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Compressive spectral image 
fusion via a single aperture high 
throughput imaging system
Hoover Rueda‑Chacon*, Fernando Rojas & Henry Arguello*

Spectral image fusion techniques combine the detailed spatial information of a multispectral (MS) 
image and the rich spectral information of a hyperspectral (HS) image into a high‑spatial and high‑
spectral resolution image. Due to the data deluge entailed by such images, new imaging modalities 
have exploited their intrinsic correlations in such a way that, a computational algorithm can fuse 
them from few multiplexed linear projections. The latter has been coined compressive spectral image 
fusion. State‑of‑the‑art research work have focused mainly on the algorithmic part, simulating 
instrumentation characteristics and assuming independently registered sensors to conduct 
compressed MS and HS imaging. In this manuscript, we report on the construction of a unified 
computational imaging framework that includes a proof‑of‑concept optical testbed to simultaneously 
acquire MS and HS compressed projections, and an alternating direction method of multipliers 
algorithm to reconstruct high‑spatial and high‑spectral resolution images from the fused compressed 
measurements. The testbed employs a digital micro‑mirror device (DMD) to encode and split the input 
light towards two compressive imaging arms, which collect MS and HS measurements, respectively. 
This strategy entails full light throughput sensing since no light is thrown away by the coding process. 
Further, different resolutions can be dynamically tested by binning the DMD and sensors pixels. Real 
spectral responses and optical characteristics of the employed equipment are obtained through a 
per‑pixel point spread function calibration approach to enable accurate compressed image fusion 
performance. The proposed framework is demonstrated through real experiments within the visible 
spectral range using as few as 5% of the data.

Hyperspectral imaging technology has been introduced in the imaging market mainly within remote sensing 
devices, due to its capabilities to detect and classify minerals, vegetation, man-made materials, and  others1–3. This 
technology has been also used in medicine to conduct guided surgery and anomaly  detection4–6. The design of 
the electro-optical sensor systems used in hyperspectral imaging often has to deal with the fundamental trade-
off between spatial and spectral resolution, as well as the light throughput required to attain good signal-to-
noise-ratio (SNR) in the acquired  image7,8. More specifically, conventional hyperspectral image sensors employ 
an aperture/slit which controls the amount of light allowed into the imaging system, and a collection of optical 
elements such as mirrors and a dispersive element to decompose the light into multiple wavelengths. Smaller 
slits yield to better spectral resolution, but poorer light throughput and vice versa. Further, the light throughput 
of the system is affected by the employed optical elements, and the intensity manipulation inside the imager 
determines the corresponding resolution. For instance, panchromatic systems, which do not employ dispersive 
elements, and thus, integrate light intensity along several hundreds of nanometer bandwidths, offer far better 
SNR and spatial resolution than multispectral (MS, tens of bands) or hyperspectral (HS, hundreds of bands) 
systems. Conversely, HS systems offer richer spectral information than MS and panchromatic systems, at the 
cost of lower SNR in the sensor output. In order to have high spatial and spectral resolution, remote sensing 
platforms incorporate multiple sensors with concurrent capabilities so as to capture hyperspectral imagery 
along with panchromatic or multispectral imagery of higher spatial  resolution7, which are then post-processed 
to attain the best characteristics of both worlds through image fusion  techniques9. In particular, the fusion of 
HS and MS images has been previously  demonstrated10–12, where fused data exhibits the spectral characteristics 
of the observed HS image (i.e., spectral sensitivity and photon efficiency) at the spatial resolution and sampling 
of the MS image (i.e., spatial detail and texture structure), which contributes to the accurate identification and 
classification of an area at a fine spatial resolution. Nonetheless, conventional spectral imaging devices have 
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the drawback of requiring to scan a number of zones that grows linearly in proportion to the desired spatial or 
spectral  resolution13,14.

Due to the data deluge entailed by spectral images, new imaging modalities have been proposed to exploit 
their intrinsic correlations to sample and compress (mix or multiplex) them, in such a way, that a computational 
algorithm can recover (unmix or demultiplex) such data from few linear projections, which makes them attractive 
for many practical applications. The latter has been called compressive spectral imaging (CSI)  framework15–18. 
In particular, CSI multiplexed projections are obtained by encoding, via spatial light modulators (SLMs), shear-
ing, via dispersive elements, and integrating the spectral information along the spatial extent of a monochrome 
image  sensor15–20 or a single pixel  detector21,22. Multiplexed data are then processed by a computational algorithm 
that solves an inverse problem to estimate the full spectral image relying on sparsity, low-rank or deep learned 
priors. A vast amount of works have been proposed in CSI, most of them aiming to find and implement the 
best optical encoding and processing protocols that lead to good multiplexed measurements, and to relax the 
ill-posedness of the inverse problem, so as to improve the reconstruction image quality. Some of these works 
have proposed the usage of multiple-snapshots16–18, varying the coding pattern used in the SLM, or the usage of 
a secondary  panchromatic23,24 or  color25 sensor to guide the image reconstruction, either through a dictionary-
training step or as prior-information for a maximum-a-posteriori algorithm. In contrast, given that information 
from a secondary panchromatic or color sensor falls short in terms of spectral richness, more recent works have 
proposed to conduct spectral image fusion from MS and HS compressed  measurements26–29. In general, fusion 
approaches have provided better results, in terms of image quality and resolution enhancement, but they have 
focused mainly on the algorithmic part, simulating the behavior of optical instrumentation. Therefore, none of 
them, to the authors’ knowledge, have demonstrated the viability of compressed spectral image fusion through 
a real optical prototype.

Motivated by this, in this manuscript we propose a unified computational imaging framework that includes 
the design and implementation of a proof-of-concept optical architecture (or testbed) to demonstrate the viabil-
ity of compressive spectral image fusion, along with the formulation of a convex algorithm to solve the inverse 
problem that fuses the characteristics of the multispectral and hyperspectral compressed projections to estimate 
a spectral image with high spatial and high spectral resolution. A sketch of the compressive spectral image 
fusion (CSIF) scheme is shown in Fig. 1a. In particular, compressed snapshots are acquired via a compressive 
multispectral imager (CMSI) and a compressive hyperspectral imager (CHSI), and are then fused and used to 
estimate the high resolution data cube with the spatial details provided by the MS snapshot and the spectral 
details provided by the HS snapshot. The testbed relies on a digital micro-mirror device (DMD) to encode and 
split the incoming light intensity into two independent imaging arms, one for MS compressed projections and 
the other for HS compressed projections. We take advantage of the reflecting capabilities of the DMD to attain 
full light throughput sensing, using a single common aperture, since the coded light goes towards one of the arms 
and its coded complement goes through the second arm. To combat the optical path length difference (OPLD) 
generated by the micromirrors flipping angles, and thus to obtain sharp images in both imaging arms, we rely 
on the Scheimpflug compensation. Further, we exploit the dynamically changing capability of the DMD to attain 
multiple snapshots with different coding patterns. The testbed construction includes the characterization of the 
real spectral responses and optical characteristics of the employed equipment, which are calibrated to guarantee 
accurate image fusion. The fusion+reconstruction algorithm is built following the alternating direction method 
of multipliers (ADMM) methodology to solve a convex optimization problem that imposes sparsity priors and 
exploits the Sherman–Morrison–Woodbury inversion lemma to speed up the estimation process. In summary, 

Figure 1.  Proposed compressive spectral image fusion (CSIF) system. (a) Snapshots are acquired with a 
compressive MS imager (CMSI) and a compressive HS imager (CHSI), which are then fused and reconstructed 
via a computational algorithm. (b) Sketch of the proposed design, and (c) Proposed testbed setup. The front lens 
images the target scene onto the DMD, which encodes and reflects the scene towards ±24◦ (on/off), where the 
MS and HS imaging arms are located. Both imaging arms employ 4F relay lenses to transmit the encoded light 
to the sensors, either through the prism, or through a grating.
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the main contributions of this paper are two-fold: First, the design and construction of the optical testbed imaging 
system, with full-throughput sensing capability; and second, the formulation of a convex optimization problem 
to fuse and reconstruct the spectral cube from the compressed measurements attained with the testbed.

Results
Compressive spectral image fusion: acquisition scheme. State-of-the-art works have proposed the 
fusion of HS and MS images from compressed  measurements26–29. These works assume that the light intensity 
from the target scene splits into two imaging systems, which independently encode the scene with a spatial light 
modulator (SLM) or digital micromirror device (DMD), and then disperse the light via a prism or diffraction 
grating to attain the compressive MS and HS measurements. Further, these systems assume a perfect match 
between the DMD pixel size and those of the sensors. Thus, since a MS sensor has high spatial resolution, the 
DMD used in the MS system also exhibits such resolution, whereas the HS sensor exhibits fewer pixels but of 
greater size. Having two independent systems, attaining the MS and HS compressed measurements, implies a 
critical loss in terms of light throughput, since the coding patterns would prevent a certain portion of the incom-
ing light from reaching the sensors. Thus, since two independent encoding devices are assumed, double light 
loss will occur.

In contrast, the proposed imaging system, shown in Fig. 1b, overcomes the throughput issue by exploiting the 
reflecting capabilities of the DMD, such that when the mirrors are in the ‘on’ state, the encoded light goes through 
one of the arms, and its complement (light from the mirrors that are in the ‘off ’ state), which is also encoded, 
goes through the second arm, thus attaining full light throughput (50% in each sensor). In particular, the DMD 
is placed in the image plane of the front lens, which images the target scene. A coding pattern is loaded in the 
DMD, with half the entries letting the light to pass, and the other half blocking it. Remark that entries letting the 
light to pass will reflect towards the + 24◦ angle, whereas the light being blocked will reflect towards the −24◦ 
angle. Therefore, we place the MS imaging arm at the +24◦ path and the HS imaging arm at the −24◦ path. The 
MS imaging arm is composed of a relay lens, a prism and a high-resolution image sensor (MS sensor). Similarly, 
the HS imaging arm comprises a relay lens, a diffraction grating and a low-resolution image sensor (HS sensor). 
Remark that the differences between both imaging arms lie in that the grating entails greater dispersion than 
the prism, and the MS sensor exhibits better spatial resolution than the HS sensor.

The proposed imaging system presents some interesting challenges. First, if the resolution of the DMD is 
set to match the high spatial resolution of the MS sensor, the HS imaging arm will work with a down-sampled 
coding pattern; on the contrary, if the DMD is set to match the low spatial resolution of the HS sensor, the MS 
imaging arm will work with a replicated coding pattern, thus losing spatial details. The second challenge relates 
to the alignment of both imaging arms with the DMD, so that, sharp images are integrated in both sensors. This 
challenge arises because the rotation axis of each micro-mirror works along the surface diagonal and the ‘on’ 
and ‘off ’ tilting angles induce an optical path length difference which, in turn, causes non-uniform focus and 
distortion in the image sensors. The first challenge can be solved by either multi-frame sensing, exploiting the 
rapid DMD refresh frequency rate and synchronizing the cameras so that in one frame the DMD shows a coding 
pattern that matches the MS sensor resolution and the consecutive coding pattern is binned to match the HS 
sensor resolution, or by correctly modeling the down-sampled pattern in the forward (Eqs. (1)–(8)) and inverse 
model (Eqs. (9)–(14)). The second challenge can be solved by first rotating the DMD by 45◦ with respect to the 
axis perpendicular to the plane of the micro-mirrors, such that the rotation axis of each mirror coincides with 
the vertical, hence resulting in a light path along the horizontal plane; then, to solve the optical path length dif-
ference, the Scheimpflug principle must be considered to capture all-in-focus images in both image  sensors30–32.

Scheimpflug compensation. One of the main challenges of the proposed CSIF system is the correct alignment 
of both imaging arms with the ‘on’ and ‘off ’ reflecting angles of the DMD. First, as mentioned above, each micro-
mirror on the DMD rotates, by default, with respect to its surface diagonal. Then, if the vertical axis of the DMD 
is placed normal to the horizontal plane, the micro-mirrors will reflect the incident light out of the horizontal 
plane along 45◦33. Therefore, to facilitate the optical alignment, the DMD is rotated 45◦ with respect to its per-
pendicular axis to align the rotation axis of the micro-mirrors with the vertical axis. This in turn, will translate 
the light propagation workplace from the 45◦ plane to the horizontal axis. Second, since the micro-mirrors tilt 
to ±12◦ by  default33, light perpendicularly impinging the DMD reflects towards ±24◦ , respectively, following the 
principle of total reflection, as illustrated in Fig. 2.

Analyzing the MS imaging arm in Fig. 2, note that if the image sensor is placed normal to the +24◦ opti-
cal axis, an image with a non-uniform focus and magnification will be attained due to the difference in path 
lengths of the rays reflected by the DMD. Section S1 of the supplementary material provides more technical 
details related to the optical path length difference. This occurs because the micro-mirrors exhibit an inclina-
tion of 12◦ , and light from the target scene hits them non-uniformly. To compensate for the tilting angle of the 
micro-mirrors, the image sensor must be tilted contrarily by an angle ϕ , which has been coined in the literature 
as the Scheimpflug  angle30–32. The principle behind Scheimpflug compensation is that the plane of focus is given 
by the projection of the line that intersects with the DMD normal plane and the lens plane, as detailed in the 
left half of Fig. 2. In particular, for the MS imaging arm, and given that a 4F relay lens is used, the angle can be 
calculated as ϕMS = arctan

(

(u′/u) tan θ
)

 , where u and u′ are the distances from the DMD to the lens, and from 
the lens to the sensor,  respectively31. Note that since we use an Amici  prism16, the light dispersion goes straight 
to the sensor. Regarding the HS imaging arm, the 4F-relay is also considered to behave as a single lens, with a 
focal distance v. However, since a diffraction grating is used, light is dispersed onto different orders following 
its blaze angle, β . Therefore, the Scheimpflug angle is calculated with respect to the normal plane of the first 
diffraction order, which is the one used in this work. That is, the Scheimpflug angle for the HS arm is given by 
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ϕHS = arctan
(

(v′/v) tan(θ + β)
)

 , as detailed in the right half of Fig. 2. Examples of the images captured in both 
image sensors, following the conventional alignment (without Scheimpflug) and after Scheimpflug compensa-
tion, are shown on both sides of Fig. 2. Note that in the conventional alignment, the attained images are out of 
focus (within the yellow triangles) and distorted (along the x–y axis), but they are corrected after Scheimpflug 
compensation.

Experimental testbed. Proof‑of‑concept implementation and alignment. To test the proposed imaging 
framework, we built a proof-of-concept optical prototype, shown in Fig. 1c and detailed in Section S2 of the 
supplementary material, which employs an objective lens (Tamron, 8mm 1.1”) paired with a relay lens (Thor-
labs, MAP10100100-A) to image the target scene onto a DMD (Texas Instruments, DLI4130VIS-7XGA) with a 
micro-mirror size of 13.68µm , that encodes the incoming light. Both imaging arms use 4F-relay systems built 
using two lenses (Thorlabs, AC254-100-A-ML) to transmit the encoded light through the dispersive elements 
placed at the Fourier plane. The MS imaging arm employs a dual Amici prism (Shanghai Optics, custom made) 
with central wavelength 550 nm, whereas the HS arm uses a transmission diffraction grating (Thorlabs, GT50-
03, 300 grooves/mm, 17.5◦ groove angle). Regarding the image sensors, both arms employ equal monochrome 
sensors (AVT, Stingray F-145B, working at 14 bits) with 1392× 1040 pixels and a pixel size of 6.45× 6.45µm . 
To emulate a low-resolution sensor, 2× 2 pixel binning was performed in the sensor sitting at the end of the HS 
arm, thus attaining a 696× 520 image sensor with a pixel size of 12.9× 12.9µm.

To correctly align the two imaging arms with the DMD ‘on’ and ‘off ’ reflection angles, a monochromatic 
collimated light beam, obtained by attaching an achromatic Galilean beam expander (Thorlabs, GBE05-A) to a 
tunable Xenon Arc Light source (Oriel Instruments TLS-300XR, with a 200 µm slit) was shined perpendicularly 
to the DMD plane, without the objective lens in place. Recall that to facilitate the optical alignment, the DMD 
was rotated by 45◦ with respect to the optical axis. Knowing that the normal of the DMD micro-mirrors tilts 
±12◦ , the relay lenses were placed at ±24◦ , respectively. Then, the image sensors were also rotated by 45◦ , to 
match the rotation of the DMD, and were placed behind the relay lenses to obtain a sharp image of the DMD 
micro-mirrors in both arms. These sharp images roughly satisfy a 1:4 correspondence between the DMD and 
the MS sensor pixels, and a 1:2 correspondence between the DMD and the HS sensor pixels. Afterwards, the 
prism was placed in the MS arm, also rotated at 45◦ , and the MS sensor was slightly shifted to account for the 
focal length shift of the prism, thus guaranteeing the match between the DMD and sensor pixels. Similarly, on 
the HS arm, the grating was rotated and placed in between the 4F relay system, and the second relay lens and the 
HS sensor were tilted-and-shifted accordingly, to match the first diffraction order of the grating. Remark that a 
monochromatic beam, ranging from 480 to 650 nm, was used at all times during the alignment to guarantee the 
dispersion of both dispersive elements along the horizontal axis.

At this point, the images in each sensor resemble those termed “Conventional Alignment” in Fig. 2, when 
a random pattern is loaded in the DMD and illuminated at 650 nm. By careful analysis, we can observe that 
these images exhibit blurred zones along the edges, highlighted with yellow triangles, and a slight distortion 
(inclination) along the x − y axis, due to the optical path difference caused by the micro-mirrors reflection angle. 
To alleviate the non-uniform focus and distortion, both image sensors were rotated by their corresponding 
Scheimpflug angles, ϕMS and ϕHS , along the horizontal (propagation) axis, such that the images in each sensor 

Figure 2.  Scheimpflug alignment. Given the ±12◦ inclination of the DMD micro-mirrors, light perpendicularly 
impinging the DMD reflects at ±24◦ . This causes non-uniform focus (within the yellow triangles, in the 
conventional alignment insets) and distortion of the image in the sensor (inclination), due to the different 
optical path lengths. To correct this, the sensors must be rotated along the horizontal axis by the Scheimpflug 
angles ϕMS and ϕHS , respectively. The latter depends on the angle ( β ) of the first diffraction order. Note that the 
images in both sensors are complementary to each other.
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resemble those termed “Scheimpflug Alignment” in Fig. 2. In particular for the MS arm, the 4F relay lens has an 
effective focal length of 100 mm; thus, u = 100 mm and u′ = 100+ fp (mm), where fp is the focal length entailed 
by the prism. Note that although the prism does not have an effective focal length, the prism itself yields a slight 
focal shift, fp ≈ 2.5 mm (calculated experimentally). Therefore, ϕMS ≈ 22.97◦ . Similarly, for the HS arm, the 4F 
relay employs two lenses with effective focal length of 100 mm; thus, v = 100 mm and v′ = 100 mm. Since the 
first diffraction order of the grating occurs at exactly 17.5◦ , ϕHS ≈ 41.5◦ . After both imaging arms are aligned, 
the front lens is placed instead of the collimated beam, as shown in Fig. 1c, to conduct image formation of the 
target scene onto the DMD.

Testbed calibration. To calibrate the system impulse response, each sensor pixel was characterized to reduce 
the imperfections entailed by optical aberrations, radiance signal strength, DMD filtering, and pixel mismatch 
between the sensor and the DMD. To this end, and given the non-ideal responses of the employed dispersive 
elements, the higher-order propagation  modeling34 was used to account for a better approximation of the light 
propagation through the proposed system. In particular, a set of coded apertures was first designed satisfying 
that, (1) all pixels in the active area of the DMD must be active at least and only once, (2) no multiplexing occurs 
in the sensor, (3) the number of patterns is minimized. Note that the third constraint is critical, since the trivial 
but worst-case scenario uses the same number of patterns as pixels, each one with a single active pixel. For our 
system, given the high dispersion caused by the diffraction grating of the HS arm, as few as 24 patterns, of size 
256× 256 , are required to satisfy the three restrictions above. These 24 patterns are cyclic horizontal and vertical 
permutations of a pattern with equally-spaced ‘on’ pixels, similar to a checker pattern, but with more ‘off ’ space 
in between, so as to avoid spectral multiplexing in the sensor due to the dispersion. An example of one of these 
patterns can be appreciated in the leftmost insets of Fig. 3a and b.

These patterns were loaded into the DMD, one at a time, while the system imaged a white calibration target 
illuminated with monochromatic light from the tunable light source varying the wavelength from 480 to 650 
nm, in 0.5 nm steps. Ten frames were acquired and averaged at each wavelength to reduce the impact of shot 
noise. Further, we calibrated for temperature, readout noise, and death pixels, by placing a blocking-cap to the 
front-lens, turning off the light source and measuring a black reference image which was then subtracted from 
the calibration cubes. Given the 1:4 and 1:2 pixel correspondences between the DMD and the MS and HS sen-
sors, respectively, the resulting calibration cubes exhibit 1024× 1024 spatial pixels and 341 wavelengths (from 
480 to 650, in half nm steps) for the MS sensor and 512× 512× 341 for the HS sensor.

The calibration cubes were used to estimate the dispersion curves of the prism and grating by binarizing the 
cross-mark, placed on top of the patterns, for each of the 341 wavelengths, and then measuring their centroid 
(x,y) location, as shown in Fig. 3a and b. The shifting x-coordinate was then plotted against wavelength, for each 
dispersive element, and the resultant curves are shown in Fig. 3c. Note that the total pixel shifts between the 480 
nm and the 650 nm wavelengths are approximately 207µm and 4954µm for the prism and grating, respectively, 
which translates to 32 pixels of the MS sensor, and 768 pixels of the HS sensor. Further, Fig. 3c shows that the 
prism exhibits a non-linear behavior (left y-axis), whereas the grating entails a linear dispersion (right y-axis). 
To have a 1:1 pixel correspondence between the DMD and the sensors, the calibration cubes were down-sampled 
four times to obtain cubes of size 256× 256× 8 for the MS arm and 128× 128× 192 for the HS arm. Note that 
with this down-sampling, the bandwidth of each MS band is roughly ∼ 21 nm, whereas that of the HS bands is 
approximately ∼ 0.89 nm. Remark the huge spectral resolution difference between both spectral sensors.

Finally, the distribution of light hitting each sensor pixel was approximated to the real phenomena to guar-
antee a good image fusion  quality34. For this purpose, the light distribution from each spectral band impinging 
onto the MS and HS sensors was calculated. For the MS arm, each multispectral band impinges up to 3 sensor 
pixels, with weights (wM)

rM
kM

 , for rM = 0, 1, 2 and kM = 0, 1, . . . , 7 , as depicted in Fig. 3a. For the HS arm, each 
hyperspectral band spreads along 9 sensor pixels with weights (wH )

rH
kH

 , for rH = 0, 1, . . . , 8 and kH = 0, 1, . . . , 191 , 
as depicted in Fig. 3b. Note that rM and rH index the MS and HS sensor pixels where the light intensity spreads. 

Figure 3.  Characterization of dispersion functions. (a) Image obtained in the MS arm at 550 nm. (b) Image 
obtained in the HS arm at 550 nm. (c) Non-linear MS dispersion curve (left y-axis) and linear HS dispersion 
curve (right y-axis) in terms of wavelength. The prism spreads the 480–650 nm spectral range along 207 µm (up 
to 32 MS sensor pixels), whereas the diffraction grating disperses it along 4954 µm (up to 768 HS sensor pixels). 
Each DMD pixel affects three MS sensor pixels, with intensity weights (wM)0

kM
, (wM)1

kM
, (wM)2

kM
 (as detailed 

in Table S1 in the supplementary material), while the same DMD pixel impinges in up to 9 HS sensor pixels 
with intensity weights (wH )

0
kH
, (wH )

1
kH
, . . . , (wH )

8
kH

 (as detailed in Table S2 in the supplementary material). kM 
indexes the MS bands and kH indexes the HS bands, as explained in the “Methods” section.
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Therefore, three 256× 256× 8 weight calibration data cubes for the MS arm, and nine 128× 128× 192 weight 
calibration data cubes for the HS arm were obtained. By averaging each weight data cube per band, thus assuming 
a spatial-invariant system, succinct versions of the weights distribution can be estimated as shown in Tables S1 
and S2 in Section S3 of the supplementary material. Note that these weight distributions, which sum-up-to-one, 
are the real entries of the sensing matrices HM and HH in Eq. 8.

Reconstruction results. To test the proposed testbed capabilities, two different target scenes, shown in Fig. 4, 
were used. The scenes were illuminated with a broadband halogen light source (Illumination Technologies, 
3900E-ER), emulating ambient light conditions. The decimation ratios between the MS and HS measurements 
were � = 2 for the spatial resolution, since the MS measurements exhibit 256 rows and the HS measurements 
only 128, and � = 24 for the spectral resolution, since the MS measurements are the result of the dispersion of 
LM = 8 spectral bands and the HS measurements can resolve up to LH = 192 bands.

To reconstruct the 256× 256× 192 fused data cube, we employed the ADMM-based optimization algo-
rithm, described in the “Methods” section, and evaluated the usage of K = 1 , K = 2 , and up to K = 4 different 
snapshots, varying the coding pattern loaded in the DMD. An increasing number of snapshots reduces the 
compression ratio (C), and thus improves the conditioning of the inverse problem, which translates to better 
image quality. Nonetheless, the main goal of compressive imaging is to keep the number of snapshots at the 
smallest for a certain image quality. For our experiments, K = 1 results in C ≈ 99% , K = 2 in C ≈ 98% , and 
K = 4 in C ≈ 96% . Thus, only ≈ 1% , ≈ 2% and ≈ 4% of the full spatial-spectral resolution data cube was used 
to recover it. For simplicity, the coded apertures were designed as realizations of a Bernoulli random variable, 
with a transmittance of 50%, matching the resolution of the MS sensor. Nonetheless, it should be noted that 
different  methodologies16,18 can be employed to obtain optimized coded apertures to further improve image 
quality. However, the impact of these kinds of apertures lies out of the scope of this manuscript. Future work 
will undoubtedly look into it. The sparsity-promoting basis ( � ) used in the ADMM algorithm, was set as the 
Kronecker product between the 2D Symlet 8 Wavelet transform �W2D and the discrete cosine transform �DCT , 
where �DCT sparsifies the spectral-axis while �W2D promotes sparsity along the spatial coordinates. The latter 
has shown to be a great sparsifying transform for spectral  images18.

We compared the reconstructions attained with the proposed fusion method against the ones from the MS 
and HS measurements, independently. The latter are called ‘MS method’ and ‘HS method’, respectively. Although 
this might seem not fair, given the differences between compression ratios, it permits to demonstrate the fusion 
of the best of both worlds. Since a ground-truth data cube is not available for comparison, to check the fidelity 
of the reconstructions, spectral signatures were measured at 4 representative regions of each target scene, high-
lighted as P1, P2, P3 and P4 in Fig. 4, using a spectrometer (Ocean Optics Flame S-VIS-NIR-ES spectrometer) 
and assumed to be the ground truth. The root-mean-squared-error (RMSE) and the spectral angle mapper (SAM) 
were calculated between the reconstructed spectral signatures and the ones measured with the spectrometer. 
Regarding the proposed ADMM algorithm, two penalization parameters, ρ and τ in Eqs. (12)–(13), needed to 
be finely tuned. For this, we followed a cross-validation methodology, varying them within the range [1e−4, 1] . 
In particular, we found that the selection of ρ = 1e−2 provided the best solution to the ℓ2 − ℓ2 problem in Eq. 
(12), independently of the number of snapshots and the method used, but the parameter τ entailed more sensitive 
variations in the reconstruction quality, as detailed in Section S4 of the supplementary material.

Figure 5 summarizes the spectral reconstructions of the first target scene using the three different methods, 
along the three number of snapshots, and fixing the regularization parameters to the best ones for each scenario. 
In particular, the first row shows the sRGB color-mapped image resulting of mapping the 192 spectral bands to 
the sRGB spectral sensitivity functions. Rows 2 to 9 present 8 out of the 192 spectral bands, false-colored with 
the corresponding wavelength (480, 504, 529, 553, 577, 601, 626 and 650 nm). Per row, along the columns, we 
show three triplets of images corresponding to the three methods using the three different number of snapshots. 
The first three columns show the MS, HS and fusion results using a single snapshot ( K = 1 ). Columns 4–6 and 
7–9 illustrate the results for 2 and 4 snapshots, respectively. In this figure, it can be first appreciated that the 
spatial resolution of the reconstruction attained with only the HS measurements, lacks of most of the details 
of the target scene, whereas the reconstructions achieved with the MS and fusion methods better preserve the 
spatial structure. Second, the RGB color-mapped images of the HS and fusion reconstructions resemble the 
color of the target scene better than the MS reconstructions for K = 1 and K = 2 . These behaviors are expected 
since the MS measurements lack spectral details, whereas the HS measurements lack spatial details. Third, the 

Figure 4.  Target scenes and compressed measurements. Two target scenes are used to test the capabilities of the 
proposed system. (a) Scene 1. (b) Scene 2. The MS compressed measurements have size 256× 265 , whereas the 
HS compressed measurements have size 128× 327 . Spectral regions of interest are highlighted as P1–P4 in both 
color photographs.
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reconstructed image quality improves as the number of snapshots increases, independently of the method used. 
This improvement is appreciated when comparing the HS (columns 1, 4, 7), MS (columns 2, 5, 8), and the fusion 
(columns 3, 6, 9) reconstructions, separately. Further, although difficult to note, the MS spectra tend to remain 
constant along contiguous spectral bands, while the HS and fusion reconstructions exhibit noticeable changes 
between neighboring spectral bands.

To better appreciate this behavior, the columns of Fig. 6 depicts four representative spectral signatures of 
the first target scene, measured with the spectrometer (denoted as ground-truth, black solid line), which are 
compared against the ones reconstructed with the different methods, MS (blue dashed line), HS (yellow dotted 
line), and fusion (red dash-dotted line). The rows show the results with different number of snapshots. The RMSE 
for each scenario is detailed in each subfigure legend within parenthesis. Note first, that the spectral signatures 
better approach the ground-truth as the number of snapshot increases; second, the signatures resulting from the 
fusion method attain the best fit to the ground-truth; third, the MS signatures are the smoothest and therefore fail 
in most of the cases (although their spatial extent looks pleasant in Fig. 5); fourth, the HS and fusion signatures 
are spikier, thus exhibiting better spectral resolution, but the HS signatures look noisier due to the poor spatial 
quality of their neighborhood.

Figure 5.  Spectral image reconstructions of the first target scene. From left to right, three columns per snapshot 
are shown: (a) Results for K = 1 , (b) Results for K = 2 , and (c) Results for K = 4 . From top to bottom, rows 
show the sRGB-mapped representation of the spectral reconstructions, along with 8 out of the 192 spectral 
bands. The wavelength, reconstruction method, and the number of snapshots employed are detailed at the top 
right of each sub-image. This figure was created with Matlab R2019b, https:// www. mathw orks. com/ produ cts/ 
matlab. html, from data acquired with our imaging system.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Results for the second scene are reported in Section S5 of the supplementary material, and an analysis of the 
time required by the computational algorithm is reported in Section S6 of the supplementary material.

The reconstruction algorithm was programmed in Matlab R2019b, and executed in a desktop computer 
(details in section S6 of the supplementary material). The stopping criterion was set to be either 500 iterations 
or until the residual between the updated and previous estimation falls below 10−4 . For the latter, in particular, 
the algorithm stops when the dual residual �κ(νt − ν(t−1))�22 ≤ 10−4 and the primal residual �νt − θ t�22 ≤ 10−4 
with κ = 0.1 . As detailed in Fig. S6, the algorithm’s execution time highly depends on the sparsity-promoting 
regularization parameter τ . The MS reconstructions are the fastest overall, followed by the fusion and then by 
the HS reconstructions. Just considering the best regularization parameter for each scenario ( τ ∼ 10−1 ), the 
average execution time lies between 30 and 50 min for the MS reconstructions, 100 to 250 min for the HS, and 
80 to 150 min for the fusion methodology, depending on the number of snapshots used. Note that given the 
high-dimensionality of the final cube ( 256× 256× 192 ), these reconstructions still require hundreds of minutes 
until convergence. Nonetheless, different optimization algorithms may lead to faster estimation, and future works 
should undoubtedly look into this matter.

Discussion
The proposed single aperture compressive snapshot spectral image fusion approach encompasses the follow-
ing advantages. Given the capabilities of the DMD, pixel binning can be conducted either on the DMD or the 
sensor pixels, and so, different resolutions can be dynamically attained on the same testbed. More clearly, if a 
2× 2 binning is conducted on the DMD, the MS measurements can resolve a cube of size 128× 128× 4 and the 
HS measurements a cube of size 64× 64× 96 . On the other hand, binning can also be applied in each sensor 
independently, thus, different scenarios can be easily tested.

Regarding the improvement entailed by the image fusion method, it should be noted that the MS and HS 
measurements do not attain a suitable reconstruction, even when the number of snapshots increases. More 
clearly, the MS measurements alone indeed provide satisfactory spatial quality, but the spectrum remains smooth, 
whereas on the contrary, the HS measurements yield to better high-resolution signatures, but fail at recovering 
the spatial structure of the target scenes. With the fusion method we obtain the best of both worlds, that is, good 
spatial and spectral quality. In this sense, target scenes with sharper spectral signatures (such as light emitting 
diodes or conventional spectra in related applications such as Raman spectroscopy) would significantly benefit 
from the improvements attained with the proposed methodology. Moreover, even for slowly-varying spectral 
signatures the improvement can be appreciated in the results of this work.

It should be highlighted that different compressive image fusion methods have been proposed in the 
 literature26–29, but all of them conducted simulations on synthetic data. These papers proposed different 

Figure 6.  Analysis of the spectral reconstructions of the first target scene. Four different spatial regions (P1, 
P2, P3, and P4 in Fig. 4a) were measured with a spectrometer and compared against the reconstructed with the 
different methods and snapshots. (a)–(d) P1–P4 for K = 1 , (e)–(h) P1–P4 for K = 2 , (i)–(l) P1–P4 for K = 4 
snapshots. This figure was created with Matlab R2019b, https:// www. mathw orks. com/ produ cts/ matlab. html, 
from data acquired with our imaging system.

https://www.mathworks.com/products/matlab.html
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reconstruction algorithms, exploiting various data priors such as low-rank and linear mixture models. In con-
trast, in this paper we imposed just the sparsity regularization constraint, which has been shown to be reliable in 
the state-of-the-art of CSI experimental  testbeds17,18. We expect that the different reconstruction and regulariza-
tion alternatives proposed in the literature will provide further improvements on the results of this manuscript. 
Nonetheless, these methods are not tested here as we consider the analysis falls out of the current scope.

On the other hand, the proposed imaging system has its own shortcomings, including the difficulty of align-
ment, the calibration requirements and the bulkiness of the current setup. In particular, given that we exploit 
the reflecting capabilities of the DMD, the optical trains require precise alignment to correct for the difference 
in optical path lengths via the Scheimpflug compensation. Furthermore, although not unique for our system, 
the reconstruction algorithm requires knowledge of the per-pixel PSF; thus, given that we use two sensors with 
different pixel counts and resolution, mapping to the same DMD, the per-pixel calibration can become tedious, 
particularly because narrow-band monochromatic beams that match the dispersion functions of both dispersive 
elements must be used. Finally, the current testbed is bulky, which in turn, limits its usage in outdoor applica-
tions. Nonetheless, the first two shortcomings are processes that must be conducted offline and only once, and 
the last one is still an open challenge for future work.

In conclusion, we have demonstrated spectral image fusion from compressed measurements using a single 
aperture, snapshot and full-throughput optical testbed. The single aperture capability is advantageous for dual-
sensor imaging systems, since it eliminates the requirement of registration, which may cause major problems such 
as occlusion. The snapshot capability circumvents the need of scanning the scene, which prohibits its usage in 
dynamic scenes. Finally, the light throughput capability is critical, since coding-based devices undeniably throw 
away light in the coding step. In this regard, the proposed system exploits the capabilities of the DMDs and takes 
advantage of the ‘on’ and ‘off ’ reflecting properties of the micro-mirrors to implement a full throughput sensing 
strategy. For the latter, the Scheimpflug compensation was required and successfully implemented. Further, an 
ADMM-based reconstruction algorithm was proposed to conduct image fusion from the compressed projec-
tions, which successfully recovered the fully-resolved spectral image cubes, even for high compression ratios. 
Future work should undoubtedly focus on the design of optimized coded apertures for image fusion, on the 
usage of more complex inverse problem formulations to improve image quality, as well as on the miniaturiza-
tion of the testbed.

Methods
Compressive spectral image fusion sensing model. The proposed testbed in Fig. 1b has two propaga-
tion paths, split by the DMD, but a single objective lens common to both. In particular, the three-dimensional 
light field that enters the imaging system can be modeled as f (x, y, �) . After the DMD, this field splits into two 
coded fields, t(x, y)f (x, y, �) and tc(x, y)f (x, y, �) , where t(x, y) is the coding function entailed by the DMD and 
tc(x, y) denotes its complement. These coded fields are independently dispersed and integrated at the corre-
sponding MS and HS imaging arms, along their sensor sensitivity functions �M and �H , following,

where δM(x, y, �) represents the point spread function (PSF) of the system, dM(�kM+1)− dM(�kM ) = �M models 
the dispersion introduced by the prism, �M is the pixel size of the MS sensor, kM = 0, . . . , LM − 1 indexes the 
MS wavebands and ηM(x, y) accounts for the MS sensor noise. Equation (2) is discretized by the MS sensor at 
pixel (m, n) as,

for m = 0, 1, . . . ,M − 1 , n = 0, 1, . . . ,N + LM + RM − 2 , assuming the input data has M × N  pix-
els of spatial resolution, and that �D is the DMD pixel size. Since 1:1 matching is guaranteed between 
the DMD and MS sensor pixels after down-sampling, then �D

�M
= 1 . Equation (5) follows after dis-

cretization of the coded aperture, t(x, y) =
∑

m′ ,n′ tm′ ,n′rect(
x
�D

− n′,
y
�D

−m′) , where tm′ ,n′ ∈ {0, 1} 
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represents the coding performed by the (m′, n′)th DMD pixel; and discretization of the spectral data, 
f (x, y, �) =

∑

m′ ,n′ ,kM
fm′ ,n′ ,kM rect(

x
�D

− n′,
y
�D

−m′, �

�M
− kM) . Note that, (wM)

rM
kM

 , with rM = 0, 1, . . . ,RM − 1 
represents the light distribution and integration along the MS sensor, which accounts for non-linearities and 
blurring induced by the optics. The latter are the propagation weights calibrated and reported in Table S1 in the 
supplementary material. Here, RM = 3 represents the number of MS sensor pixels affected by a single DMD 
pixel, as shown in Fig. 3.

In a similar way, the continuous and discrete measurements acquired by the HS imaging arm are given by

for i=0, 1, . . . , I−1 , j=0, 1, . . . , J−1 , where I= M
�

 , J= N
�

 , �=
�M
�H

 and �H is the pixel size of the HS sensor. 
Similarly to Eq. (5), tc(x, y) =

∑

m′ ,n′ t
c
m′ ,n′rect(

x
�D

− n′,
y
�D

−m′) , where tcm′ ,n′ = 1− tm′ ,n′ represents the com-
plementary coding by the (m′, n′)th DMD pixel, dH (�kH+1)−dH(�kH )=�H is the dispersion introduced by the 
diffraction grating, kH =0, 1, . . . , LH−1 indexes the HS wavebands and (wH )

rH
kH

 are the propagation weights 
calibrated and reported in Table S2 of the supplementary material, with RH = 9 based on Fig. 3.

In order to establish a linear system to describe the compressive measurements acquisition, f  is defined as a 
column vector containing fm,n,kH for the high-resolution spectral components kH and all high-resolution spatial 
pixels m and n. Assuming a coding element with M × N pixels, f  will be MNLH in length. Then, define gM and 
gH as column vectors holding the recorded pixel values, (gM)m,n and (gH )i,j , from the multispectral and hyper-
spectral image sensors. Noting the horizontal dispersion of light, and the different dispersive elements used by 
the multispectral and hyperspectral imaging arms, the length of gM is M(N + LM − 1) , and gH is I(J + LH − 1) , 
such that all light is accounted for on the sensors. Therefore, the proposed image acquisition system can be mod-
eled according to the linear equations,

where DM and DH model the spectral and spatial down-sampling operators, respectively. The dispersion func-
tion of the prism is modeled as PM , and the matrix PH denotes that of the grating. Note that ηM and ηH model 
the additive noise terms in both sensors.

Fusion+reconstruction algorithm. Having modeled the collection of incoming light rays per sensor, 
the measurements are assembled into a single linear system by vertically concatenating gM and gH , to create 
the (M(N + LM − 1)+ I(J + LH − 1))× 1 vector g =

[

gTM , gTH
]T , which can be modeled by similarly concat-

enating the matrices HM and HH on top of one another, H =
[

(PMDMT)T , (DHPHT
c)T

]T , so as to obtain the 
compact linear system, g = Hf + η , where η =

[

ηTM , ηTH
]T . The compression ratio of the proposed architecture 

can be defined as, C = 1− K(M(N+LM−1)+I(J+LH−1)
MNLH

) , where K is the number of snapshots acquired in each 
sensor. Note that C ∈ [0, 1] , with C = 0 means no compression and C = 1 indicates a compression of 100% . Note 
also that C reduces with the increasing number of snapshots. Thus, each new snapshot, employing a different 
coded aperture, yields a reduction in compression and therefore helps to relax the conditioning of the inverse 
problem. If multiple snapshots are acquired, they are vertically concatenated as g =

[

gT0 , g
T
1 , . . . , g

T
K−1

]T and 
the sensing matrix becomes H =

[

HT
0 ,H

T
1 , . . . ,H

T
K−1

]T . To reconstruct a fused HS image with high-spatial and 
high-spectral resolution from the compressed measurements, we propose to solve,

which assumes that f = �θ , where � is a transform basis that sparsifies the HS image. This formulation finds 
a sparse solution to the unconstrained minimization problem in Eq. (9), where the first term minimizes the 
Euclidean distance between the compressed measurements and the contribution from the estimate θ , while the 
second term encourages sparsity of the reconstruction, and τ is a tuning parameter that controls the extent of 
smoothness in the estimate. Due to the huge size of the data, Eq. (9) is rewritten as a quadratic program through 
an alternating direction method of multipliers (ADMM) formulation, such that smaller sub-problems can be 
solved. In particular, the unconstrained formulation becomes the constrained problem,

where ν is an auxiliary variable. The augmented Lagrangian of Eq. (10) is given by,

(7)
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where d is the scaled dual variable and ρ > 0 is the weighting of the augmented Lagrangian term. Based on Eq. 
(11), the alternative form of Eq. (9) can be expressed as the following two optimization problems, plus the dual 
variable update,

for q = 0, . . . ,Q − 1 , where Q is the maximum number of iterations of the algorithm. To solve Eq. (12) we derive 
with respect to ν and find its closed solution,

where A = H� and the right hand of Eq. (15) is obtained after applying the Sherman–Morrison–Woodbury 
matrix inversion  lemma35. The latter is critical since the matrix inversions at the left-hand side of the second 
equality depend on the size of the high-spatial and high-spectral resolution image, whereas the Woodbury lemma 
transforms these inversions to depend on the size of the compressed measurements, which is at least LH times 
smaller. On the other hand, to solve Eq. (13), we calculate its derivative with respect to θ and find its closed-form 
solution, which leads to the soft-thresholding operator,

The algorithm iterates throughout Eqs. (12)–(16) until reaching a maximum number of iterations or certain 
error tolerance.

Data Availibility
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on request.
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