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Clinical characterization 
of respiratory large droplet 
production during common airway 
procedures using high‑speed 
imaging
S. K. Mueller1*, R. Veltrup2, B. Jakubaß2, S. Kniesburges2, M. J. Huebner4, J. S. Kempfle3, 
S. Dittrich4, H. Iro1 & M. Döllinger2

During the COVID‑19 pandemic, a significant number of healthcare workers have been infected with 
SARS‑CoV‑2. However, there remains little knowledge regarding large droplet dissemination during 
airway management procedures in real life settings. 12 different airway management procedures 
were investigated during routine clinical care. A high‑speed video camera (1000 frames/second) 
was for imaging. Quantitative droplet characteristics as size, distance traveled, and velocity were 
computed. Droplets were detected in 8/12 procedures. The droplet trajectories could be divided into 
two distinctive patterns (type 1/2). Type 1 represented a ballistic trajectory with higher speed large 
droplets whereas type 2 represented a random trajectory of slower particles that persisted longer in 
air. The use of tracheal cannula filters reduced the amount of droplets. Respiratory droplet patterns 
generated during airway management procedures follow two distinctive trajectories based on the 
influence of aerodynamic forces. Speaking and coughing produce more droplets than non‑invasive 
ventilation therapy confirming these behaviors as exposure risks. Even large droplets may exhibit 
patterns resembling the fluid dynamics smaller airborne aerosols that follow the airflow convectively 
and may place the healthcare provider at risk.

Abbreviations
ARDS  Acute respiratory distress syndrome
COVID-19  Coronavirus disease 2019
CPAP  Continuous positive airway pressure
FFP  Filtering face piece
FPS  Frames per second
LED  Light-emitting diode
MMAD  Mass median aerodynamic diameter
PEEP  Positive end-expiratory pressure
PPE  Personal protective equipment
Δp support  Pressure support ventilation
SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
WHO  World Health Organization
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to a high variability of symptoms. 
While some exhibit minor symptoms of an upper respiratory infection, some patients presents with severe 
sequelae similar to the acute respiratory distress syndrome (ARDS)1–3. With worldwide dissemination of the 
disease and the increasing number of deaths, the modes of transmission in the healthcare environment is a 
subject of significant  investigation4,5. Many medical providers have been infected during the pandemic which in 
some cases has lead to death. It is therefore paramount to minimize healthcare worker exposure during highly 
“aerosolizing”  procedures6,7. Multiple recommendations to ensure maximal safety for the medical personnel 
during airway management procedures are being developed and regularly  updated6–11. This includes limiting 
some procedures to the minimum necessary, including non-invasive ventilation or tracheal cannula changes in 
SARS-CoV2 positive patients. Generally, aerosol transmission in the medical infectious disease community is 
described to occur by droplets (diameter > 5 µm)3,8,12 and airborne aerosols/ droplet nuclei (diameter < 5 µm)13. 
Aerosols are hereby defined as a suspension of solid or liquid particles in gas with particle size from 0.001 to 
over 100  mm14,15. Droplet nuclei are defined as the airborne residue of a potentially infectious (micro-organism 
bearing) aerosol from which most of the liquid has  evaporated15,16. However, this definition is an artificial con-
struct and some authors suggested more detailed definitions ( ‘large-droplet’ diameter > 60 µm, ‘small droplet’ 
diameter 60 µm and ‘droplet nuclei’ diameter < 10 µm)15. Based on this definition, the current study will focus 
on analyzing large droplets.

Depending on size, these particles can be found in different anatomic parts of the upper and lower respira-
tory  system17,18. For SARS-CoV-2, there are already studies that have identified viable virus staying suspended 
within aerosols for hours  hours18–20. The number of detectable viruses following coughing versus exhaled 
breath has been studies intensively for other airborne disease and is currently under further investigation for 
SARS-CoV-215,17,18,21,22.

However, a precondition for an aerosol transmission is that the virus retains infectivity and replicability 
within these small particles. While it is controversially discussed if large droplets or aerosols contain a higher 
viral load and are responsible for viral  transmission4,5,12,18,23, there remains no quantitative data concerning the 
droplet trajectories and fluid patterns during airway management procedures in real life settings. In order to 
estimate the risk to medical personnel and to develop appropriate safety precautions it is important to analyze 
droplet size, aerodynamic characteristics and trajectories during different procedures. Therefore, the objective 
of this study was to assess the frequency, size and velocity of large respiratory droplets as well as characterize 
aerodynamic droplet patterns during common airway management procedures using high-speed imaging. The 
airway management procedures analyzed included non-invasive CPAP (continuous positive airway pressure) 
ventilation, high flow ventilation, tracheotomy cannula change, extubation, nebulizing and SARS-CoV-2 swab 
as well as common behavioral patterns including speaking and coughing.

Methods
Study design and inclusion of patients. All experiments were conducted at the Friedrich-Alexander-
University Erlangen-Nürnberg. All experimental protocols as well as the study design were approved by the 
ethics committee of the Friedrich-Alexander-University Erlangen-Nürnberg (No 167_20B). Informed consent 
was obtained from all participants for participation in the study and for publication of identifying information/
images in an online open-access publication. All experiments and methods were performed in accordance with 
relevant guidelines and regulations. 12 different airway management procedures were investigated. A total of 
n = 8 patients (6 males, 2 females) were included. The demographics are displayed in Table 1. Depending on the 
procedure, the individual scenarios were performed up to 5 times in different patients who medically required 
that procedure. All patients received the airway management procedures as part of their routine clinical care. 
None of these patients were infected with influenza or SARS-CoV-2.

Equipment, experimental setup and outcome measure. The patients were positioned in a routine 
posture. This included a supine position for the extubation and a seated for all remaining procedures. A sterile 
clean room was used for the experiments.

Table 1.  Patient demographics including age, sex, BMI, and medical condition of all n = 8 patients. HNSCC: 
head and neck squamous cell carcinoma.

Characteristics n (%)

Mean age in years (± SD) 36.4 ± 20.0

Gender

Male 4/8 (50)

Female 4/8 (50)

Mean BMI (± SD) 25.4 ± 8.8

Comorbidity

COPD 3/8 (37.5)

Asthma 1/8 (12.5)

HNSCC 3/8 (37.5)

Heart condition 3/8 (37.5)
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Our first outcome measure was to display droplets originating from the patients. The second outcome measure 
was to display droplets originating from the examiner wearing a FFP3 plus a surgical mask. For both outcome 
measures, the number of droplets, size, trajectories, distance travelled, and velocity were quantified.

To detect the droplets in the air, we developed a setup with light against a black background to record the 
scattered light with a high-speed camera. Two Fenix TK-35 LED lights were used to illuminate the scene in front 
of the patient (500 lumens each). The room as well as patient and examiner were covered in black clothing as 
background in order to display the illuminated particles as richly as possible. A high-end industrial high-speed 
camera Vision Research Phantom v2511 recorded the procedures. The camera was aimed perpendicular to the 
longitudinal axis of the patient at the height of head at a distance of 1.5 m. The recorded region was an area in 
front of the patient to represent the location where the provider would potentially stand during procedures, i.e. 
distance of up to 0.9 m in front of the patient. The videos were recorded at a spatial resolution of 1280 × 800 
pixels yielding a minimal spatial resolution between 440 µm and 670 µm per pixel. This spatial limitation is 
caused by the choice of region (i.e. up to 0.9 m in horizontal direction to track the droplet trajectories) and the 
physical dimensions of the camera chip (5/3 inch). The recording rate was set to 1000 fps (frames per second) to 
accurately track the droplets. The camera control software PCC 2.6 was used. A reference image of a measuring 
rod was taken for subsequent metric computation of droplet trajectories.

Experimental conditions. The following common airway management procedures were studied:

 1. Non-invasive CPAP with PEEP (positive end expiratory pressure) of 5 mbar, 6 mbar, 8 mbar and 10 mbar 
with and without coughing

 2. Non-invasive CPAP with a PEEP of 5 mbar and a Δp support (pressure support ventilation) of 10 mbar, 
15 mbar and 20 mbar with and without coughing

 3. Non-invasive CPAP without leakage, with 50% leakage and with 80% leakage with and without coughing
 4. Nasal oxygen via a nasal tube (Dahlhausen, Köln, Germany) at 2 l/min, 4 l/min, 6 l/min, 8 l/min and 10 l/

min with and without coughing
 5. High-flow nasal oxygen at 15 l/min without coughing
 6. Nebulizing with an oxygen mask (Micro Mist Nebulizer plus mask, Hudson RCI, Wayne, PA, USA)
 7. Tracheal cannula suctioning with (7.1) and without (7.2) filter (Hygroscopic Condenser Humidifier, 

Aqua + TS, Hudson RCI, Wayne, PA, USA)
 8. Tracheal cannula removal without filter
 9. Coughing and suctioning after tracheal cannula removal
 10. Reinsertion of tracheal cannula without filter
 11. Extubation (5.0 no cuff Vygon, Aachen, Germany)
 12. SARS CoV-2 swab according to the WHO (World Health Organization)  guidelines24.

For procedure (1) to (3), a Dräger Evita V800 respirator (Lübeck, Germany) was used. For procedures (7) to 
(10), a Tracheoflex, 9,0 mm, with Cuff (Rüsch, Berlin, Germany) was applied. The nebulizing therapy was used 
for representation of fine particle aerosols (manufacturer´s information mass median aerodynamic diameter 
(MMAD) 3.6 µm).

Additionally, the procedure speaking “stay healthy” was used as positive control (13).

Image processing and quantification techniques. A software script specially designed for evaluat-
ing the recorded video data was implemented in MATLAB. It allows the manual tracking and computes the 
size of particles. Droplet sizes were found to be between 1 and 4 pixels. Based on the physical specification 
of the camera chip, detected particles were divided into three categories, large (1000 < d < 2000 µm), medium 
(670 µm < d ≤ 1000 µm) and small (d ≤ 670 µm). In the following, we refer to this size distribution when speak-
ing of small, medium, or large droplets. Traveled distances and velocity values of the particles were computed.

Results
Characterization of two main trajectory patterns. All visible droplets were tracked in each condi-
tion. No droplets were visible for procedures 3, 5, 6, 11, 12. For procedures 1, 2, 7.2, 8, and 9 all visible droplets 
were tracked. For procedures 4, 7.1, 10 and 13 the number of droplets exceeded the ability for individual track-
ing. Comparing all scenarios, two major droplet trajectories were discerned.

Type 1 represented a ballistic curve that descended in a predictable curve with a maximal velocity of 
26.41 m/s. The velocity was maximal at start and exponentially decelerated over time to a minimal velocity of 
0.04 m/s. The maximal distance travelled in horizontal x-direction was 0.73 m and in upper vertical y-direction 
0.14 m. The average diameter of the droplets was 0.66 mm ± 0.32 mm. A procedure with type 1 was e.g. 13) 
speaking “stay healthy” (Fig. 1A,B).

Type 2 was unordered and non-directed. These droplets were mainly driven by convective flow within the 
ambient air with random acceleration and deceleration over time similar to the behavior expected by aero-
sols < 5 µm. The minimal velocity was 0.01 m/s and the maximal velocity was 7.02 m/s. The maximal distance 
travelled in horizontal direction was 0.70 m and 0.16 m in the upper vertical direction. Each droplet showed a 
different movement pattern. The average size of the droplets was again 0.66 mm ± 0.16 mm. A procedure with 
type 2 was e.g. 10) reinsertion of the cannula (Fig. 1C,D ).

For all conditions that showed a type 1 pattern, there was also a type 2 pattern seen. This included all condi-
tions (4, 7.1, 9, and 13) where coughing or speaking was performed (Fig. 1E,F; video 1). For procedure 4, 7.1, 9, 
and 13, small (60 < d ≤ 670 µm) to large (1000 < d < 2000 µm) droplet sizes were seen. Comparing the two patterns, 
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type 2 droplets remained in the air after type 1 already descended. However, for the conditions 1, 2, 7.2, 8 and 10 
(non-invasive ventilation, tracheal cannula removal and reinsertion) only a type 2 pattern was seen. For condi-
tions 1, 2, 7.2, and 10, only small droplet sizes were seen. For condition 8, there was also a large droplet size. For 
conditions 3, 5, 6, 11 and 12, no droplets could be seen (Fig. 2A, B).

Reduction in droplet amount using a filter during tracheal cannula suctioning. Comparing tra-
cheal cannula suctioning with and without filter, significant differences were seen. In the scenario without a 
filter (procedure 7.1), there was a large amount of droplets with non-directed trajectories (type 2). With a filter 
(procedure 7.2) there was an average 80% reduction in the amount of droplets with type 2 behavior (Fig. 3A,B). 

Figure 1.  Examples of computed trajectories (left) and velocities (right) for tracked droplets within three 
conditions. The most representative trajectories were selected. The colored trajectories correspond to the 
matching velocity color: (A) Droplet trajectories for the positive control speaking “stay healthy” (type 1 > type 
2) (B) Velocity–time diagram for speaking “stay healthy” (C) Droplet trajectories for coughing out of the 
tracheostomy without tracheal cannula (type 2 > type 1) (D) Velocity–time diagram for coughing out of the 
tracheostomy without tracheal cannula (E) Droplet trajectories for the insertion of a tracheal cannula without a 
filter (type 2) (F) Velocity–time diagram for the insertion of a tracheal cannula without filter.
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After removal of the filter, many droplets were visible and could be characterized as type 2 trajectories. In case 
of coughing after removal or insertion of the tracheal cannula, the droplet formation increased and changed to 
a combined type 1 and 2 pattern.
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Figure 2.  (A) Beeswarm diagrams over all 13 procedures representing (A) the droplet size separated for 
trajectory types and (B) the maximal distance travelled in horizontal x direction separated for the three droplet 
sizes . For (A) the red color represents type 1 and the blue color type 2. For (B) the red color represents small 
droplets, the blue color medium sized droplets and the green color large droplets.

Figure 3.  High-speed camera image representing the trajectories of tracheal cannula suction (A) with and (B) 
without a filter. The orange lines represent the droplet trajectories.
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Speaking and coughing produce more droplets than non‑invasive ventilation. Our positive 
control “stay healthy” as well as coughing showed the highest number (tracking number n = 58) of droplets 
(video 2). In terms of coughing, this is true both for coughing through the mouth without a tracheostomy as well 
coughing through the tracheostomy opening. Coughing through the mouth demonstrated the fastest velocities 
with 26.41 m/s.

In contrast, of all non-invasive CPAP procedures and oxygen delivery via a nasal tube only a few scenarios 
showed droplets. These scenarios included CPAP with PEEP at 10 mbar and CPAP with PEEP of 5 mbar with 
a Δp support of 10 mbar (procedures 1 and 2). Low-flow and high-flow of oxygen (2-15 l, procedures 4 and 5) 
showed no droplets without coughing. However, coughing during nasal oxygen flow generated a large amount of 
droplets. Here, the amount of droplets was highest during the first cough and decreased for subsequent coughs.

Sampling a SARS-CoV-2 swab according to the WHO guidelines demonstrated a similar  effect24. During 
the sampling itself, no droplets could be seen (procedure 12). However, droplets were detected if the patient 
spoke or coughed during or after the procedure. During extubation, no coughing and no droplets were visible. 
At the end of the tracheal tube, gummy secretions were seen (procedure 11). During nebulization, fine aerosols 
(manufacturer´s information MMAD 3.6 µm) could be detected using our method. However, aerosols could 
not be quantified due to their abundance. All results are displayed in Table 2.

FFP3 mask plus surgical mask prevents spread of droplets. We analyzed simultaneously how many 
droplets originated from the examiner at the same sequences. Although the examiner spoke nearly constantly 
during the entire procedures, to instruct or calm down the patient, no droplets were seen at any time.

Discussion
During the COVID-19 pandemic, several studies have emphasized the concept of aerosolized transmission of 
the virus. SARS-CoV-2 positive aerosols down to a size of 4 µm and below were shown to contain contagious 
viral  particles25. Around 450.000 health care workers are estimated to have been infected up to this time point 
and an appalling number have  died26. As a result, several routine airway management procedures are currently 
being adapted or avoided in SARS-CoV-2 positive patients. This is the first study to evaluate common airway 
management procedures performed in real-life patients in order to characterize droplet patterns.

We applied high-speed imaging to visualize droplets in the region of interest (entire dispersion of droplets). 
For our study, we performed the airway management procedures as realistically as possible on patients. We 
focused on larger respiratory droplets rather than on airborne aerosols (smaller than 5 µm) due to the suspected 
higher viral  load21,22. In our results, two different trajectory patterns of the droplets emerged which we catego-
rized as type 1 and 2. All droplet sizes are found in both trajectory types: type 1 (i.e. classic ballistic trajectory) 
and type 2 (i.e. driven by convective forces of the air resulting from the air management procedure itself). Due 
to the low mass of the droplets, convective lifting forces balance with their gravitational forces resulting in a 
floating behavior similar to much smaller aerosols. This results in a non-predictive, complex, trajectory pattern, 
alternating accelerations and decelerations capable of reaching the provider´s face. To the best of our knowl-
edge, this behavior has not been described for such large droplets during these air management procedures in 
patients before. We could show that the droplets described in type 2 remained in the air for a minimum of 7 s. 
With an average human being roughly breathing every 5 s (12/min), we suggest that the droplets persist long 
enough for another person to inhale. We hypothesize that by remaining longer in the air and recirculating non-
predictively, type 2 droplets are more dangerous for disease transmission than type 1 droplets. Importantly, our 
type 2 pattern is similar to previously described aerodynamic patterns of fine aerosols (< 5 µm) although droplets 
were significantly  larger27,28. This again underlines that the cut-off value that defines how particles behave is not 
necessarily bound to size. On the contrary, in certain real life situations like the airway management procedures 
that create a distinctive air flow itself, even larger droplets do not follow ballistic patterns but are able to float in 
the air longer than expected. This also underlines the recommendation to reduce the number of personnel to a 

Table 2.  Conditions, number of recordings, number of recordings where droplets were visible, droplet sizes, 
trajectory types and computed quantities. The five conditions not provided (i.e. 3, 5, 6, 11, 12) did not show 
any visible droplets.

Procedure (# video) (# tracked)

# size # trajRating vmax (m/s) vmin (m/s) xmax (m) distmax (m) ymax (m)

S m l t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

1 (1) 7 7 – – – 7 – 0.36 – 0.02 – 0.21 – 0.30 – 0.16

2 (1) 2 2 – – – 2 – 0.11 – 0.01 – 0.38 – 0.21 – 0.00

4 (2) 40 20 14 6 38 2 26.41 4.41 0.50 0.11 0.41 0.31 0.56 0.34 0.14 0.06

7.1 (3) 38 – 34 4 4 34 0.59 7.02 0.04 0.02 0.19 0.59 0.08 0.33 0.10 0.10

7.2 (1) 5 – 5 – – 5 – 0.33 – 0.04 – 0.32 – 0.18 – 0.10

8 (1) 5 – 4 1 – 5 – 0.45 – 0.01 – 0.70 – 0.13 – 0.00

9 (2) 15 – 13 2 11 4 21.69 2.35 0.12 0.01 0.73 0.28 0.73 0.06 0.08 0.01

10 (2) 39 – 39 – – 39 – 1.86 – 0.01 – 0.39 – 0.12 – 0.12

13 (2) 58 45 10 3 53 5 10.40 4.21 0.17 0.15 0.52 0.22 0.55 0.37 0.06 0.04
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minimum  necessary29,30. Whether larger droplets or fine particle aerosols with the same aerodynamic pattern 
are more contagious remains to be verified in virological experiments.

Our results also confirm that the usage of a filter significantly reduced the amount of droplets in comparison 
to a non-occluded tracheal cannula during tracheal cannula suctioning. Additionally, we could not detect any 
droplets originating from the examiner who was wearing the combination of a FFP3 and a surgical mask. The 
same examiner, however, had shown a droplet formation during the positive control “stay healthy” without 
a mask. Various international guidelines recommend the use of a viral filter e.g. in combination with a heat-
moisture exchanger during intubation and  extubation31–34. A previous study of our group showed significant 
reduction of droplets during tracheal cannula procedures using a  filter35. However, the filter did not avoid droplet 
spread completely which leaves health care workers still at risk. Additionally, the use of combination of a FFP3 
and a surgical mask as source control is generally assumed to be one of the most important measures to prevent 
airborne virus  transmission36. There has been extensive research on the benefits of wearing masks and our data 
underline those  results18,28,29,37.

Furthermore, our results show that speaking and coughing produced the highest amount of droplets with the 
highest velocities. In previous  research38, the sentence “stay healthy” was shown to produce speech associated 
droplets. Our study confirmed that coughing and speaking produced the largest amount of droplets over all 
conditions. Coughing demonstrated the highest velocity measurements and the furthest distance travelled. Our 
velocity during coughing was even higher than reported in previous  studies39. With respect to particle numbers, 
speaking and coughing produced significant more droplets than routine airway management procedures includ-
ing CPAP non-invasive ventilation, high-flow oxygen administration using a nasal cannula and extubation. As 
recommended in  literature7,9,40, in a highly sedated, ventilated patient with a blocked cuff at either breathing 
tube or tracheal cannula and an intercalated viral filter, droplet formation is minimal. Our results show that 
even non-invasive ventilation in a breathing patient shows minimal droplet concentration. However, the awake 
patient that is able to cough and speak appears to be the most dangerous. As a patient on non-invasive CPAP or 
nasal cannula ventilation is awake, the patient is potentially able to cough and speak which represents a potential 
risk. These findings underlie the unconditional need of personal protective equipment (PPE). Summarizing, our 
results show that aerodynamic measurements during airway management procedures are able to provide valuable 
information for the safety of the medical personnel and for the patients.

It is also important to address limitations of the study. Although no detected type 2 particle left the field of 
view in horizontal as well as vertical direction, type 2 particles showed aerosol behavior i.e. hovering in the air 
and commonly following convective flows in the environment. As a consequence, we cannot exclude that type 
2 particles are able to convectively travel over larger distances than those measured in our experiments. Due 
the physical limitations of the camera chip and the large region of interest, we were only able to quantify larger 
droplets (> 60 µm) and were not able to quantify small droplets / aerosols that did not illuminate camera-pixels 
enough to stand out against the black background. Therefore, it is important to mention that in those airway 
management procedures where we could not detect any droplets, the simultaneous generation of fine particle 
aerosols cannot be excluded. In fact, previous studies have shown that fine particle aerosols are generated and that 
e.g. talking predominantly produces fine diameter particles (< 5 µm)41–43. Hence, the generation of fine particle 
aerosols during airway management procedures has to be investigated in further studies.

Conclusions
Respiratory large droplet patterns generated during airway management procedures follow two trajectories, one 
ballistic, and one approximating that of smaller airborne particles following a random convective pattern. Speak-
ing and coughing produced both a larger amount and higher velocity droplets as compared to the investigated 
airway management procedures. Facial masks significantly reduced droplet dissemination as did the use of a 
tracheal cannula filter.
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