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Easy ultrastructural insight 
into the internal morphology 
of biological specimens by Atomic 
Force Microscopy
Fabian Christopher Herrmann

As a topographical technique, Atomic Force Microscopy (AFM) needs to establish direct interactions 
between a given sample and the measurement probe in order to create imaging information. 
The elucidation of internal features of organisms, tissues and cells by AFM has therefore been a 
challenging process in the past. To overcome this hindrance, simple and fast embedding, sectioning 
and dehydration techniques are presented, allowing the easy access to the internal morphology 
of virtually any organism, tissue or cell by AFM. The study at hand shows the applicability of the 
proposed protocol to exemplary biological samples, the resolution currently allowed by the approach 
as well as advantages and shortcomings compared to classical ultrastructural microscopic techniques 
like electron microscopy. The presented cheap, facile, fast and non-toxic experimental protocol might 
introduce AFM as a universal tool for the elucidation of internal ultrastructural detail of virtually any 
given organism, tissue or cell.

Our understanding of the detailed structural organization of biological material has ever since mainly been 
determined by microscopic techniques. Starting with light microscopy in the eighteenth century and culminat-
ing in the development of electron microscopes in the twentieth century, histology itself evolved alongside the 
improvement of microscopic techniques. Today, the plethora of our ultrastructural knowledge of organisms, 
tissues and cells is mostly derived from different electron microscopic approaches such as transmission or scan-
ning electron microscopy.

Since the introduction of electron microscopy (EM), a large number of sample preparation techniques to gain 
suitable EM specimen have been  established1–5. Nevertheless, the commonly applied protocols are still highly 
complex today, employing toxic chemicals and resulting in samples mainly suitable for electron microscopy, 
excluding other techniques and their correlation with EM data from the start. Additionally, ever so important 
immunolabeling investigations are hindered by several difficulties arising from the intense specimen treatment 
prior to EM data acquisition, especially from the embedding in epoxy  resins6, 7. Altogether, EM suffers from 
certain critical limitations creating major obstacles concerning a variety of experiments on biological specimens.

With the introduction of Atomic Force Microscopy (AFM) by Binnig, Quate and Gerber in  19868, a new 
microscopic approach became available incorporating certain striking advantages over classical ultrastructural 
techniques. With AFM, the application of vacuum to the sample in order to create imaging information was 
no longer needed, hence it finally became possible to gain ultrastructural data of biological material under 
physiological  conditions9, 10. Additionally, the need for intense sample preparation techniques was substantially 
reduced compared to transmission electron or scanning electron microscopy (TEM, SEM). Further advantages of 
AFM over EM include e.g. the ability to precisely resolve z-axis data as well as the capability to access viscoelastic 
characteristics of a sample by force spectroscopy.

Besides the mentioned advantages of AFM over EM, one striking limitation still caused major problems in 
the acquisition of ultrastructural data of internal features of biological samples in the past. As a topographical 
technique, AFM needs to establish direct interactions between the measurement probe and the structure of inter-
est in order to create imaging information. Gaining insight into the internal morphology of whole organisms, 
tissues and single cells by AFM has therefore been a common obstacle among AFM researchers.
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Overcoming the mentioned problem promises abilities concerning the acquisition of ultrastructural data of 
biological samples by AFM compared to EM, e.g. the option to access precise z-axis data as well as the viscoelastic 
properties of a given sample only to name a few.

In order to enable AFM of internal features of biological material, a facile and broadly applicable polyethylene 
glycol embedding, ultra-sectioning and dehydration protocol was developed, resulting in the ability to ultrastruc-
turally characterize the internal morphology of virtually any biological material by AFM. Initially, the specimens 
investigated in the study at hand were fixed using typical reagents like glutaraldehyde or paraformaldehyde. 
Secondly, sample dehydration was carried out by the application of a water/ethanol dilution series, followed by 
infusion of polyethylene glycol (PEG) as embedding medium. After block solidification and ultra-sectioning 
on a typical ultra-microtome equipped with standard glass knifes, the obtained sections were immobilized on 
coated glass slides and the water-soluble embedding medium was completely removed by repeated washing steps. 
Finally, the samples were dehydrated by a simple air flow technique and subsequently imaged by intermittent 
contact mode AFM under ambient conditions.

With the intention not to exclude scientists unable to access state-of-the-art AFM technology, commonly 
available AFM instrumentation (intermittent contact mode in air) was specifically employed in the presented 
investigations. The study at hand aims at clarifying the applicability of the mentioned protocol to selected repre-
sentative biological specimens, in order to prove its feasibility on virtually any organism, tissue or cell.

Results
AFM-based ultrastructural imaging of the internal morphology of Caenorhabditis elegans. The 
ultra-sectioning, immobilization and dehydration of PEG-embedded C. elegans individuals yielded samples eas-
ily accessible under ambient conditions by tapping mode AFM, enabling the ultrastructural depiction of typical 
tissues of this nematode commonly used in life science experiments. The sample preparation allowed sectioning 
of a high amount of C. elegans individuals at once and resulted in a plethora of worm sectioning planes, per-
mitting broad insight into internal features of the nematodes by light microscopy as well as by AFM. The mor-
phological features investigated in detail by AFM showed ultrastructural information altogether in accordance 
with available TEM data of C. elegans11–15. Nanoscopic key features of the assessed tissues were clearly resolved 
by tapping mode AFM in air, e.g. single myosin filaments in sarcomeres of body wall muscle cells (Fig. 1b), 
the microvilli brush as well as details of the nuclear membrane and the intranuclear composition of enterocyte 
cells (Fig. 2a,b), single spermatids as well as the uterine valve (Fig. 2c) or the overall morphology of the cuticle 
(Fig. 1b). By the combination of phase contrast light microscopy with AFM, the identification of specific tissues 
in C. elegans ultra-sections was easily carried out, resulting in timesaving and precise AFM image acquisition. 
Due to this, specific organs and tissues like the  gonads12, the  vulva16, the  pharynx17 or the  intestine11 were easily 
identified and afterwards imaged nanoscopically by AFM (Figs. 1, 2).

AFM-based ultrastructural imaging of exemplary mammalian tissues (human melanoma, 
human knee cartilage and mouse kidney). To prove the applicability of the proposed technique 
towards mammalian organs and tissues, a human knee cartilage sample, a human melanoma biopsy and a mouse 
kidney were selected for further AFM-based ultrastructural elucidation. PEG-embedding as well as ultra-sec-
tioning was easily carried out on the described mammalian samples, resulting in a high amount of AFM-suitable 
sections for further analysis.

In case of the cartilage sample, structural integrity of the collagen fibrils as well as of single collagen fibers 
was clearly preserved, showing not only the typical curled organization of collagen fibrils but also the expected 
ultrastructural detail (typical 67 nm D-periodicity) of single collagen fibers (Fig. 3a,b)18, 19.

The prepared human melanoma tissue was also nicely preserved after PEG-embedding and subsequent ultra-
sectioning (Fig. 3c). The expected typical morphology of the nuclei (e.g. lobulated nuclear membranes) as well 
as the overall tissue composition additionally proved to be in accordance to the available  literature20–22.

Ultra-sectioning of the PEG-embedded mouse kidney also yielded ultrastructural data proving the overall 
preserved tissue integrity (Fig. 3d). AFM image acquisition was again easily carried out in intermittent contact 
mode in air, showing glomerular ultrastructural morphology in accordance with TEM data from  literature23.

AFM-based ultrastructural imaging of the internal morphology of hedgehock ticks (Ixodes 
hexagonus, Ixodidae). In order to assess the possibilities and limitations of the applied ultra-sectioning 
protocol concerning larger and more complex organisms, hedgehock ticks (Ixodes hexagonus, Ixodidae) were 
selected for further ultrastructural investigations by AFM. In general, the overall morphology of the tick´s tis-
sues is far more complex in comparison to the nematode C. elegans. In detail, especially differences in the hard-
ness of tissues (e.g. of the cuticle compared to the inner organs) could have negatively affected the quality of the 
ultra-sections depending on the characteristics of the embedding medium. In case of the proposed PEG 4000 
embedding protocol, the yielded ultra-sections of Ixodes hexagonus individuals showed nice preservation of 
tissue integrity, independent from hardness or composition. Ultrastructural elucidation by AFM resulted in the 
depiction of characteristic details of the tick’s cuticle as well as of internal organs. The cuticular folds, the exo- 
and endocuticle, the epidermis as well as single tracheae were nicely preserved in the investigated ultra-sections 
and could be observed in ultrastructural detail by AFM (Fig. 4). Altogether, the results of the AFM-based data 
acquisition were in accordance with available data from related TEM investigations on ticks of the genus Ixodes24.

AFM-based ultrastructural imaging of the epidermal cell wall of Senna alexandrina (Fabaceae) 
leaves. Plant tissues constitute another area of interest concerning the elucidation of ultrastructural mor-
phology. In order to show the applicability of the protocol to tissues of plant origin, the epidermis of Sennes 
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alexandrina (Fabaceae) was chosen for further investigation of the cell wall’s ultrastructure by AFM. Ultra-sec-
tioning and dehydration of PEG-embedded leaves from S. alexandrina resulted in specimen showing nicely pre-
served cell wall morphology of the epidermis already by light microscopy. Subsequent AFM-based data acquisi-
tion depicted ultrastructural detail in accordance to morphological data known from the available  literature25–27 
(Fig. 5). Altogether, intermittent contact AFM of the prepared ultra-sections was able to resolve the fibril-com-
posed structure of the investigated plant cell wall down to the nanometer level. Macro- as well as microfibrils 
were easily observed, allowing deeper insight into the overall ultrastructural composition of this histological 
detail of the Senna alexandrina epidermis (Fig. 5).

AFM-based ultrastructural imaging of eu- and prokaryotic cells of representative cell culture 
experiments. To verify the potential use of the proposed protocol on the rather demanding level of single 
cells, exemplary pro- and eukaryotic cells were selected for further AFM-based ultrastructural investigations. As 
could be cautiously expected from the preceding experiments on complex organisms, the used PEG-embedding 
also allowed the ultra-section and subsequent AFM-based data acquisition of single cells. The resulting ultra-
sections of Euglena gracilis and of Escherichia coli cells showed overall nice preservation of the cellular integrity 
as well as of intracellular details.

In case of the studied E. gracilis cells, ultrastructural details of the cuticle, the chloroplasts and of vacuoles 
and vesicles were easily accessible by AFM under ambient conditions. The observed intracellular morphology 
of the mentioned specimen was altogether in accordance with available TEM data of E. gracilis28, 29 (Fig. 6a,b).

The preparation of ultra-sections of single E. coli cells proved to be more complex compared to larger eukary-
otic cells. In order to allow sufficient insight into this considerably smaller organisms, ultra-sections below 

Figure 1.  AFM-based ultrastructural analysis of Caenorhabditis elegans morphology. Nanoscopically resolved 
exemplary nematode tissues. (a) Height data of the head region of a C. elegans individual. (b) Close up on 
a single body muscle cell (amplitude data shown), with clearly resolved sarcomere morphology. Note the 
resolution of single myosin filaments (white triangle) within the sarcomere. (c) Height data of a cross section 
through the mid-region of a C. elegans individual. (d) Height data of a close up on the vulva of a C. elegans 
individual. Scale bars (a) and (d) 4 µm, (b) 600 nm and (c) 8 µm; BM body muscle, Cut cuticle, I intestinal 
lumen, Mit mitochondrium, P pharynx, Sar sarcomere, V vulva, VM vulval muscle, YP yolk pool, white triangle 
single myosin filament.
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100 nm in thickness needed to be prepared. In case of the E. coli experiments, a thickness of roughly 70 nm was 
experimentally determined to be suitable for AFM-data acquisition on sectioned E. coli cells. AFM of the men-
tioned sections resulted in the depiction of typical morphological details expected from ultrastructural analysis 
of E. coli cells by  TEM30. The cell wall as well as the general intracellular composition were overall in accordance 
to available low power TEM  data30 (Fig. 6c,d).

Discussion
In order to obtain fast, facile as well as cheap nanoscopic insight into internal features of organisms, tissues 
and single cells by atomic force microscopy, a combination of polyethylene glycol embedding, ultra-sectioning, 
immobilization, dehydration and subsequent data-acquisition in ambient conditions by intermittent contact 
mode AFM was successfully applied to a variety of representative biological specimens.

Sectioning techniques have already been commonly used for the preparation of AFM suitable samples from 
different origin in the past. In general, mainly protocols derived from electron microscopic approaches have 
been applied to create surfaces accessible by AFM, e.g. for nanoscopic analysis in the field of materials  science31. 
Epoxy-based approaches have also been employed to study biological samples (e.g. C. elegans32) but suffered from 
specific limitations concerning embedding resins remaining in the analyzed sections, deeming the application 
of a topographical technique like AFM especially difficult. Cryo-sectioning techniques have also been applied 
in some studies to elucidate internal features of tissues by  AFM33, 34. These techniques altogether suffered to a 
certain extend from being experimentally highly complex concerning the sample preparation as well as the 
needed expensive machinery e.g. for cryo-sectioning, probably resulting in the rather scarce application of this 
methodologies in the past. In contrast to that, although being a particularly suitable embedding medium e.g. due 

Figure 2.  AFM-based ultrastructural analysis of Caenorhabditis elegans morphology. Nanoscopically resolved 
exemplary nematode tissues. (a) High resolution height data of two enterocytes forming the intestinal lumen. 
Note the clear resolution of single microvilli. (b) High resolution close up on nuclear region of a single 
enterocyte, showing ultrastructural details of the intranuclear composition. (c) High resolution height data of 
spermathecal tissue of C. elegans. Note the clear depiction of single spermatids (c). (d) Heigh resolution close 
up on gonadal tissue, showing single oocytes of the proximal gonads. Scale bars (a) and (d) 3 µm, (b) and (c) 
2 µm. Cut cuticle, I intestinal lumen, MB microvilli brush, N nucleus, NM nuclear membrane, Nuc nucleolus, O 
oocyte, SP spermatid, UV uterine valve.
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to its high solubility in water, PEG embedding protocols have only very rarely been used in order to create AFM 
suitable specimen in the  past35–37. Apart from the publications by our  institute36,37, only one article from the early 
days of AFM research seems to exist on PEG embedding combined with AFM data  acquisition35. Besides different 
AFM machinery and measurement techniques employed in the mentioned study by Ushiki et al., another and 
far more complex and challenging dehydration technique (critical point drying) has been applied. Altogether, 
PEG embedding has only scarcely been used in combination with AFM in the past.

As a result of the PEG technique applied in this study, immobilized and embedment-free sections were 
yielded, thereby generating close to optimal measurement characteristics concerning subsequent data acqui-
sition by AFM. As one of the main advantages of the described protocol, this resulted in the ability to gain 
high quality ultrastructural AFM-data of internal characteristics of organisms, tissues and single cells. Another 
advantage of the AFM-based data acquisition on embedment-free ultra-sections was the accurate depiction of 
z-axis data nearly inaccessible by electron microscopic approaches. The overall resolution in air so far reached 
by the approach can be specified from the presented results of this study to be laterally at least below 10 nm and 
vertically at least below 0.5 nm (Fig. 5d,e). Future improvements concerning the achievable resolution could 
be realized by the use of cantilevers with smaller curvatures as well as by the application of more sophisticated 
AFM measurement techniques in liquid (e.g. PeakForce Tapping).

One key consideration to evaluate preparations for subsequent (ultra)structural assessment by any micro-
scopic technique is the possible introduction of artifacts by sample pretreatment. More detailed, fixation, embed-
ding, sectioning and dehydration procedures need to be taken into account as possible sources of morphologi-
cal changes to the sample. In case of the proposed technique, common and validated fixation techniques (e.g. 
paraformaldehyde or glutaraldehyde) have been employed and can therefore be ruled out as specific sources of 
new  artifacts38, 39. The applied PEG-embedding itself may also be responsible for the introduction of artifacts. 

Figure 3.  AFM-based ultrastructural analysis of exemplary mammalian tissues. Nanoscopic resolution on more 
complex tissues. (a) AFM amplitude data of an ultra-section of human knee cartilage. (b) High resolution close 
up on single collagen fibrils. Note the preservation as well as the clear resolution of the characteristic 67 nm 
D-periodicity of single collagen fibrils. (c) Height data depiction of an ultra-section from human melanoma 
tissue. (d) AFM height data of a mouse kidney ultra-section showing a single glomerulus as well as surrounding 
tubuli. Scale bars (a) 2 µm, (b) 840 nm, (c) 6 µm, (d) 10 µm. N nucleus, NM nuclear membrane, Nuc nucleolus.
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However, compared to TEM epoxy preparations, the proposed PEG-embedding technique does not require 
the use of toxic or tissue incompatible solvents and is therefore in general less prone to artifact introduction. 
Additionally, PEG itself is characterized by specifically advantageous properties such as a particularly high tissue 
compatibility as well as the low tendency to shrinkage during  solidification40–42. Sectioning on ultra-microtomes 
employing typical glass knifes is also known to introduce typical artifacts in the course of ultrastructural image 
acquisition. In case of the presented technique, the common “streaks” in sample preparations resulting from 
small chips broken from the knife edge were also sometimes detected (e.g. Figs. 1c,  4c). Altogether, this artifact 
can be normally clearly recognized as a result of the employed glass knifes e.g. due to parallel streaks in the 
image data. Additionally, this artifact seemed to be rather rare compared to typical epoxy preparations, which 
may be due to the rather low hardness of the embedding material PEG 4000. Finally, dehydration techniques 
can be relevant sources of tissue damages and artifacts. In case of the technique applied in this study, dehydra-
tion of the ultra-sections was rapidly performed by simple evaporation under continuous pressurized airflow. 
In case of the air-based dehydration of the immobilized ultra-sections of this study, the artifacts introduced 
by this technique seemed to be negligible when comparing the AFM results to available TEM data e.g. of C. 
elegans11–17 as well as to results obtained in our lab employing an alternative and validated but far more complex 
dehydration technique (hexamethyldisilazane (HMDS)  dehydration36, 43, data not shown). The main reason for 
this might be given in the very small thickness of the prepared ultra-sections and their resulting tendency to dry 
rapidly. It is known from the development of other dehydration techniques, e.g. critical point drying, that the 
slow evaporation of liquids (specifically due to the surface tension occurring during the transition from liquid 
to gaseous state) introduces high local forces on the specimen, therefore being one typical source of common 
dehydration  artifacts43. In case of the ultra-sections of this study (thickness down to 70 nm), dehydration by 
continuous airflow resulted in ultrafast drying, possibly limiting the negative evaporation effects to a minimum. 

Figure 4.  AFM-based ultrastructural analysis of the cuticle of hedgehog ticks (Ixodes hexagonus). Nanoscopic 
resolution on tissues from more complex organisms. (a) Cuticular detail of a starving nymph of I. hexagonus 
(b) Cuticular detail of a fully engorged adult individual of I. hexagonus (c) Cuticular detail of a starving adult 
individual (d) Higher resolution of the I. hexagonus cuticle. Scale bars (a–c) 10 µm, (d) 1 µm. C pore canal, CF 
cuticular folds, CS cuticular sensilla, EN endocuticle, EPI Epidermis, EX exocuticle, T single trachea.
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The facile, fast and most of all cheap and unchallenging airflow technique employed in this study can therefore be 
considered to be at least a suitable alternative for the dehydration of ultra-sections of PEG-embedded specimens 
for subsequent nanoscopical analysis by AFM. Altogether, the results at hand indicate a rather low susceptibility 
of the technique to artifact introduction.

Compared to the more complex and invasive sample preparations commonly used for TEM investigations, 
the protocol applied in this study incorporated some specific advantages besides gaining AFM-suitable prepara-
tions. More detailed, the applied technique uses only non-toxic, broadly available and most of all extremely cheap 
chemicals (specifically polyethylene glycol 4000 and ethanol). Besides being non-toxic and highly economical, the 
ability of the methodology to gain internal ultrastructural data of biological specimen in only about 4 h from fixa-
tion to AFM data acquisition should also be mentioned. In contrast to typical TEM preparations, ultrastructural 

Figure 5.  AFM-based ultrastructural analysis of the epidermal cell wall of Senna alexandrina (Fabaceae) leaves. 
AFM-data acquisition on cell wall ultra-sections allowed nanoscopic resolution down to the microfibril level. 
(a–c) Low, medium and high magnification amplitude data of Senna alexandrina cell wall morphology. Note the 
clear depiction of the layered cell wall composition and the resolution of single macro- as well as microfibrils 
(white triangle). (d) High resolution height data of single microfibrils (3D representation). (e) Section analysis 
of a single microfibril showing lateral dimensions of just below 10 nm. Note the corresponding z-axis resolution 
below 0.5 nm. Scale bars (a) 4 µm, (b) 1 µm, (c) 320 nm, (d) 100 nm. Cut cuticle, CW cell wall, white triangle 
isolated microfibril.
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insights are therefore easily possible within a single day. Additionally, the overall work load of the proposed AFM 
preparation is at least to some extend reduced compared to standard epoxy embedding techniques e.g. by the 
missing need for post-fixation treatment. Furthermore, specific preparation of the embedment material is not 
necessary. While typical epoxy resins have to be prepared before use (e.g. by mixing resin and polymerization 
agents), PEG can be applied directly to the specimens after melting or solvation in  H2O. Altogether, the proposed 
technique incorporated certain advantages compared to classical TEM epoxy embedding procedures such as the 
overall reduced costs and toxicity, as well as the reduced work load and the needed preparation time.

As a further general advantage of the PEG methodology, the possibility to directly interact with the sample´s 
morphology exposed by ultra-sectioning and subsequent removal of the embedding medium might enable addi-
tional experimental approaches not commonly available so far. This could facilitate the chemical characterization 
of exposed intracellular details e.g. by AFM-IR or Raman techniques, sophisticated intracellular assessments like 
MicroRNA quantification as well as the correlation of this data with ultrastructural AFM detail in the future.

Another relevant limitation given with common TEM approaches and resulting from the invasive sample 
preparation is the difficulty to perform localized immunolabeled protein detection on epoxy-embedded speci-
mens. In contrast to that TEM-associated limitation, the proposed AFM-based technique should allow the facile 
correlation of immunohistochemistry with subsequent ultrastructural AFM investigations. PEG-embedding 
protocols have proven to preserve the antigenicity of prepared tissues to a high extend, therefore enabling the 
detection of specifically localized antigenicity e.g. by epifluorescence  microscopy41. In case of the commonly 
realized instrumental correlation of an AFM with an inverse optical epifluorescence microscope, antigen staining, 
subsequent identification by epifluorescence microscopy and finally co-localized ultrastructural data acquisition 
by AFM should become easily possible. This could allow the direct correlation of intracellular protein localization 
and corresponding high-resolution ultra-structural AFM-detail in the future.

Figure 6.  AFM-based ultrastructural imaging of eu- and prokaryotic cells of representative cell culture 
experiments. Nanoscopic resolution of the internal morphology of single cells. (a) Cross section of a single 
Euglena gracilis cell. (b) High resolution detail of an ultra-section from E. gracilis (3D representation). (c) Ultra-
section of a group of E. coli bacteria. (d) Close up on a single E. coli individual. Note the depiction of single 
particles around 20 nm in diameter, most probably ribosomes (white triangles). Scale bars (a) 6 µm, (b) 940 nm, 
(c) 1 µm and (d) 520 nm. CP chloroplast, Cut cuticle, CW cell wall, Mit mitochondrium, P paramylum.
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Another advantage of the proposed protocol was given in the rather undemanding ultra-sectioning of the 
PEG-embedded specimens. In general, ultra-microtomy is a quite complex and challenging technique. The pro-
duction, handling and especially the transfer of ultra-sections to e.g. glass slides or TEM grids can be particularly 
 tedious44. In case of the presented PEG-protocol, the ultra-sectioning proved to be quite simple, allowing the crea-
tion of long sectioning bands, which were easily transferrable to a prepared substrate. No orientation or further 
handling of single sections was needed, allowing the technique to be applied even by unexperienced users after 
only a short time. Additionally, the proposed PEG-embedding enabled a wide variety of section thicknesses in 
a reproducible manner, deeming the technique suitable for samples of various origins.

Besides the mentioned positive aspects, some disadvantages of the protocol also need to be taken into account. 
One limitation of the technique is the at least partial inaccessibility of the AFM-suitable preparations to TEM 
experiments. This is mainly given by the fact, that post-fixation steps prior to embedding procedures are typi-
cally needed for sufficient image contrast in TEM investigations (uranyl acetate and/or osmium tetroxide). In 
case of the proposed protocol, these invasive preparation steps have been specifically left out in order to reduce 
the work load as well as the toxicity of the preparation protocol but also because of potential changes introduced 
to the sample by this invasive chemicals potentially leading to problems with AFM image acquisition as well as 
with future correlative experiments like immunolabeling. Direct correlations between AFM and TEM data of 
a single sample preparation are therefore generally restricted, being the reason for the missing direct AFM and 
TEM comparisons in this study. On the other hand, immobilized and dehydrated ultra-sections should be suit-
able for SEM analysis after sputter coating. Another disadvantage of the presented methodology is the tendency 
of ultra-sections to overlap when being immobilized on coated glass slides, sometimes leading to difficulties in 
the identification of specific tissues in a single ultra-section.

In summary, the presented protocol allowed specific AFM-based ultrastructural insight into internal fea-
tures of whole organisms as well as tissues and single cells. The achieved lateral resolution was specified to be at 
least below 10 nm accompanied by a vertical resolution of below 0.5 nm, possibly allowing further resolution 
improvements by the application of more specialized AFM measurement techniques in the future. One main 
advantage of the proposed technique, besides the fast and facile ultrastructural insight into a variety of biological 
specimens by AFM, was the possibility to correlate light microscopic experimental options (e.g. epifluorescence 
microscopy) with co-localized ultrastructural image acquisition. Altogether, the investigated approach consti-
tutes a facile, fast and cheap alternative to classical TEM assessments of internal ultrastructural morphology of 
complex organisms, tissues as well as single cells and might enable interesting new experimental options for the 
analysis of intracellular details in the future.

Methods
Chemicals. If not stated otherwise, all chemicals were purchased from Merck KGaA (Darmstadt, Germany).

Fixation. Caenorhabditis elegans. Fixation of C. elegans individuals was carried out after removal of the M9 
growth medium (washing three times with Aqua Millipore) via application of glutaraldehyde solution (4% in 
PBS) for 10 min under gentle agitation at room temperature.

Mammal tissue samples (human knee cartilage, human melanoma, mouse kidney). Fixation of the presented 
mammal samples was carried out in freshly prepared paraformaldehyde solution (4% in PBS, pH 6.9, paraform-
aldehyde for synthesis) for 60 min under gentle agitation at room temperature.

Ixodes hexagonus. The tick samples of this study were fixed by the application of freshly prepared paraformal-
dehyde solution (4% in PBS, pH 6.9) for 60 min under gentle agitation at room temperature.

Sennes alexandrina. Fixation of S. alexandrina leaves was carried out using a freshly prepared mixture of 90 mL 
ethanol (70%, absolute EtOH pro analysi), 5 mL formaldehyde (36%) and 5 mL glacial acetic acid  (H2O-free, pro 
analysi) for 24 h under gentle agitation at room temperature.

Euglena gracilis and Escherichia coli. Euglena gracilis and E. coli cells were fixed after the removal of growth 
medium (washing three times with Aqua Millipore) by applying freshly prepared paraformaldehyde solution 
(4% in PBS, pH 6.9) for 10 min under gentle agitation at room temperature.

Polyethylene glycol embedding. Polyethylene glycol (polyethylene glycol 4000 for synthesis) embed-
ding was executed employing absolute ethanol as intermedium. Prior to the embedding procedure, each sample 
was washed at least twice with Aqua Millipore followed by gentle agitation for at least 15 min to remove the 
remaining fixative completely. Subsequently, an ethanol dilution series was applied (absolute EtOH pro analysi, 
EtOH/H2O 15:85, 25:75, 50:50, 70:30, 95:5 and 100% EtOH, 15 min for each dilution applied under gentle agita-
tion). In case of the small samples (e.g. C. elegans), change of dilutions was performed by centrifugation (3000×g 
for 5 min), subsequent removal and disposal of the supernatant followed by the addition of the next dilution 
step. PEG infusion was finally introduced by the application of two PEG/EtOH (50:50) steps followed by alto-
gether two final steps of absolute PEG 4000 (polyethylene glycol 4000 for synthesis). The PEG containing steps 
were infunded at a constant temperature of 64 °C for 15 min under gentle agitation. During the preparation of C. 
elegans or single cells, changing of the PEG-containing solutions was carried out via centrifugations in a -rotor 
preheated to 64 °C (Eppendorf MiniSpinPlus with Rotor F-45-12-11, Eppendorf AG, Hamburg, Germany). The 
resulting samples suspended in absolute and molten PEG 4000 were finally transferred into a capsule of choice 
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for solidification at room temperature [either BEEM Embedding Capsules Size 00 (Electron Microscopy Sci-
ences, Hatfield, PA, USA) or 1.5 mL conical reagent tubes (Eppendorf AG, Hamburg, Germany)]. To prepare 
small samples, a final centrifugation at 3000×g in a rotor preheated to 64 °C was carried out in order to ensure the 
orientation of the specimens in the apex of the capsule before ultra-sectioning. In contrast to that, larger samples 
(e.g. mammalian tissues) were easily positioned using preheated tweezers instead of a more complex centrifuga-
tion procedure. After solidification at room temperature, the embedding blocks were removed from the capsules 
and a small aluminum rod matching the block’s diameter was melted onto the basis of each block in order to 
allow mounting in the specimen holder of the ultra-microtome used for subsequent sectioning.

Ultra-sectioning. Serial ultra-sectioning of the PEG-embedded specimen was performed with a Reichert/
Leica Ultracut E microtome (Leica Microsystems, Wetzlar, Germany) equipped with typical glass knifes (glass 
strips 7890-04, LKB Bromma, Stockholm, Sweden), freshly prepared on a LKB Bromma 7801B KnifeMaker 
(LKB Bromma, Stockholm, Sweden). An inclination angle of 2–3 degrees and a section velocity of around 
50 mm/s was used to gain serial sections ranging from 70 to about 750 nm in thickness, depending on the sam-
ple of interest. All sectioning operations have been carried out under ambient conditions resulting in easily and 
reproducibly obtainable ultra-sections.

Dehydration and immobilization of the ultra-sections. A section band including around 200 sec-
tions was afterwards transferred into a 40 µL droplet of Aqua Millipore on a poly-l-lysine coated glass slide 
(Polysine slides, Gerhard Menzel GmbH, Braunschweig, Germany) using a human eye lash glued to a wooden 
stick. After the transfer of the section band into the droplet, a coverslip (24 × 40 mm) was gently applied and left 
on the sample for at least 5 min. This resulted in the adhesion of the ultra-sections to the coated glass slide. The 
cover slip was subsequently gently removed by the immersion of the whole sample in Aqua Millipore, leading to 
the flotation of the cover slip which was afterwards easily removed using a pair of tweezers. The resulting sample 
can be used at this point for further staining methodologies before dehydration. In case of the study at hand, the 
samples were afterwards dehydrated by evaporation using mildly pressurized air flow (hand bellows).

AFM data acquisition. AFM image acquisition of the dehydrated ultra-sections was performed in inter-
mittent contact mode (Tapping mode) under ambient conditions employing a Veeco/Bruker Bioscope equipped 
with a Nanoscope IIIa controller and n-type silicon cantilevers (HQ:NSC14 Al BS, nominal tip radius below 
10 nm, nominal spring constant 5 N/m, resonance frequency around 160 kHz; µmesh, Sofia, Bulgaria) coupled 
with an inverted fluorescence microscope (Zeiss Axiovert 135, Carl Zeiss Microscopy GmbH, Jena, Germany). 
AFM image acquisition was carried at an oscillation 2% below the cantilever´s resonance frequency, using a free 
RMS amplitude of roughly 2 V, scanning rates around 0.5 Hz and amplitude setpoints around 1.2 V. All measure-
ments were conducted in a laboratory ranging from 40 to 60% in humidity.

Processing of AFM images. Processing of AFM imaging data (plane fit, flattening and crop operations) 
was carried out employing the software Nanoscope Analysis 1.5 (Bruker, Karlsruhe, Germany). In case of pre-
sent unwanted features in the image data, especially of scan line noise and bow, flattening operations (typically 
0th and 1st order algorithms) have been performed. The presence of tilt artifacts in some images was reduced by 
applying plane fit operations to create a planar image profile.

Sample origin. The author sincerely thanks for the donation of the biological samples investigated in this 
paper (Caenorhabditis elegans individuals were kindly provided by Eva Liebau (Institute of Animal Physiology, 
University of Münster, Germany), the knee cartilage sample was kindly donated by Thorsten Saenger (Institute 
of Pharmaceutical and Medicinal Chemistry, University of Münster, Germany), the human melanoma tissue 
was kindly provided by Hermann Schillers (Institute of Physiology II, University of Münster, Germany), Ixodes 
hexagonus individuals were kindly made available by Christina Strube (Institute of Parasitology, University of 
Veterinary Medicine Hannover, Germany) and mouse kidney samples were kindly donated by Martina Düfer 
(Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Germany). The samples not spe-
cifically mentioned were provided by the Institute for Pharmaceutical Biology and Phytochemistry (University 
of Münster, Germany).
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