regardless of the direction) is scaled to body  mass−0.33 we receive 
quotients of 3 (Fig. 5C,D). When the forces are sorted to directions the picture is rather puzzling: for horizontal 
anterior a quotient of 27 (Fig. 6A,B), for horizontal posterior a quotient of 31–32 (Fig. 6C,D), for vertical down 
a quotient of 2.4 (Fig. 6E,F), and for vertical up a quotient of 0.54 (Fig. 6G,H) is calculated.

Discussion
Force output is often referred to as proportional to muscle  mass0.67, the muscle cross-sectional  area95,96, or 
to body  mass0.6797 whereas the forces, corrected for body mass (force/mass), are referred to be proportional 
to body  mass−0.3397. The stylommatophoran species examined here, follow the predictions for scaling of force 
and body mass for mean values. Following previous  studies22,98 we here experimentally determined a Radular 
Force Quotient AFQ, AFQ = mean Absolute Force/Bodymass0.67, of 4.25 and a Relative Force Quotient RFQ, 
RFQ = mean Relative Force I/Bodymass−0.33 of 4.35 which can be further used for predictions of forces in Gas-
tropoda. However, when the forces are sorted to directions the picture becomes puzzling, indicating the need 
for further studies.

The here measured Absolute feeding Forces for Helix pomatia are in a similar range as to those documented 
 by87 for Cornu aspersum, both gastropod groups have comparable body mass. We detected that gastropods with 
a higher body mass and a larger body size were capable of exerting higher radular forces, which is not surprising. 
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However, the relationship between forces generated by the feeding organ and body size is well documented for 
vertebrates, but not for molluscs. When forces are corrected for body size or mass, ecological adaptations related 
with this parameter usually became more pronounced (e.g.4,7,16,99,100; for hypotheses about body size related evolu-
tion of bite force, see  also101,102). When determining the radular force per body mass (termed Relative Force I), we 
see that smaller gastropods were capable of exerting the highest forces, followed by the medium, and finally large 
ones, similar to e.g. carnivorans in placental  mammals7. This is also not surprising, because of different scaling 
of body mass and cross-sectional area of  muscles103,104. Usually, the sampled gastropod specimens exhibiting a 
higher body mass also possess a proportionally higher mass of buccal mass (correlation between buccal mass 
size and gastropod body size was also previously described  by51). However, the immature and adult Lissachatina 
fulica, exhibiting strong differences in body mass and size, but having almost similar buccal mass sizes and 
masses, are an exception to this rule. In most experiments mature L. fulica exerted higher radular forces than 
the immature gastropods, but some measurements (outliers) revealed that immature L. fulica are also capable 
of generating the same feeding forces as the mature ones. This could be an indication that the ingesta type does 
not change during ontogeny; however, this aspect awaits further investigation. But our analyses of Relative Force 
I (Fig. 4) reveal distinct radular force patterns for cohorts, both Cepaea species have a wide range of exerted 
forces, followed by Arion, Lissachatina immature, and finally, with the smallest range, Lissachatina mature. This 
could be an indication that species have species-specific radular forces. Cepaea potentially feeds naturally on a 
broader food spectrum whereas Lissachatina is more restricted, but this also awaits further investigations. Arion 
was fed with fresh strawberries, since it did not want to feed on carrots. This could have influenced the forces 
generated; potentially Arion is capable of exerting higher forces. It should be additionally stated that here the 
whole body masses were related to the radular forces generated. But, as we experimented with four snail species 
and one slug species (Arion vulgaris), whole body masses are not directly comparable, because the mass of the 
shell could cause artefacts. In future studies the body mass without shell should be determined persistently to 
detect a potentially more accurate relationship or even correlation.

In past studies, it has been shown that the forces generated usually correlate with the muscle mass, mus-
cle size, or muscle diameter (for vertebrates: e.g.8,16,105,106; for invertebrates:107). This is congruent to the here 
observed patterns in gastropods. However, for precise interpretation of the relationship between buccal mass 
size and the mass of the radular muscles (buccal mass musculature) knowledge about the functional role of 
each feeding muscle must be available, which is not the case for the taxa studied here. There are some detailed 
studies analyzing the in vivo buccal mass movement and buccal mass muscle function in Aplysia89,90,92,108. But 
since Aplysia belongs to the Opisthobranchia and is not closely related to the taxa involved in this experiment 

Figure 5.  Linear regression, displayed on logarithmic axes, with trend lines (black = real trend line; 
red = calculated trend line for the factors 4.25 and 4.35), regardless of the direction. (A) Mean Absolute Force 
versus mean whole body mass. A radular force quotient, AFQ = mean Absolute Force/Bodymass0.67, of 4.25 was 
determined. (B) Mean Relative Force I versus mean whole body mass. A Relative Force Quotient, RFQ = mean 
Relative Force I/Bodymass−0.33, of 4.35 was determined. (C) Variance of Absolute Force versus mean whole body 
mass. (D) Variance of Relative Force I versus mean whole body mass. For C and D a force quotient of 3.00 was 
determined.
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Figure 6.  Linear regression, displayed on logarithmic axes, with trend lines (black = real trend line; 
red = calculated trend line for the factors 4.25 and 4.35), for each direction (A–B: horizontal anterior, C–D: 
horizontal posterior, E–F: vertical down, G–H: vertical up). Left side (A, C, E, G). Variance of Absolute Force 
versus mean whole body mass. Right side (B, D, F, H). Variance of Relative Force I versus mean whole body 
mass.
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the function of the buccal mass muscles for these stylommatophoran taxa cannot be assigned yet. However, to 
deeply understand the relationship between measured radular forces involved in specific radular motions, the 
function of each muscle, their work in concert, as well as the muscle and fiber size, length, or diameter need to 
be investigated. As there are many different parameters that relate with feeding force (for vertebrates: e.g. the 
skull geometry and size:10,17,99,109–111; or muscular development:105), it is very difficult to produce reliable models 
for molluscs due to the lack of solid experimental data. Additionally, studies on invertebrates reveal that muscle 
stress varies considerably depending on the  muscle112–114. This could also be the case for molluscs as the forces 
exerted per radular muscular mass differ extremely between the analyzed stylommatophoran individuals (see 
Supplementary Fig. 9 and Supplementary Table 6). This again shows that pure anatomy-based studies on the 
muscle systems of invertebrates do not necessarily provide data on physiology (see  also24). Additionally, the area 
of the radula used for foraging could influence results, but the working area could so far only be determined by 
involving sandpapers of different  roughness115. Since sandpaper is a rather flat surface in comparison to a slice 
of carrot we cannot directly translate our past findings to the experiments here.

Our results clearly indicate that larger and heavier animals exerted higher forces in the vertical directions, 
whereas medium and small individuals exerted higher forces in horizontal directions. This is additionally sup-
ported by the analyses of the video footage showing that larger animals rather pull with radula and jaw, whereas 
smaller individuals use their radular often like a saw in anterior–posterior direction when approaching the food 
item (see Supplementary Video 1 and 2). This shift in feeding behavior seems to depend on the ingesta size in 
relation to the mouth opening size. Smaller and medium sized gastropods—even though capable of embracing 
the whole item with the lip—seem to prefer this alternative feeding pattern. An ingesta-depending shift in feeding 
pattern, i.e. dynamics of swallowing, had been documented for other gastropod taxa when altering parameters 
of the  ingesta108, e.g. its  hardness116, its load and  width117, or its  size118–120. Additionally, gastropods of different 
sizes have been found to feed on different ingesta types, possibly correlating with ontogenetic size changes of 
the  mouthparts121.

As already stated above, heavier gastropods were usually capable of exerting higher radular forces than smaller 
ones (except for immature and adult L. fulica). This indicates that larger gastropods might forage on a broader 
spectrum of ingesta, as it had been previously described for  turtles109. However, the smaller individuals were 
able to exert higher forces per body mass and additionally show a distinct radular motion pattern resulting in a 
distinct feeding pattern. All experiments resulted in the consumption of the ingesta offered, but smaller gastro-
pods invested more time. This effect had also been observed for  lizards122 and should be further investigated for 
Mollusca. Thus, we can conclude that in studies of feeding forces of gastropods with a similar radular type, teeth, 
and radular motion, adaptations to ingesta might only been detected by studying feeding efficiency and time 
invested. We hope that in the future more biomechanical, physiological and functional morphological studies 
will approach the topic of trophic specialization in molluscs via feeding force experiments on species possessing 
distinct radular morphologies and feeding on more types of ingesta.

Data availability
The datasets generated and analysed during the current study (the force measurements) are available from the 
corresponding author on reasonable request; all other datasets are included in this published article (and its 
Supplementary Information files).
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