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Entropy generation analysis 
for MHD flow of water 
past an accelerated plate
Tarek N. Abdelhameed

This article examines the entropy generation in the magnetohydrodynamics (MHD) flow of Newtonian 
fluid (water) under the effect of applied magnetic in the absence of an induced magnetic field. More 
precisely, the flow of water is considered past an accelerated plate such that the fluid is receiving 
constant heating from the initial plate. The fluid disturbance away from the plate is negligible, 
therefore, the domain of flow is considered as semi-infinite. The flow and heat transfer problem is 
considered in terms of differential equations with physical conditions and then the corresponding 
equations for entropy generation and Bejan number are developed. The problem is solved for exact 
solutions using the Laplace transform and finite difference methods. Results are displayed in graphs 
and tables and discussed for embedded flow parameters. Results showed that the magnetic field has a 
strong influence on water flow, entropy generation, and Bejan number.

List of symbols
A	� Acceleration of the plate, (ms−2)
v	� Velocity of the fluid, (ms−1)
ϑ	� Temperature of the fluid, (K)
g	� Acceleration due to gravity, (ms−2)
B0	� Applied magnetic field
cp	� Specific heat at a constant pressure, (J kg−1 K−1)
Gr	� Thermal Grasshof number, (–)
k	� Thermal conductivity of the fluid, (W m−2 K−1)
Nu	� Nusselt number, (–)
Pr	� Prandtle number, (= µcp/k)
q	� Laplace transforms parameter

Greek symbols
µ	� Dynamic viscosity, (kg m−1-s−1)
ρ	� Fluid density, (kg ms−3)
β0	� The volumetric coefficient of thermal expansion, (K−1)
τ	� Time, (s)
θ	� Fluid temperature far away from the plate, (K)
σ	� Stephen-Boltzmann constant

Entropy plays a very important role in fluid dynamics. The second law of thermodynamics totally revolves around 
the entropy concepts and entropy generation. The feasibility of a process and its efficiency are directly related to 
entropy generation in the process. Since entropy generation is much important and happens in all flow processes 
because of friction in fluids, therefore, in this paper, we study entropy generation in (MHD) the flow of water 
which is taken as a counter-example of a Newtonian fluid, flows over a second-order accelerated plate taken in 
the vertical direction. One of the useful applications of entropy generation in real life/world is in the design of 
systems that rely on heat transfer. Entropy tells us in a way, the best we can do to avoid thermal energy losses.
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Amongst the various researchers working on entropy generation, the most famous is true, Adrian Bejan, 
who has published many kinds of research on entropy generation and the second law of thermodynamics with 
applications in various fields, see for example1–7.

The importance of entropy generation-EG (second law of thermodynamics-SLTD) in examining heated fluid 
flows in several engineering devices of practical use and heat related systems has become significant. For example, 
in thermal analyses, one can see that a worth paying attention part of energy is wasted during the heat transfer 
and not producing the desired result. Indeed, the scientists were not happy with such a great loss of energy and 
finally they realized that such energy losses can be removed or minimized by properly designing the heat system. 
Entropy generation-EG can be produced by several means for instance, heat transfer in thermal systems. Some 
important key sources amongst the many others, from which Entropy generation-EG in thermal systems include 
viscous dissipation, chemical reaction, mass transfer, heat transfer, and electrical conduction8. In the interesting 
work of Awed9, he introduced a new definition of the Bejan number(BN). The BN is indeed, useful in several 
cases, as it can clearly provide evidence related the dominance of a strong magnetic field and corresponding fluid 
friction entropy via heat transfer, or vice versa. Saouli and Aïboud-Saouli10 examined entropy generation-EG 
in a liquid film such that it is falling along with plate inclided along the plane. A great work for the interesting 
analysis of entropy generation-EG for the famous Tiwari and Das model was developed by Sheremet et al.11. In 
their study the carefully examined the process and examined some interesting and important computational 
results for finding the solution to their problem. In their investigation, they examined carefully that addition of 
nanoparticles in a regular base fluid, the heat transfer rate enormously increased and, then consequently, the 
cavity of convective flow was found much smaller. For turbulence-forced convection, entropy generation-EG was 
discussed in details in an excellent and interesting work of Ji et al.12. However, recently, Qing et al.13 examined 
entropy generation-EG for non-Newtonian fluid of Casson model conating nanoparticles inside a regular base 
fluid in the presence of a strong magnetic field. The analysis was done over a porous surface with a stretching 
or shrinking sheet to examine MHD flow. A strong comupational technique known as successive lineariza-
tion method (SLM) was used for solving a strong system of equations and highlighted the influence of various 
parameters on velocity and temperature. Sheikholeslami et al.14, numerically examined the impact of Lorentz 
forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus by applying a 
strong numerical scheme.

In all the above problems, entropy generation analysis was done using the numerical treatment. Indeed the 
entropy generation problem via exact treatment is very rare due to the complex mathematical calculi. However, 
limited studies are available in this direction, including the work of Saqib et al.15, in which they investigated 
entropy generation for generalized nanofluids via exact solution treatment. In this paper, the main objective 
was to examine entropy for fractional partial differential equations. They first formulated the problem and then 
solved for exact solutions fluid problem with plots and physical interpretations. They noted that the classical 
solutions can be obtained in a limiting sense for the unit value of the fractional parameter. Khan et al.16 applied 
the classical approach for both the formulation and solution and examined the entropy generation in an unsteady 
MHD flow with a combined influence of heat and mass transfer through a porous medium where the plate they 
consider is isothermal and ramped wall temperature.

Numerical methods or see for example Refs.17–30 and any other was used in many papers31–43 however, very 
limited studies are reported in which exact and numerical solutions are simultaneously obtained. Therefore, the 
main task here is to obtain exact and numerical solutions for the entropy generation problem. More exactly, in 
this work, the focus is on entropy generation due to highly accelerated plate motion in the vertical direction 
which is not studied in the literature before this. Water is taken as a counter-example of a Newtonian fluid. The 
Prandtl number for water is taken as 6.2, however, just for variation purpose, some other values are also taken. 
The problem is first modeled and then the dimensionless analysis is used to get a transformed system. The results 
problem is solved for the exact solution using the Laplace transform method whereas for numerical technique, 
the numerical scheme known as finite difference method has been used. Results are computed and then plotted 
in various plots and discussed in detail. This paper ends with a conclusion at the end.

Description of the problem.  Consider the Casson fluid model for the flow of sodium alginate solution over 
as accelerated plated. Meanwhile, it is assumed at τ ≤ 0 , the system was at ambient temperature with zero veloc-
ity. However, at τ = 0+ , the fluid starts motion with v(0, τ ) = Aτ 2 , and temperature variated to ϑ(0, τ ) = θw . 
Hence, convection is taken place. The governing equation of the flow phenomena are given by

the energy equation in the absence of radiation is presented as under.

subject to

The below given dimensionless variables

(1)ρ
∂v(η, τ)

∂τ
= µ

∂2v(η, τ)

∂η2
+ ρgβ0(θ(η, τ)− θ∞)− δB20v(η, τ)

(2)ρcp
∂θ(η, τ)

∂τ
= k

∂2θ(η, τ)

∂η2
,

(3)
v(η, 0) = 0, θ(η, 0) = θ∞
v(0, τ) = Aτ 2, v(∞, τ) = 0
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





,



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11964  | https://doi.org/10.1038/s41598-021-89744-w

www.nature.com/scientificreports/

are incorporated into Eqs. (1–3). The momentum equation is given in Eq. (1) is nondimensionalized and is 
presented as under.

The heat equation, which was displayed in dimensional form as Eq. (2) is now given in nondimensional form 
as under.

With non-similar initial and boundary conditions as:

where

Entropy generation.  In heat transfer systems, using Eq. (4–6), the reduction in energy losses can be math-
ematically expressed4–6,13,14.

Taking into consideration, the non-similarity variable,  ∂θ/∂η = �θA
1
5 ν−

3
5 ∂θ∗/∂η∗ and 

∂v/∂y = A
2
5 ν−

1
5 ∂v∗/∂η∗ are produced and incorporated into Eq. (7), which yields

where

Bejan number.  The Bijan number for the dimensionless system developed in Eqs. (4–6) is defined as

and

Exact solutions by Laplace transform method.  In the literature, numerical or approximate methods 
are used to deal with mixed convection problems, and the exact solutions are rare. Here, the exact solution can 
be obtained via the Laplace transformation method, (4–6) gives by applying the Laplace transformation:

The initial condition is used while applying the integral transform and the boundary conditions in the trans-
formed variable are given as under.
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In the transformed variable the energy equation whit boundary conditions are given as:

Equation (13) can be solved by using boundary conditions (14) as:

The inverting the Laplace transform is employed which yield to

Meanwhile, Eq. (11) is solved taking into account Eqs. (11, 12, 15) yield to

where Pr  = 1.

with the inverse Laplace transform,

where

Skin friction.  The skin friction of the system in dimensionless form is given by

Nusselt number.  From Eq. (15) the Nusselt number in e dimensionless form is given by
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Results and discussion
A new problem of entropy generation is studied in this work numerically as well as analytically. The flow is con-
sidered over quadratic accelerated plate in the presence of a strong magnetic field. Analytical part of this work 
is done via Laplace transform whereas the numerical part is done using the finite difference scheme. Results for 
different parameters are computed and displayed in various plots and tables. The finite difference scheme results 
are computed using MATLAB.

Finite difference scheme.  Finite difference method is a distinguished technique in the numerical analysis. 
This technique is applied here to compute results shown in tabular form. In this condition, the numerical solu-
tion which is identified exclusively at a finite number of points in the physical field is recognized as discrete. The 
operator of this numerical technique can pick the number of those points. In fact, both resolution and numerical 
solution precision are enhanced when the point number rises. The discrete approximation leads to a group of 
algebraic equations which are assessed according to the values of the discrete unknowns.

The assortment of positions where the discrete solution is calculated is recognized as the mesh. The funda-
mental basis of the finite-difference method is to substitute continuous derivatives by the supposed difference 
formulas which include only the discrete values related to locations on the mesh. The application of the finite-
difference method to a differential equation implicates substituting all derivatives with difference formulas. 
Both derivatives with respect to space and derivatives with respect to time exist in the heat equation. Several 
systems can be obtained after varying the arrangement of mesh points in the difference formulas. Therefore, 
The numerical solution achieved via whatever valuable scheme will approximate the real solution to the original 
differential equation.

The above finite difference scheme, has been used for computing the following tabulated data. Therefore, 
Tables 1, 2, 3 and 4 are formed. The numerical values given in Table 1 shows the variation in velocity of the fluid. 
These results shows that increasing values of Ha causes the velocity water to decrease. However, increasing Gr 
decreases fluid velocity and the fluid flows slowly. Variation in the skin-friction for different values of Ha and Gr 
are shown in Table 2. From this table we can clearly see that increasing Ha results a decrease in the magnitude 
of skin-friction. However, skin-friction increases for larger values of Gr. Table 3 shows variation in the Bejan 
number for Ha and Gr when other parameters are kept constant. With increasing Ha, Bejan number increases 
but decreases for increasing Gr. The finite difference results for entropy generation are shown in Table 4. This 
table clearly shows that with increasing Ha, entropy generation decreases. However, for larger values of Br and 
� , entropy generation increases.

Table 1.   Finite difference results for velocity.

Ha Gr V

0.5 1 0.4067

– – 0.3562

1 – 0.3919

0.5 – 0.4937

– 2 0.0190

Table 2.   Finite difference results for skin-friction.

Ha Gr cf

0.5 1 0.0105

– – 0.0094

1 – 0.0106

0.5 – 0.0105

– 2 0.0141

Table 3.   Finite difference results for Bejan number.

Ha Gr Be

0.5 1 1.0961× e
−6

– – 1.9870× e
−6

1 – 1.1753× e
−6

0.5 – 9.8233× e
−7

– 2 1.0484× e
−6
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Numerical simulations of exact solutions.  In Fig. 1, Bejan number is plotted against the space variable 
η for different values of Grashof number. It is clear from this figure that Gr is responsible for lowering Bejan 
number.

In the subsequent figure (Fig. 2), Bejan number versus η is examined for magnetic parameter (Ha), also knows 
as Hartmann number. It is found that Ha cause Bejan number to grow, however, the increase in Bejan number 
due to Ha is more dominant.

Figure 3 shows plot for entropy generation versus η against Gr. In this figure the variation in entropy genera-
tion profile is shown for different values of Thermal Grashof number, the greater this value, the higher is the 
entropy generation and vice versa. Physically the higher values Gr enhances the irreversibility. Figure 4 is plotted 
for entropy generation versus η against Ha. Entropy generation behaves in opposite manner for the larger values 
of Ha i.e. decreasing with increasing Ha (Fig. 4) due to prominent friction force.

The velocity profile for different values of Gr is plotted in this figure (Fig. 5). Due to buoyancy forces the 
velocity decreases with the increasing values of Grashof number. This purpose is served by varying the Grashof 
number (Gr) while other parameters possess some constant values. Gr is a critical quantity in those ow problems 
which involve the free convection mechanism. The physical phenomenon causing such results is an augmenta-
tion in the wall temperature due to a rise in Gr. This leads to reduce the force of internal resistance and makes 
gravitational effects more strong. Correspondingly, the viscous influence on the velocity is efficiently encountered 
by the buoyancy force and the flow field species a rising trend.

Figure 6 is plotted to illustrate the velocity field for several values of the magnetic parameter Ha, (Hartmann 
number). It is noticed that Ha produces decelerating effects on the fluid motion. Physically, Newtonian fluid 
acquires maximum transportation speed in the absence of magnetic influence. The physical argument that jus-
tifies this flow retardation is the origination of the Lorentz force. According to Lorentz’s theory, this force is a 
resistive one, which serves against the flow direction. Moreover, as Ha increases, this force enhances the viscous 
effects and drags the viscous fluid in a reverse direction.

Figure 7 is plotted for velocity versus η against  time. It is found that velocity increases with increasing time 
near the plate, however, for values away from the plate, goes to zero.

Figure 8 is plotted for temperature versus η against  Pr. For different values of time this figure is plotted. Here it 
is noticed that the obtained solutions are satisfying the imposed conditions on the boundary. For different Pr the 
temperature profile is drawn in this figure. From Pr = 1 to Pr = 4 the temperature in showing increasing behavior.

The skin friction against time (t) is plotted in this figure (Fig. 9) for various values of Ha , it is clearly seen 
from this plot that skin friction is decreasing for increasing values of Ha. Fig. 10 is plotted for skin-friction versus 
time against Gr, when other parameters possess some constant values. Gr is a critical quantity in such a flow 
problem which involves the free convection mechanism, and with its increasing values skin-friction decreases. 
Physically, for different values of Gr the skin friction is showing decreasing behavior as contrary to velocity due 
to weaker contact. However, the change is very small to clearly differentiate.

Table 4.   Finite difference results for entropy generation.

Ha τ Br � Pr Gr η Ns

0.5 2 0.5 10 6.2 1 0.5 0.1907

1 – – – – – – 0.1878

0.5 – 0.9 – – – – 0.343

– – 0.5 15 – – – 0.1272

– – – 10 – – – 0.1985

Figure 1.   Plot for Bejan number versus η against Gr.
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Figure 2.   Plot for Bejan number versus η against Ha.

Figure 3.   Plot for entropy generation versus η against Gr.

Figure 4.   Plot for entropy generation versus η against Ha.
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For various values of Pr the Nusselt number is drawn in this figure (Fig. 11) against time. Near the plate the 
Nusselt number decreases with increasing values of time while away from the plate the Nusselt number increases 
with increasing values of Pr.

Figure 5.   Plot for velocity versus η against Gr.

Figure 6.   Plot for velocity versus η against Ha.

Figure 7.   Plot for velocity versus η against time.
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Figure 8.   Plot for temperature versus η against Pr.

Figure 9.   Plot for skin-friction versus time against Ha.

Figure 10.   Plot for skin-friction versus time against Gr.
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Concluding remarks
In this work, the effect of magnetic field is studied on highly accelerated fluid motion and the the entropy gen-
eration analysis is then performed by taking water as a Newtonian fluid. The fluid is constantly heated from one 
side and heat transfers due to convection. The problem is first modelled and then solved for exact and numerical 
solutions. Results for Bejan number, entropy generation, velocity, temperature, and skin-friction are computed 
in tables and various plots. The following key points are concluded from this work.

•	 Entropy generation decreases with increasing Ha but increases for larger values of Br and �.
•	 Ha reduces fluid motion.
•	 With increasing Ha, Bejan number increases but decreases for increasing Gr.
•	 The variation in the Bejan number is more visible compare to entropy generation for larger values of Gr.
•	 The magnitude of entropy generation is bigger compare to Bejan number for greater Hartman number, 

however, this change in Bejan number is more effective.

Received: 21 February 2021; Accepted: 20 April 2021
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