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CMM‑Net: Contextual multi‑scale 
multi‑level network for efficient 
biomedical image segmentation
Mohammed A. Al‑masni & Dong‑Hyun Kim*

Medical image segmentation of tissue abnormalities, key organs, or blood vascular system is of great 
significance for any computerized diagnostic system. However, automatic segmentation in medical 
image analysis is a challenging task since it requires sophisticated knowledge of the target organ 
anatomy. This paper develops an end-to-end deep learning segmentation method called Contextual 
Multi-Scale Multi-Level Network (CMM-Net). The main idea is to fuse the global contextual features 
of multiple spatial scales at every contracting convolutional network level in the U-Net. Also, we 
re-exploit the dilated convolution module that enables an expansion of the receptive field with 
different rates depending on the size of feature maps throughout the networks. In addition, an 
augmented testing scheme referred to as Inversion Recovery (IR) which uses logical “OR” and “AND” 
operators is developed. The proposed segmentation network is evaluated on three medical imaging 
datasets, namely ISIC 2017 for skin lesions segmentation from dermoscopy images, DRIVE for retinal 
blood vessels segmentation from fundus images, and BraTS 2018 for brain gliomas segmentation 
from MR scans. The experimental results showed superior state-of-the-art performance with overall 
dice similarity coefficients of 85.78%, 80.27%, and 88.96% on the segmentation of skin lesions, retinal 
blood vessels, and brain tumors, respectively. The proposed CMM-Net is inherently general and could 
be efficiently applied as a robust tool for various medical image segmentations.

Medical imaging is an approach that generates interior visual representations of the hidden internal structures 
inside the human body. This process could be applied noninvasively such as Magnetic Resonance Imaging 
(MRI), Computed Tomography (CT), X-ray, Ultrasound (US), endoscope, ophthalmoscopy, and dermoscopy 
modalities. Such imaging modalities play a crucial role in clinical analysis, diagnosis, and treatment planning. 
Computer-Aided Diagnosis (CAD) system is an indispensable tool that aims to provide assistance to clinicians 
through interpretations of the abnormalities existing in the medical images such as brain tumors in MR images1, 
liver nodules and pulmonary lung nodules in CT images2,3, breast masses in mammograms4, and skin lesions in 
dermoscopy images5. Most of the traditional CAD systems are performed through four consecutive stages: data 
preprocessing, Region of Interest (ROI) detection or segmentation, features extraction and selection, and clas-
sification. The detection stage (CADe) usually aims to localize the suspicious lesions in the input images, while 
the segmentation stage delineates the specific lesion boundaries. However, the diagnosis stage (CADx) utilizes the 
extracted features from the detected or segmented suspicious regions to differentiate between different diseases.

Medical image segmentation is a fundamental preliminary step for any CAD system in medical image analysis 
applications. For example, the segmentation of brain tumors in MR images could considerably enable provid-
ing accurate quantitative analysis and diagnosis of ischemic stroke and Alzheimer’s diseases6. In addition, seg-
mentation of blood vessels from retinal images, also known as fundus images, is of significance for automatic 
screening of diabetic retinopathy7. Similarly, skin lesion boundary segmentation using dermoscopy images is 
an important process to support dermatologists of recognizing melanoma from other skin cancer types in its 
early stages through integrating specific knowledge such as lesion’s size and contour’s shape8. Figure 1 illustrates 
some exemplary pairs of medical images and their segmentation masks such as blood vessels, brain tumors, and 
skin lesions (as is the case in this work). However, manual segmentation of such medical applications is a chal-
lenging task since it requires a sophisticated prior knowledge of organ anatomy. Furthermore, the annotation 
process itself is extremely laborious, subjective, prone to error, and time-consuming at large biomedical data. In 
this regard, efficient automated segmentation algorithms are highly demanded in clinical applications for more 
accurate analysis and diagnosis.
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Even though the last decades have witnessed numerous developments for providing automated semantic 
segmentation methods with lower cost and less user intervention, challenges still exist in many medical imaging 
segmentation tasks. More specifically, the low contrast, complex geometry, irregular boundaries, high inter- or 
intra-class variations, as well as the presence of noise and artifact in some imaging modalities added extra 
obstacles to biomedical segmentation tasks. Moreover, the difficulty of medical image analysis is related to the 
image quality and labeling variation. One example is illustrated in Fig. 1, where small vessel segments of the 
retinal images are hard to be identified. Also, due to the scarcity of medical images, training as well as testing has 
been performed on limited image data. Different from the state-of-the-art methods, the proposed segmentation 
method comprises appropriate global pyramid representations at every level in the encoder network, which is 
also associated with multi-scale context-aware.

In this paper, we develop an end-to-end, pixel-to-pixel deep learning segmentation methodology called Con-
textual Multi-Scale Multi-Level Network (CMM-Net). The main idea is to fuse together the global context fea-
tures of multiple spatial scales at every contracting convolutional network level in the U-Net. Also, we re-exploit 
the dilated convolution module that enables an expansion of the receptive field with different rates depending on 
the size of feature maps throughout the networks, leading to generate dense predictions of multi-scale contextual 
information with minimal resolution loss. Furthermore, an extension to the test-time augmentation referred to 
as Inversion Recovery (IR) is presented. The IR scheme is able to accumulate all the predictions of the augmented 
testing data using logical “OR” and “AND” operators. The proposed method achieves state-of-the-art segmenta-
tion performance on three different medical imaging modalities (i.e., skin lesions in dermoscopy images, retinal 
blood vessels in fundus images, and brain glioma tumor in MR images).

In the next section, we review the current approaches to semantic segmentation and previous works on medi-
cal imaging segmentation. Afterwards, the following sections describe the design of the proposed CMM-Net, the 
details of the utilized medical datasets, and explain the inversion recovery evaluation scheme. Finally, we present 
the experimental segmentation results of skin lesions, retinal blood vessels, and brain tumors.

Related work
Recently, end-to-end deep learning segmenters based on Convolutional Neural Networks (CNNs) have been 
gaining attention due to their superior performance on different segmentation benchmarks. The most famous and 
impressive semantic segmentation methods include Fully Convolutional Networks (FCN)9, U-Net10, SegNet11, 
and DeepLab12. FCN was the first semantic segmentation method, which converted the conventional classifi-
cation CNNs to pixel-wise segmentation by replacing the fully connected Neural Networks (NNs) layers into 
convolutional layers. Eventually, FCN exploited the up-convolution with the element-wise fusing from shallower 

Figure 1.   Exemplary pairs of the original medical images and their ground-truth segmentation masks.
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layers to generate dense of predictions as the same size of the input. As an extension to FCN, U-Net, SegNet, 
and DeepLab were developed to improve the coarse output segmentation map by innovating encoder-decoder 
networks that share the hierarchy features. Lately, a lot of improvements using dilated convolution13, also known 
as atrous convolution, Spatial Pyramid Pooling (SPP)14, Atrous SPP (ASPP)12, and Pyramid Scene Parsing (PSP)15 
have been introduced. The goal of these key ideas is to generate multi-level contextual information. For instance, 
dilated convolution enabled the network to control the resolution of the learned features by enlarging the recep-
tive field of filters, equivalent to adding holes (i.e., zeros) between the elements of convolutional kernels. However, 
SPP eliminated the fixed input size constraint of CNN in image recognition and utilized local multi-level pool-
ing to maintain the spatial information. In the PSP module, it was possible to incorporate hierarchical global 
context features from various pyramid scales to produce semantic parsing dense maps. It is noteworthy that all 
these components were only applied to the top layer of the network since the large pooling scales comprise more 
global information, while the small scales preserve the fine details.

The exploration of multi-scale feature fusion has been further studied for improvement of several semantic 
segmentation tasks. DeepLabv316 employed the atrous convolution of various rates along with ASPP in cascade 
or in parallel to extract rich multi-scale contextual information. An enhanced DeepLabv3 + 17 was extended by 
adding a decoder module to refine the detailed object boundaries. A depth-wise separable convolution was also 
added to both the ASPP and decoder modules, producing a faster and more robust network. In addition, various 
extensions have been made on the encoder-decoder U-Net. Attention U-Net18 aggregated Attention Gates (AGs) 
at each decoder level. The AGs added the feature maps from the relevant encoder level with features from the 
former decoder level resulting in suppressing the feature responses to irrelevant regions. GridNet19 intercon-
nected multiple streams or paths at different resolutions in a grid pattern. These connections were performed 
horizontally and vertically throughout the encoder-decoder network, leading to share low and high resolutions 
and hence capturing more context information for full scene labeling. A Multi-Scale Densely Connected U-Net 
(MDU-Net)20 employed the well-known DenseNets21 concept by combining three different multi-scale dense 
connections at the encoder, decoder, and cross-connections. This architecture could fuse various scale feature 
maps from different resolution layers. Similar to GridNet, a Full-Resolution Residual Network (FRRN)22 was 
proceeded using two processing streams. The first stream carried the full-resolution information, while the other 
pooling stream extracted multi-scale contexts.

More recently, large kernel SPP23 was proposed to address sufficient receptive fields while maintaining the 
same computational efficiency. This module was located at the transition layer between the encoder and decoder, 
where it consisted of global context network and depth-wise separable convolution. Context Encoder Network 
(CE-Net)24 was developed using three modules: encoder, context extractor, and decoder. The context extractor 
module contained two main blocks: dense atrous convolution block that captured deeper and wider context 
features by fusing cascaded paths and residual multi-kernel pooling block that encoded global context infor-
mation at multi-size receptive fields. A Hyper-Densely connected CNN (HyperDense-Net)25 was proposed for 
multi-modal image segmentation. Inspired from DenseNet, HyperDense-Net densely connected not only the 
layers within the same path, but also these connections occurred across various paths. UNet +  + 26,27 extended 
the U-Net by redesigning the skip connections between encoder and decoder and fusing the features of different 
semantic scales. UNet +  + is an ensemble architecture that integrates multiple U-Nets of different depths into a 
single unified network. This could allow the network to aggregate the original, intermediate, and final features at 
decoder. As an extension to UNet +  + , UNet 3 + 28 replaced the nested convolution blocks at the encoder-decoder 
path by two different connections: densely inter-connection between encoder and decoder and densely intra-
connection among decoder levels. These densely full-scale skip connections could fuse the low-level details with 
high-level features and maintain the full use of multi-scale features. In opposite to most existing state-of-the-art 
segmenters that first encoded the input into low-resolution features and then decoded and recovered the high-
resolution features, High-Resolution Network (HRNet)29 preserved the high-resolution features throughout the 
whole network. This was achieved by connecting parallel multi-resolution (i.e., high-to-low resolution) convolu-
tion streams and repeating this stage with multi-resolution fusions across the parallel streams, leading to obtain 
richer and more precise spatial representations.

In terms of applications, deep learning networks have been employed for several medical imaging tasks 
including image classification30, object detection31–34, semantic segmentation35,36, artifact denoising37, and image 
reconstruction38. Also, many studies have been conducted for skin lesion boundary segmentation8,35,39–41, retinal 
blood vessel segmentation42–44, and brain tumor segmentation45–48. Further, some works have been conducted 
for multiple medical image segmentation24,26,27,49,50.

In addition to training data augmentation, some deep learning researches have presented the effectiveness of 
Test-Time Augmentation (TTA), in which the following steps were used: test data augmentation, prediction, and 
merging or averaging of the results. Krizhevsky et al.51 and Simonyan et al.52 averaged the predictions of multiple 
cropped patches around the object and horizontally flipped images to obtain the final score of an image classifica-
tion model. These multiple predictions of a given test image help to achieve more robust inference. More recently, 
this procedure has been applied to medical image segmentation tasks to improve segmentation accuracy. The 
final segmented label was computed as an average or as a pixel-wise majority voting of the predicted pixels53–57. 
The disadvantage of TTA is its computational cost since the inference is performed many times depending on 
the number of augmentations. However, TTA is promising for medical image applications.

Our contributions.  The main contributions of this paper are fourfold.

•	 We propose an end-to-end deep learning network for medical image segmentation named Contextual Multi-
Scale Multi-Level Network (CMM-Net). The main idea of our CMM-Net is to generate global multi-level 



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10191  | https://doi.org/10.1038/s41598-021-89686-3

www.nature.com/scientificreports/

contextual information at every encoder convolutional level, which allows the network to learn various spatial 
scales of the target with minimal resolution loss. This is achieved by frequently promoting pyramid pooling 
and dilated convolution modules with different spatial rates throughout the networks.

•	 The proposed work achieves state-of-the-art performance on three different medical imaging benchmarks, 
including segmentation of skin lesion from dermoscopy images, retinal blood vessels from fundus images, 
and brain malignant glioma from MR images. We compare our results to recent state-of-the-art architectures 
such as U-Net, PSP-Net, DeepLabv3 + , CE-Net, and UNet +  + .

•	 We adopted a modified segmentation evaluation scheme called Inversion Recovery (IR), which can generate 
more accurate segmentation maps by utilizing augmented testing data using a combination of logic opera-
tions.

•	 We make the source code publicly available for researchers for validation and further improvement here: 
https://​github.​com/​Yonsei-​MILab/​Biome​dical-​Image-​Segme​ntati​on-​via-​CMM-​Net.

Materials and methods
Dilated convolution.  Dilated convolution or atrous convolution13 is inspired by wavelet decomposition58, 
which is able to assemble multi-scale contextual features instead of using successive pooling layers. It controls 
the resolution of such information by exponentially enlarging the receptive field of filters. Consider f [x] be a 
discrete input and w[x] be a discrete filter or kernel. The standard spatial convolution can be computed as:

where ′∗′ and ′·′ indicate the convolution and ordinary multiplication operations, respectively. Then, the dilated 
convolution with dilation rate r is defined as:

It is of note that the resulting receptive field expands exponentially when the dilation rate gets increased. This 
relation can be formulated as 

(

2r+1 − 1
)

×
(

2r+1 − 1
)

 , in which it becomes identical to standard convolution 
when r = 1 . Thus, the dilated convolution could control the resolution of the contextual information where the 
number of learning parameters increases linearly. Figure 2a depicts the concept of the dilated convolution with 
its related receptive field.

Pyramid pooling module (PPM).  The key role of Pyramid Pooling Module (PPM) is to generate ensem-
ble high-level feature maps, which represent global context information of multi-scales. In contrast to the SPP 
that passes the flattened and concatenated multi-level features into FC-NN in the classification tasks, PPM could 
reduce the loss of information between various sub-levels and extract effective hierarchical global representa-
tions. Figure 2b illustrates the configuration of the PPM. The PPM starts with subsampling the convolved fea-
tures into four parallel pyramid levels with different scales. Larger pooling factor produces coarser features (i.e., 
similar to global average pooling), while the finer representations are extracted with smaller pooling factors. 
Then, the bottleneck layer that uses 1 × 1 convolution is applied directly after each pooled features to improve 
the computation capability by reducing the context dimension to 1/N , where N indicates the pyramid’s level size. 
For instance, if the level size of the pooling pyramid N = 4 (as the case of this work), then the feature maps of 
each level will be reduced by the factor of 1/4 . To get back to the original feature maps right before the pyramid 
pooling, up-sampling via bilinear interpolation is applied to each pyramid level. Eventually, concatenation of all 
the up-sampled feature maps with the original feature map is conducted to fuse global context features.

(1)f [x] ∗ w[x] =

+∞
∑

k=−∞

f [k] · w[x − k],

(2)f [x] ∗r w[x] =

+∞
∑

k=−∞

f [k] · w[r(x − k)].

Figure 2.   (a) An example of dilated convolution at rate of two, which generates a receptive field of 7 × 7 pixels. 
(b) Pyramid Pooling Module (PPM) configuration.

https://github.com/Yonsei-MILab/Biomedical-Image-Segmentation-via-CMM-Net
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The above two key modules have been exploited to design our proposed network as explained in the follow-
ing section.

Proposed CMM‑Net architecture.  Inspired by deep learning U-Net10, we propose an end-to-end seg-
mentation network called CMM-Net. Similar to the original U-Net, the proposed network consists of contract-
ing and expanding paths, also known as encoder and decoder networks. The contracting path contains sequen-
tial convolutional and subsampling layers, which are responsible to capture hierarchical features. Symmetrically, 
the expanding path involves up-convolution and up-sampling layers, in which all the features in the encoder 
are passed and concatenated with the feature maps in the decoder. This process increases the resolution of the 
output’s dense map and hence allows for more accurate localization. In this work, the exploited U-Net consists 
of four main levels, including eight convolutions and three pooling layers in the contracting path and seven up-
convolutions, three up-sampling, and a single softmax layer in the expanding path. Details of the feature maps 
and convolution filter sizes are presented in Fig. 3.

Unlike previous semantic segmentation methods such as PSPNet15, Deeplabv3 + 17, large kernel SPP23, and 
CE-Net24 that applied pyramid pooling at only the top of encoder network (i.e., only PPM #3 block in Fig. 3a), the 
proposed work suggests to make full utilization of the pyramid pooling module. This is accomplished by repeat-
edly attaching the module at each level in the encoder network (i.e., PPM #1, 2, and 3) as shown in Fig. 3a. Thus, 
the redesigned frequent pyramid pooling network enables to extract and learn multi-spatial global information 
and allows to share them between encoder and decoder networks. Also, different from GridNet19, UNet +  + 26,27, 
and UNet3 + 28 that re-designed the plain skip connections in the original U-Net by strengthening the encoder-
to-decoder gap using wired, nested convolution blocks, or densely connections, which cause increase in the 
number of trainable parameters, the proposed network aggregates multi-scale global representations at various 
skip connection levels while maintaining lower computational cost. The novelty of the proposed work is based 
on the way that the utilized components (i.e., dilated convolution and PPM) are re-designed to make full use of 
global multi-scale contextual information through each network layer, which leads to capturing various spatial 
scales while minimizing the input resolution loss. This fusion scheme of the multi semantic scales enables to 
share coarse-to-fine details with localization information at every level between the encoder and decoder. More 
specifically, applying the PPM at the early encoder level, as the case of PPM #1 and 2, results in learning global 
fine-grained and structural details as well as preserving the input resolution, while the PPM at the top of the 
encoder (i.e., PPM #3) extracts coarser representations. Figure 3b visualizes example feature maps before and 
after applying the PPMs. It is shown how efficient PPM #1 is in extracting global features while maintaining input 
resolution with location-awareness compared to the feature maps after PPM #3. The green contours in Fig. 3b 
represent the precise features of the target in the image, which are intelligible within the feature maps of PPM 
#1 and 2, while the green arrows indicate the coarser information at PPM #3. This strategy enables the proposed 
network to achieve efficient multi-scale multi-level segmentation.

To achieve superior segmentation performance, we have adopted three PPM units, involving four different 
scales varied in the range between 1 × 1 to 64 × 64 pixels, while the size of feature maps in each level of PPM is 
set to be 64 in the case of skin lesion and brain tumor datasets and 128 in the case of retinal blood vessels data. 
In this work, we deal with different medical image modalities that have various input sizes. Due to that, the 
larger pooling scale of 64 × 64 is applied with the skin lesion dermoscopy data, however, 48 × 48 and 32 × 32 
are set for brain tumor MR and retinal fundus images, respectively. It is of note that all these parameters of the 
PPM can be modified.

Furthermore, we have employed the dilated convolution strategy in all designed convolutional layers. To 
address the input size variation throughout the network (i.e., due to the existence of pooling layers), we assign 
different dilated rates, which directly related to input sizes. More specifically, the dilated rate r is set to be 6, 5, 4, 
and 3 in the encoder levels, while it is 4, 5, and 6 in the decoder levels as noted in Fig. 3. Hence, larger receptive 
fields are obtained to derive high-resolution feature maps.

All the convolutional layers in the proposed network have been appended by batch normalization (BN) 
process and activation function (ReLU). The extracted prominent representations at the last convolutional layer 
are fed into a softmax function. In our task, the softmax layer works as a binary classifier since each pixel is 
categorized into tumor or tissue as the case of skin and brain datasets and into vessel or background as the case 
of retinal images.

Network training.  In this work, we have conducted network training using the double cross-validation 
strategy59. The key role of the double cross-validation is to determine the tunable parameters and avoid any 
bias procedure during building the model. This process is accomplished by dividing the data into three subsets, 
namely the training, validation, and testing sets. The network optimization (i.e., selecting proper hyper-parame-
ters) is performed using the validation set, while the model evaluation is proceeded using the testing set. During 
network training, forward and backward propagation cycles are occurred, leading to compute the prediction 
maps and estimated segmented errors. The estimated error between the segmented maps ( SM ) and the ground-
truth annotations ( GT ) is computed using dice loss function (L) as follows,

The proposed CMM-Net is trained using Adam optimization method with a batch size of 20 for both skin 
lesion and retinal fundus datasets and 5 for the brain tumor dataset. This variation is due to the hardware require-
ments of the GPU memory limit, where the brain tumor dataset contains very large augmented training images. 

(3)L = 1−
2× (SM ∩ GT)

SM ∪ GT
.
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Moreover, we initially set the learning rate to 0.0001 and it is reduced by a factor of 10 throughout 100 epochs 
for both skin cancer and retinal fundus tasks and 30 epochs for brain glioma MR data.

The implementation of this work is conducted using a PC equipped with GPU of NVIDIA GeForce GTX 
1080 Ti. This work is implemented using Python programming language, Keras library, and Tensorflow backend.

Inversion recovery (IR) evaluation scheme.  In this study, we present a version of TTA for image seg-
mentation tasks called Inversion Recovery (IR), which is performed as a post-processing step applied to aug-
mented test data. The main idea is to accumulate different segmented maps of various orientations for the same 
original testing image. This process requires to first augment each testing data multiple times using different 
rotations and flipping. After these augmented data have been tested via the proposed CMM-Net, we retrieve 
their prediction maps (i.e., segmented masks) into the original orientation by applying inverse augmented pro-
cesses. Then, we fuse all the retrieved segmented maps along with the original map utilizing the logical “OR” 

Figure 3.   (a) The architecture of the proposed CMM-Net segmentation method. Details of the filter sizes and 
the number of feature maps are illustrated in the bottom left corner of (a). (b) Visualization of example feature 
maps before and after applying the PPM at different encoder levels. The larger two scales of each PPM with sizes 
of 48 × 48 and 16 × 16 are presented since they contain intelligible patterns.
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and “AND” operators. In other words, for a given test image, multiple predictions or segmentation maps can be 
generated based on applying different augmentations to each test image. The final segmented result is computed 
as an ensemble of their prediction maps. This procedure allows to get more confident results as well as improving 
the overall segmentation performance. We illustrate the IR evaluation scheme in Fig. 4. Different from TTA that 
creates multiple samples of each test data, then returning a single ensemble prediction by averaging the results 
of all augmented copies per sample, the proposed IR performs this process using logical “OR” and “AND” opera-
tors. It is assumed that this IR scheme matches well with the CMM-Net due to its multi-scale learning ability. 
The motivation to use this augmented IR scheme is that the multi-scale learning filters of the CMM-Net can be 
expressed efficiently when tested with different views.

Formally, consider Io is the segmented binary map for any original test image. This map is updated using an 
“OR” operator with other segmented maps Ik of the recovered augmented data for the same original image. Then, 
the resulting new segmented map can be identified as follows,

where ‘|’ refers to the “OR” operator and n indicates the number of augmented maps. Further, the “AND” opera-
tor is utilized to accumulate results when multi-color space is employed as the case of skin lesion segmentation. 
This proposed evaluation scheme could improve the segmentation performances of various medical imaging 
applications.

Experiments
Databases and their preparation.  In this work, three public medical imaging benchmarks were utilized 
to evaluate the proposed CMM-Net segmentation method. Example images with their ground-truth segmenta-
tion masks are demonstrated in Fig. 1.

Skin Lesions.  The most widely utilized and available database for skin lesion segmentation is known as the 
International Skin Imaging Collaboration (ISIC) Challenge 2017. The ISIC 2017 dataset involves a total of 2,750 
RGB dermoscopy images, which are divided into 2,000 samples for training, 150 samples for validation, and 600 
samples for testing. All the provided dermoscopy images are paired with the binary segmentation masks, which 
were delineated by expert dermatologists.

Due to the large variation in image sizes ranged from 540 × 722 to 4499 × 6748 pixels, we rescaled all the data 
to 192 × 256 pixels, as a prerequisite step, using bilinear interpolation as successfully applied in8.

Retinal blood vessels.  The experiments of how efficient our proposed CMM-Net on segmenting the retinal 
blood vessels are proceeded utilizing the Digital Retinal Images for Vessel Extraction (DRIVE) dataset60. The 

(4)Io = (Io|IR(Ik)), k = 1, . . . , n,

Figure 4.   Inversion recovery evaluation scheme.
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DRIVE dataset consists of 20 retinal images for training and 20 images for testing obtained from the screening 
program for diabetic retinopathy in The Netherlands. This dataset is provided along with manually segmented 
annotations of the retinal vasculature by expert ophthalmologists and binary masks of the field of view (FOV). 
The DRIVE dataset contains 8-bit RGB images with a fixed size of 584 × 565 pixels.

To improve the visibility of the retinal images and in particular the small vessels, we applied the Contrast 
Limited Adaptive Histogram Equalization (CLAHE) method61. Further, due to the limited size of this dataset, 
we considered a patching approach to enlarge the number of training samples. Firstly, we cropped the input 
data that exists in the FOV. Then, we extracted overlapped small patches from all training retinal images with 
a size of 128 × 128 pixels and a stride of 64, resulting in 1,280 patches. However, for the testing data, 500 non-
overlapped patches were extracted.

Brain tumors.  Multimodal Brain Tumor Segmentation Challenge (BraTS) is the largest and publicly available 
dataset, which focuses on segmenting the brain tumors, namely gliomas (low- and high-grade), from multi MRI 
modalities62–64. In this paper, we utilized the BraTS 2018 dataset, which contains 285 training cases and separate 
sets of 66 and 191 cases for validation and testing, respectively. It is of note that, the ground-truth annotations 
of the training cases are only accessible. However, it is possible to evaluate the proposed segmentation network 
using the validation cases throughout the online submission system. Regarding the testing set, it was only uti-
lized to rank participants at the challenge time. Thus, we have randomly split the original training cases into 80% 
for network training and the rest 20% for a network assessment. In this paper, we call this 20% set as a local test 
data. Each case in this dataset includes four 3D MRI modalities, named as T1, contrast T1-weighted (T1Gd), 
T2-weighted, and T2 Fluid Attenuated Inversion Recovery (FLAIR), with a size of 240 × 240 × 155 voxels. In spite 
of that the tumors in the BraTS 2018 dataset are categorized into the Whole Tumor (WT), Enhancing Tumor 
(ET), and Core Tumor (TC), in this work we focused on only segmenting the WT as further evaluation of the 
efficiency of the proposed CMM-Net.

To reduce the network computations, we cropped the volumes to only contain brain data to 192 × 192 × 155 
voxels. In addition, we generated three-channel input images using T2, FLAIR, and T1Gd. This could increase 
the visibility of the brain tumors, leading the network to extract more robust features. For the training data 
generation, we collected all input 2D slices that contain ground-truth annotations (i.e., gliomas), resulting in 
15,290 labeled images. However, at evaluation time, all the slices in the testing and validation sets were passed 
to the network.

The original data distributions of the utilized medical imaging databases are summarized in Table 1. As 
aforementioned, the numbers of the training and local testing cases of the BraTS 2018 that shown in this table 
are summed up to 285 cases, which represents the original training data.

All datasets are normalized between zero and unity. Moreover, to enlarge the training sets, which enables 
appropriate learning of the network and reduces the overfitting problem, we augmented all the databases eight 
times (i.e., including the original ones) using different rotation and flipping processes. An exception, we further 
utilized different color space features such as LAB (L for lightness, A for red-green value, and B for blue-yellow 
value) and SV (S for saturation and V for Value) besides the RGB in the case of skin lesion database since it helps 
on illustrating more details.

Evaluation metrics.  The proposed CMM-Net segmentation method is quantitatively evaluated using sev-
eral performance evaluation measures, including sensitivity (SEN), specificity (SPE), accuracy (ACC), Dice 
similarity coefficient (DSC), Jaccard (JAC) index, and Matthew correlation coefficient (MCC). Moreover, we 
utilized the receiver operator characteristic (ROC) curve along with its area under the curve (AUC) as well as 
precision-recall (PR) curve. For the definitions and formulas of all these indices, refer to this article35.

Experiments setup.  This section experiments the effect of key components of the proposed CMM-Net 
method on the skin lesion boundaries segmentation. It includes the segmentation of the original U-Net as a 
baseline, repeated PPMs, dilated convolution, augmentation of training data, and the IR evaluation process. In 
this experiment, we utilized the Jaccard index to assess the improvement of each added component since it was 
utilized by the ISIC 2017 challenge to rank the participants. Table 2 presents the segmentation performances 
when adding different components to the original U-Net. It is noteworthy that all these investigations were con-
ducted using the same conditions and hyper-parameters. Starting with the baseline U-net, it obtained a Jaccard 
index of only 67.36% for overall skin lesions segmentation. The experiments of gradually applying the PPM #1, 

Table 1.   Distribution of the three medical imaging databases. ‘*’ Indicates to the local training and testing sets 
of the BraTS 2018 dataset.

Database Type Training Validation Testing

ISIC 2017 Images 2000 150 600

DRIVE
Images 20 – 20

Patches 1280 – 500

BraTS 2018
Volume 228* 66 57*

Images 15,290 10,230 8835
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2, and 3 demonstrate the effectiveness of generating multi-level contextual information. Applying the PPM #1 
improves the segmentation performance by 1.16% in term of Jaccard index, while training the network using 
both PPM #1 and #2 improves the performance with an incremental rate of 2.49%. A significant increment of 
5.46% was achieved in term of the Jaccard index in the case of adding the PPMs to all the contractive levels of the 
original U-Net. Again, a marginal increment from 72.82% to 73.94% was obtained when training the proposed 
network with the dilated convolutions. All of these investigations were applied with the original training images. 
Regarding the effect of training the proposed CMM-Net using the augmented training data, a marginal incre-
ment of 0.54% in term of the Jaccard index was achieved for overall skin lesion boundaries segmentation. It is of 
note that the aforementioned experiments were evaluated using the original test images (i.e., without augmented 
the test set). Finally, we showed the effect of using the IR evaluation scheme, which requires to first augment the 
testing images. This process enables the proposed network to segment the skin lesions with a higher incremental 
rate of 3.17% compared to the previous investigation. Generally, our proposed CMM-Net method achieved 
superior performance on segmenting the skin lesions with an overall Jaccard index of 77.65% compared to base-
line original U-Net that obtained 67.36%. This implies that an improvement of a total of 10.29% was gained via 
our proposed work. It is observed that the sensitivity in some experiments is degraded. This degradation is prob-
ably related to the relatively increasing of the amount of false negatives (i.e., lesion pixels that were segmented 
falsely as non-lesions).

As presented, we observed that all the proposed components in the network contributed to improve the 
segmentation performance. In the next section, we present the experimental results of our proposed CMM-Net 
on three different medical imaging tasks. To provide a further comparison, we implemented state-of-the-art seg-
mentation methods such as U-Net, PSPNet based on VGG network, DeepLabv3 + , CE-Net, and UNet +  + using 
the same augmented training data. For all methods, we showed the segmentation results with and without 
applying the IR process.

Results and discussion
Segmentation results on various applications.  Skin lesion segmentation performance.  This section 
presents the performance of the proposed CMM-Net method on segmenting the skin lesions using 600 test 
dermoscopy images of the ISIC 2017 dataset. Quantitatively, we report the experimental results of our proposed 
work against the latest state-of-the-art techniques65–71 in Table 3. The proposed CMM-Net method achieved 
superior segmentation performance compared to others. It outperformed the first ranked method (i.e., deep 
CDNN65) in the ISIC 2017 challenge by 5.19%, 0.53%, 0.88, and 1.15% in terms of overall segmentation sensitiv-
ity, accuracy, DSC, and Jaccard indices, respectively. It is of note that all the listed methods in Table 3 utilized the 
same test data. The experimental results showed that our CMM-Net achieved superior DSC and Jaccard scores of 
85.78% and 77.65, respectively, while maintaining a high true positive segmentation rate of 87.69%. In contrast, 
the proposed segmentation method obtained moderate specificity and overall accuracy indices of 96.23% and 
93.93% compared to other studies, respectively. The proposed method outperformed the U-Net, PSPNet, Deep-
Labv3 + , CE-Net, and UNet +  + by 6.62%, 4.63%, 1.52%, 2.43%, and 1.2% in term of Jaccard index, respectively.

Qualitatively, some examples of the segmented skin lesion boundaries via our CMM-Net (blue contours) 
compared to the ground-truth annotations (green contours) are illustrated in Fig. 5. The results showed how 
efficient our proposed network is on segmenting the irregular skin lesions. Figure 5a–c shows accurate segmen-
tation of the skin lesion boundaries. As demonstrated in Fig. 5d and e, the proposed CMM-Net seems to have 
the ability to segment the suspicious regions with high visual similarity to the lesions, causing under-fitting and 
overfitting of the segmented contours compared to the ground-truths. Such cases need to be reconfirmed from 
the specialists in the field. Moreover, our proposed method has the capability to segment some challenging cases, 
like lesions that exist within hair artifact as the case shown in Fig. 5f. We also show the segmentation results of 
the same examples via DeepLabv3 + (magenta contours) and UNet +  + (yellow contours) in the first and second 
rows of Fig. 5, respectively.

Retinal blood vessel segmentation performance.  In this section, we further evaluated our proposed CMM-Net 
on extracting the retinal vasculature using the 20 fundus images of the DRIVE test dataset. Despite that the 
segmentation was proceeded using the 500 non-overlapped patches that were generated from the original 20 test 
images, the segmentation performance was evaluated based on the original image-level after restructuring the 
small patches into the full segmented images. The overall segmentation performance of the retinal blood vessels 

Table 2.   Evaluations of different network’s component setup.

Network setup SEN SPE ACC​ MCC DSC JAC

Original U-Net 82.69 94.34 90.58 73.43 77.40 67.36

 + PPM #1 78.20 97.02 90.88 74.43 77.44 68.52

 + PPM #1 and #2 76.06 97.89 91.33 75.52 78.38 69.85

 + All repeated PPMs 79.86 97.56 91.98 78.65 81.59 72.82

 + Dilated Convolution 81.60 97.07 92.26 79.64 82.95 73.94

 + Augmented Training Data 82.40 97.44 92.64 80.28 83.13 74.49

 + IR Evaluation Scheme 87.69 96.23 93.93 82.61 85.78 77.65
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via our proposed CMM-Net is summarized in Table 4. It is shown that the proposed method achieved emi-
nent segmentation performance compared to the latest deep learning approaches42,43,49,50,72–77 with overall MCC, 
DSC, and accuracy scores of 78.57%, 80.27%, and 96.64%, respectively. In contrast, MCGU-Net50 achieved a 
higher DSC for the segmentation of the retinal blood vessels at 82.24%. Since the target in this task is small and 
thin segments of blood vessels, we found that training the proposed network without using dilated convolution 
(i.e., r=1) could achieve better extraction of blood vessels with an incremental rate of 1.88% in terms of DSC 
with the usage of IR. As expected, a smaller receptive field is beneficial for thinner targets. Further, the pro-

Table 3.   Skin lesions segmentation performances (%) via the proposed CMM-Net compared to the recent 
deep learning approaches. CDNN: Convolutional-Deconvolutional Neural Networks; LIN: Lesion Indexing 
Network; DAGAN: Decision Augmented Generative Adversarial Networks; DSN: Dermoscopic Skin Network; 
CSARM-CNN: Channel & Spatial Attention Residual Module; DDN: Dense Deconvolutional Network; and 
DRN: Dense-Residual Network. The results of U-Net are different from those presented in Table 2 (i.e., first 
row) because the network was trained using the augmented training data similar to other methods in this table.

Method Parameters Implemented IR SEN SPE ACC​ MCC DSC JAC

Deep CDNN65(1st place in the challenge) 5.0 M × × 82.50 97.50 93.40 – 84.90 76.50

LIN66 – × × 85.50 97.40 95.00 – 83.90 75.30

DAGAN67 – × × 83.30 97.50 93.10 – 85.10 76.90

DSNet68 10.0 M × × 87.50 95.50 – – – 77.50

CSARM–CNN69 – × × 80.22 99.40 95.85 82.32 84.62 73.35

DDN70 – × × 82.50 98.40 93.90 – 86.60 76.50

DRN71 69.8 M × × – – 94.50 – 86.20 76.80

U-Net10 7.3 M ✓
× 90.81 90.09 90.89 73.40 77.94 68.02

✓ 77.93 97.48 91.78 76.62 79.85 71.03

PSPNet15 15.2 M ✓
× 90.58 93.78 92.88 78.46 82.55 72.52

✓ 81.69 97.04 92.52 78.92 82.51 73.02

DeepLabv3 + 17 2.1 M ✓
× 83.27 97.13 93.02 80.79 83.98 75.29

✓ 89.39 95.50 93.42 81.49 84.86 76.13

CE-Net24 26.0 M ✓
× 86.06 96.63 92.82 80.62 83.74 74.95

✓ 82.74 97.48 92.83 80.85 83.79 75.22

UNet +  + 27 24.2 M ✓
× 90.49 94.53 93.44 81.08 84.72 76.13

✓ 88.60 95.79 93.58 81.46 84.86 76.45

Proposed CMM-Net 10.2 M ✓
× 82.40 97.44 92.64 80.28 83.13 74.49

✓ 87.69 96.23 93.93 82.61 85.78 77.65

Figure 5.   Examples of the segmented skin lesions via the proposed CMM-Net (blue contours) against the 
ground-truth annotations (green contours). (a)–(c) Represent precise segmentation results, (d) and (e) 
refer to under-fitting and over-fitting segmented samples, respectively, and (f) indicates accurate boundary 
segmentation result with the presence of the hair artifact. The segmentation results of DeepLabv3 + (magenta 
contours) and UNet +  + (yellow contours) are presented in first and second rows, respectively.
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posed method obtained better segmentation performance with DSC of 80.27% compared to DeepLabv3 + and 
CE-Net that achieved 62.97% and 79.60%, respectively. However, the UNet +  + achieved slightly better results 
compared to the proposed method with a marginal increment of 0.25% in term of DSC. This may be due to 
the intensive use of the nested convolution blocks in UNet +  + with increased number of trainable parameters 
of 24.2 M compared to 13.2 M in our case. Regarding the implemented PSPNet, it failed to segment the frag-
ments of the retinal blood vessels. This may due to the small number of the target vessels’ pixels compared to the 
background tissue in the training patches. As known, the DRIVE dataset includes two different ground-truths 
by two experts. When comparing their segmentations (i.e., one as labeled and other as segmented), the overall 
sensitivity of 77.57%, DSC of 78.79, and an accuracy of 96.37% were obtained, have a look at second and third 
columns of Fig. 6.

Generally, the proposed CMM-Net provides effective segmentation results compared to ground-through 
manual annotations, as shown in Fig. 6. In addition, Fig. 6 presents the missing regions that are drawn with green 
contours. These missing regions represent the peripheral tiny vessels, which considered as a challenging task 
in the retinal vessels extraction. The results showed comparable performances between the proposed network 
and UNet +  + . In contrast, DeepLabv3 + could only extract the large blood vessels, while it failed to segment 
the small ones as shown in the same figure. This may be due to that DeepLabv3 + did not address the full use of 
the decoder, where the number of layers in the decoder (i.e., upsampling of 4 × ) are smaller than those in the 
encoder (i.e., downsampling of 0.5 × ), and that is why its number of trainable parameters are smaller compared 
to other methods.

Brain tumor segmentation performance.  We also evaluated the proposed CMM-Net segmentation method 
using both the 57 local testing and the 66 actual validation MR subjects of the BraTS 2018 dataset. Table 5 sum-
marizes the segmentation results of the proposed method compared to the top three ranked methods78–84 in the 
challenge besides the U-Net, PSPNet, DeepLabv3 + , CE-Net, and UNet +  + . The performance evaluation of this 
task was performed based on the volume segmentation level. Our proposed segmentation method outperformed 
the implemented U-Net and PSPNet based VGG network on the local testing data with a significant increment 
of 12.02% and 6.53% in term of the DSC, respectively. The proposed CMM-Net obtained slightly better DSC 
results compared to DeepLabv3 + , CE-Net, and UNet +  + with incremental rates of 0.67%, 1.05%, and 0.90%, 
respectively. Regarding the segmentation results of the actual validation data, we achieved overall segmenta-
tion sensitivity, specificity, and DSC scores of 96.21%, 99.77%, and 88.96%, respectively. It is of note that these 

Table 4.   Retinal blood vessels segmentation performances (%) via the proposed CMM-Net compared to the 
recent deep learning approaches. R2U-Net: Recurrent Residual CNN based U-Net; MCGU-Net: Multi-level 
Context Gating; AA-UNet: Attention guided U-Net with Atrous convolution; DDNet: Dense Dilated Network; 
VGN: Vessel Graph Network; MTL: Multi-Task Learning; and SUD-GAN + : Short connection with Dense 
block-GAN.

Method Parameters Implemented IR SEN SPE ACC​ MCC DSC JAC

U-Net + joint losses43 – × × 76.53 98.18 95.42 – – –

FCN42 – × × 80.39 98.04 95.76 – – –

R2U-Net49 1.0 M × × 77.92 98.13 95.56 – 81.71 –

MCGU-Net50 – × × 80.12 97.86 95.6 – 82.24 –

Thick-Thin-Fusion Net72 – × × 76.31 98.20 95.38 – – –

AA-UNet73 28.3 M × × 79.41 97.98 95.58 – 82.16 –

DDNet74 56.0 M × × 81.26 97.88 95.94 – – –

VGN75 7.91 M × × 93.82 92.55 92.71 – – –

MTL76 – × × 96.90 92.70 94.70 – – –

SUD-GAN77 – × × 83.40 98.20 95.60 – – –

U-Net10 7.3 M ✓
× 50.50 97.96 93.34 57.22 59.61 42.46

✓ 53.98 97.90 94.11 58.78 61.27 44.17

PSPNet15 15.2 M ✓
× 13.92 98.94 91.49 24.74 22.12 12.48

✓ 16.40 98.80 91.57 27.19 25.24 14.49

DeepLabv3 + 17 2.1 M ✓
× 56.71 97.39 93.82 58.58 61.50 44.45

✓ 78.69 93.20 91.92 60.24 62.97 46.01

CE-Net24 26.0 M ✓
× 72.24 98.88 96.53 76.95 78.33 64.45

✓ 79.55 98.10 96.45 77.81 79.60 66.14

UNet +  + 27 24.2 M ✓
× 89.27 96.90 96.21 78.92 80.42 67.29

✓ 77.26 98.64 96.75 78.98 80.52 67.44

Proposed CMM-Net
(With Dilated Convolution) 13.2 M ✓

× 69.66 98.92 96.35 75.50 76.82 62.43

✓ 84.38 97.08 95.95 76.51 78.39 64.49

Proposed CMM-Net
(Without Dilated Convolution) 13.2 M ✓

× 90.33 96.36 95.81 77.54 78.99 65.31

✓ 78.59 98.39 96.64 78.57 80.27 67.08
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results were obtained after submitting the segmented volumes of all validation data to the online submission 
system (https://​ipp.​cbica.​upenn.​edu/). The results of brain tumors segmentation via the proposed CMM-Net 
are efficient and comparable with the top three methods in the challenge with a slightly lower DSC of 88.96%. 
The challenge set the average of DSC indices for the WT, ET, and TC to rank the participants. However, here we 
focused only on the whole tumor segmentation as further evaluation of our proposed segmentation method. As 
reported in Table 5, the first ranked method in the challenge achieved a small increment rate of 2.04% in term 
of DSC compared to the proposed work. Comparable achievements were recorded for the proposed CMM-Net, 
DeepLabv3 + , CE-Net, and UNet +  + with DSCs of 88.96%, 88.04%, 88.57%, and 89.04% on the actual validation 
set, respectively. It is observed from Table 5 that the proposed network, CE-Net, and UNet +  + obtained lower 
segmentation performance when applying the IR process.

Figure 7 shows some segmentation examples of both local test data and actual validation data in three views 
(i.e., axial, sagittal, and coronal). Since the ground-truth annotations of validation data are not available, we 
only draw the segmented contours of the proposed method against DeepLabv3 + and UNet +  + . Obviously, the 
results indicate the capability of the proposed segmentation method in detecting the precise location of brain 
tumors. Our CMM-Net could efficiently differentiate between the gliomas and bright tissue regions that have 
high visual similarity.

Overall evaluation.  As a summary, the overall segmentation performances of skin lesions and reti-
nal blood vessels were improved in the case of using the IR process. In the case of skin lesions, the proposed 
method achieved DSC of 83.13% without IR and 85.78% with IR. In the case of retinal blood vessels, the DSC 
also improved from 78.99% to 80.27% when applying the IR process. In contrast, this process did not provide 
improvement in the case of brain tumors segmentation neither for the local test where DSC dropped from 
83.95% to 82.01% nor for the actual validation where DSC dropped from 88.96% to 88.32%. This may be due 
to that the structure of brain tumors is extremely irregular and in some cases exists as unconnected segments.

The obtained segmentation results demonstrate the efficiency of the proposed CMM-Net over different medi-
cal imaging tasks. Indeed, the aggregation of multi-scale contextual features throughout all networks’ encoder 
levels along with the dilated convolutions foster to learn more robust multi-spatial global representations with 
location-awareness. The ablation experiments shown in Table 2 presents the merit of using the PPMs as well as 
dilated convolutions in improving the performance. The generated multi-scale features at early levels of encoder 
fuse structural and localization details, while those at top levels enable to learn coarser information. It is of note 
that these multi-scale features fusion keep the computation low compared to other existing methods and at the 
same time provide rich contextual features. The overall segmentation performance of skin lesions was improved 
from 67.36% to 73.94% in term of Jaccard index when adopting the contextual multi-scale multi-level aggregation 
strategy. Compared to other existing methods in Table 3, the proposed CMM-Net achieved superior performance 
in the skin lesion segmentation task with an overall Jaccard index of 77.65%. Although comparable performances 
were obtained via the proposed CMM-Net and UNet +  + in the cases of retinal blood vessels and brain tumor 
segmentation tasks as reported in Tables 4 and 5, the amount of trainable parameters (i.e., computational cost) 
of the proposed method is around the half of that in UNet +  + . In addition to the reasonable computation cost 
compared to other existing works, generalization is one of the advantages of the proposed network. CMM-Net 
seems to be feasible solution for different medical imaging applications since it succeeds to segment three dif-
ferent medical tasks. In contrast, PSPNet and DeepLabv3 + failed to segment small or thin targets as the case of 
retinal blood vessels extraction.

Figure 6.   Examples of the segmented retinal blood vessels. The first column to the last column refers to original 
retinal images, first ground-truth (GT#1), second ground-truth (GT#2), and the segmentation results via 
DeepLabv3 + , UNet +  + , and proposed CMM-Net. The segmented results with the missing retinal vessels are 
drawn in green contours for all methods.

https://ipp.cbica.upenn.edu/
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Furthermore, Fig. 8 demonstrates the ROC and PR curves of the proposed CMM-Net for all the medical 
imaging segmentation applications. Our segmentation method obtained AUCs of 91.96%, 88.49%, and 92.37% 
for the skin lesions, retinal blood vessels, and brain tumors segmentation tasks, respectively. We illustrate the 
segmentation performance for each original input test data (i.e., images for the ISIC 2017 and DRIVE tasks, and 
patient volumes for the local test and actual validation in the BraTS 2018 case) in Fig. 9. This boxplot shows the 
MCC, DSC, and Jaccard indices for each test data. However, only the DSC, sensitivity, and specificity measures 
were obtained from the online evaluation for the actual validation data of BraTS 2018. Clearly, there is no high 
variation on the segmentation performances of the DRIVE and BraTS 2018 test datasets, while a small set from 
the test dermoscopy images of the ISIC 2017 dataset obtained less than 50% of the shown measures.

We also show the overall evaluations for all medical image modalities including skin lesions, retinal blood 
vessels, and local testing and actual validation sets of brain tumors in Table 6. The presented indices are computed 
as a weighted average based on the number of testing samples in each data. This evaluation shows the superior 
segmentation performance of the proposed CMM-Net with DSC of 85.77% against other networks. The proposed 
segmentation network presents its capability and efficiency to be generalized on segmenting different medical 
imaging applications. Overall, the proposed architecture is effective on several semantic segmentation tasks.

Computation time.  The training and inference (i.e., decoding or testing) computation times needed to 
accomplish the segmentation of different medical imaging applications via the proposed CMM-Net are listed in 
Table 7. As shown, the amount of the trainable parameters of the proposed network is higher in the case of the 
DRIVE dataset. This is due to that we were able to utilize larger feature maps of 128 for each PPMs in the case 
of retinal blood vessels dataset since the network was trained based on the smaller size of inputs (i.e., patches). 

Table 5.   Brain tumors segmentation performances (%) via the proposed CMM-Net compared to the recent 
deep learning approaches. HTTU-Net: Hybrid Two Track U-Net; and AGResU-Net: Attention Gate Residual 
U-Net.

Test Set Method Parameters Implemented IR SEN SPE ACC​ MCC DSC JAC

Local
Testing Set

U-Net10 7.3 M ✓
× 83.63 98.27 98.16 72.62 71.28 55.38

✓ 85.36 98.54 98.33 73.01 71.93 56.89

PSPNet15 15.2 M ✓
× 74.94 99.73 99.38 77.29 76.89 63.91

✓ 87.52 99.43 99.27 77.88 77.42 63.92

DeepLabv3 + 17 2.1 M ✓
× 81.30 99.30 99.03 83.45 82.86 72.42

✓ 89.43 99.10 98.96 84.02 83.28 73.40

CE-Net24 26.0 M ✓
× 86.91 99.28 99.11 83.56 82.90 73.07

✓ 90.57 99.14 99.02 83.08 82.35 72.32

UNet +  + 27 24.2 M ✓
× 82.03 98.31 98.10 83.41 83.05 73.78

✓ 89.54 98.06 97.94 83.07 82.45 72.59

Proposed CMM-Net 10.2 M ✓
× 85.19 99.55 99.35 84.55 83.95 74.09

✓ 90.48 99.28 99.17 82.63 82.01 72.23

Actual Validation Set

Encoder-Decoder based ResNet78

(1st place in the challenge) - × × - - - - 91.00 -

3D U-Net79

(2nd place in the challenge) – × × – – – – 91.26 –

Densely Connected DeepSCAN80

(3rd place in the challenge) – × × – – – – 90.30 –

Ensemble Network81

(3rd place in the challenge) – × × – – – – 90.95 –

HTTU-Net82 – × × 88.30 99.90 – – 86.50 –

AGResU-Net83 – × × – – – – 87.20 –

3D U-Net84 – × × 88.70 99.50 – – 88.90 –

U-Net10 7.3 M ✓
× 80.02 99.79 – – 73.18 –

✓ 84.77 99.71 – – 74.50 –

PSPNet15 15.2 M ✓
× 76.73 99.05 – – 78.97 –

✓ 88.92 98.06 – – 79.68 –

DeepLabv3 + 17 2.1 M ✓
× 85.39 99.41 – – 86.97 –

✓ 95.59 99.08 – – 88.04 –

CE–Net24 26.0 M ✓
× 90.03 99.27 – – 88.57 –

✓ 92.69 98.93 – – 87.68 –

UNet +  + 27 24.2 M ✓
× 87.59 99.50 – – 88.96 –

✓ 93.03 99.05 – – 89.04 –

Proposed CMM-Net 10.2 M ✓
× 96.21 99.77 – – 88.96 –

✓ 92.98 99.03 – – 88.32 –
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However, the relevant required training time per each epoch is very large in the case of the BraTS 2018 dataset 
because it has the larger amount of the augmented training images of 122,320 images (i.e., 15,290 multiplied by 
eight augmented operations) with bigger input size compared to other datasets. As aforementioned in section 
III-A-2, the inference time for segmenting an entire retinal image required 0.45 s, which is computed as a mul-
tiplication of the testing time per each patch by the total number of patches. Then, the actual inference time of 
3.6 s is computed by taking into consideration the number of augmented testing data that were used to apply the 
IR process. Similarly, the total required time to encode the whole brain volume is computed as a multiplication 
of 0.0253 s (i.e., the testing time per each slice image) by 155 (i.e., the total number of slices in each volume) 
without applying the IR. Further, the proposed method required a moderate amount of trainable parameters of 
10.2 M compared to 15.2 M and 24.2 M in the cases of PSPNet and UNet +  + , respectively. Overall, the proposed 
CMM-Net seems to be feasible in the routine clinical exams.

Conclusion
This paper proposed a deep learning segmentation method called CMM-Net for three different medical imaging 
modalities. The proposed method exploited both the dilated convolution and pyramid pooling modules recur-
rently in the encoder network of the U-Net. Further, a modified evaluation scheme, called inversion recovery, that 
retrieves all the segmented images from the augmented testing data into a single output using logical operators 
is developed. The proposed segmentation method achieved superior performances on three different biomedical 

Figure 7.   Examples of the segmented brain tumors. Left indicates some examples from the local test data, 
while right refers to examples from the actual validation data. The green, magenta, yellow, and blue contours 
refer to the ground-truth annotations and the segmented results via the DeepLabv3 + , UNet +  + , and proposed 
CMM-Net, respectively. First to third columns of each sample represent the axial, sagittal, and coronal views, 
respectively.

Figure 8.   ROC curves (left) and PR curves (right) of our proposed CMM-Net segmentation method on three 
different medical applications.
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imaging tasks, including the segmentation of the skin lesions, retinal blood vessels, and brain tumors, compared 
to the recent deep learning approaches. The proposed method could be feasible for future medical imaging 
analysis and clinical exam routine. In the future, we plan to develop a 3D version of the CMM-Net along with 
the residual and dense mapping to be used for different types of brain tumors.

Data availability
Code of this work is available on GitHub through this link: https://​github.​com/​Yonsei-​MILab/​Biome​dical-​Image-​
Segme​ntati​on-​via-​CMM-​Net.
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