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Correlation between the structure 
and skin permeability 
of compounds
Ruolan Zeng, Jiyong Deng *, Limin Dang & Xinliang Yu *

A three-descriptor quantitative structure–activity/toxicity relationship (QSAR/QSTR) model was 
developed for the skin permeability of a sufficiently large data set consisting of 274 compounds, by 
applying support vector machine (SVM) together with genetic algorithm. The optimal SVM model 
possesses the coefficient of determination R2 of 0.946 and root mean square (rms) error of 0.253 
for the training set of 139 compounds; and a R2 of 0.872 and rms of 0.302 for the test set of 135 
compounds. Compared with other models reported in the literature, our SVM model shows better 
statistical performance in a model that deals with more samples in the test set. Therefore, applying a 
SVM algorithm to develop a nonlinear QSAR model for skin permeability was achieved.

Modeling the penetration of manmade and naturally derived chemicals through human skin is of great impor-
tance for pharmaceutical and cosmetic industries, as well as toxicology and risk assessment of environmental and 
occupational hazards. It is very time-consuming and expensive to estimate the skin permeability of chemicals. 
Further, there are many ethical challenges associated with human and animal testing for assessment of skin 
 permeability1,2.

Quantitative structure–activity/toxicity relationship (QSAR/QSTR)  models3–6 can be used for the prediction 
of physicochemical property of compounds, even for those that have not been synthesized. Some researchers 
have carried out QSAR studies for skin permeability of chemicals (the logarithm of the skin permeability coef-
ficients, log Kp).

Patel et al. developed QSAR models for the skin permeability of 158 chemicals with multiple linear regres-
sion (MLR)  analysis7. The model based on four descriptors has an excellent fit to the data with a coefficient of 
determination of R2 of = 0.90. Fujiwara et al. proposed MLR QSARs for the skin permeability of 94 structurally 
diverse  compounds8. The models obtained from ten data sets of the skin permeability possess high R2 values 
with an average R2 of 0.815. Magnusson et al. introduced a regression model (R2 = 0.760) for the skin perme-
ability of 269  compounds9. They found that molecular weight was the main determinant of log KP and QSAR 
model can be improved when other descriptors such as melting point and hydrogen bonding acceptor capability 
were added. Chauhan and Shakya built a QSAR model for the skin permeability from the training set of 150 
compounds through partial least-squares  regression10. The model with a R2 of 0.936 for the training set was 
validated by the test set of 53 compounds. The root mean square (rms) error and R2 from the test set were equal 
to 0.670 and 0.542. Xu et al. proposed an expanded version of a linear free-energy relationship model for the skin 
permeability of complex chemical  mixtures11. The model (R2 = 0.70) showed a better fit and predictive power 
compared with the simple model (R2 = 0.21). Chen et al. generated a MLR model for the skin permeability with 
four molecular  descriptors12. The model has a R2 of 0.858 for the training set (85 compounds), and 0.839 for the 
test set (21 compounds), which are accurate and acceptable. All these QSAR models referred to were obtained 
with the linear techniques.

Generally, nonlinear QSAR models possess better statistical performance than linear QSAR models because 
of the nonlinear correlation between molecular physicochemical properties and structure descriptors. Neely 
et al. constructed a nonlinear artificial neural network (ANN) model for the skin permeability of 160 molecular 
 structures13. The ANN model (10-3-7-1) based on ten descriptor and two hidden layers had an absolute-average 
percentage deviation, rms error, and R of 8.0%, 0.34, and 0.93, respectively. Khajeh and Modarress introduced a 
novel nonlinear QSAR model for the skin permeability of 283 compounds with the hybrid of ANN and a fuzzy 
inference system, adaptive neuro-fuzzy inference system (ANFIS)14. The ANFIS model was based on a training 
set of 225 compounds and validated by a test set of 58 compounds. The R2 values for the two sets were 0.899 and 
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0.890, respectively. The model possesses good predictive ability, although there are nine compounds in duplicate 
in the data set.

ANN algorithm may easily fall into a local minimum value and possesses the disadvantages of slow conver-
gence  speed15. Support vector machine (SVM) algorithm is based on the principle of structural risk minimization. 
SVMs can effectively avoid local optimums and have unique advantages in solving practical problems such as 
limited training samples, high dimensional and nonlinear data. The aim of this study was to develop a nonlinear 
SVM QSAR model for the skin permeability of a sufficiently large data set consisting of 274 compounds.

Materials and methods
Khajeh and Modarress reported 283 compounds and their experimental log Kp  values14. After careful investiga-
tion, we found that the sample, p-Chlorobenzene, should be 1-chloro-4-nitrobenzene and 4-Chloro-4-phenylen-
ediamine should be 4-Chloro-m-phenylenediamine. There are no counterions or organometallics in the data 
set. The molecular weights of 283 compounds were calculated with ChemDraw Ultra 8.0 in ChemOffice 2004. 
These molecules possessing the same molecular weights were checked carefully to identify the duplicates. There 
are nine compounds in duplicate, including 4-phenylenediamine (1,4-benzenediamine), 4-hydroxynitrobenzene 
(4-nitrophenol), methylhydroxybenzoate (methyl 4-hydroxybenzoate), 1,2-benzenediamine (2-phenylenedi-
amine), 2-naphthol (naphthalene-2-ol), 2-nitro-1,4-phenylenediamine (2-nitro-4-phenylenediamine), 1-nonanol 
(Nonanol), 4-chloro-1,3-phenylenediamine (4-Chloro-m-phenylenediamine), and 1-heptanol (Heptanol). After 
these duplicates were deleted, 274 compounds were obtained. Table S1 in “Supplementary Materials” shows their 
SMILES structures and the log Kp values. The units for skin permeability coefficients Kp are cm/h and these log 
Kp values ranged from − 6.10 to − 0.76. The Kennard-Stone  algorithm16 was used to group the compounds in the 
training set (139 compounds) and test set (135 compounds). The training set was used to adjust model parameters 
and train QSAR models; and the test set was used to validate the models.

ChemDraw Ultra 8.0 in ChemOffice 2004 was adopted to generate the structures of 274 compounds, which 
were converted into three-dimensional structures with Chem3D Ultra 8.0 and optimized with a semi-empirical 
AM1 method in MOPAC. Dragon 6.017 was used to calculate 4885 molecular descriptors for each compound. 
After some molecular descriptors that equal a constant or their correlation coefficients are above 0.90 were 
deleted, 1820 descriptors (including Neoplastic-80) were obtained for descriptor selection. Stepwise MLR analysis 
in IBM SPSS Statistical 19 was performed to select the optimal subset of descriptors and develop MLR models.

For non-linear regression, SVM algorithms map input variables into high-dimensional feature space, from 
which linear regression analysis is carried  out18,19. For sample data, 
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Thus, Eq. (1) is:
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For SVM models, their SVM parameters C and γ can affect greatly their prediction performance. Both C and 
γ were optimized with the genetic algorithm. In this study, the LibSVM  toolbox20 working on Matlab platform 
was used to develop models, which can be downloaded freely from https:// www. csie. ntu. edu. tw/ ~cjlin/ libsvm/.

Results and discussion
After carrying out stepwise MLR analysis in IBM SPSS Statistical 19 for the skin permeability log Kp of 274 
compounds and 1820 descriptors, a three-descriptor QSAR model was obtained, which includes A log P, X3v, 
and Neoplastic-80.

The Ghose–Crippen–Viswanadhan octanol–water partition coefficient (A log P) is based on the A log P 
 model21 and calculated by:

where ni is the number of atom of type i and ai is the corresponding hydrophobicity constant. Previous works 
have shown that A log P is positively correlation with skin permeability log Kp. In this work, the descriptors were 
converted to a new descriptor  cos2[(4.31 + A log P)/8.66]. An analysis of  cos2[(4.31 + A log P)/8.66] with respect 
to the skin permeability log Kp of 274 compounds resulted in regression Eq. (10) and statistical parameters:

where n is the number of samples in the training set, R2 is the coefficient of determination, R2
adj is the adjusted R 

square, se is the standard error of the estimate, and F is the Fischer ratio. Figure 1 shows the correlation between 
 cos2[(4.31 + A log P)/8.66] and log Kp. The descriptor  cos2[(4.31 + A log P)/8.66] (or A log P) describes the 
hydrophobic character of a compound and is related to log Kp.

Connectivity indices are used widely in QSARs. They are based on the H-depleted molecular graph whose 
vertexes belong to non-hydrogen atom and are correlated with the number of connected non-hydrogen  atoms17. 
The general formula for calculating connectivity indices is:

where n is the number of vertices; k is an integer ranging from 0 to 5, denoting the total number of kth order 
paths present in the molecular graph; and δ is the vertex degrees. Valence connectivity indices (Xkv) can be 
used to account for the presence of heteroatoms in the molecule as well as of double and triple bonds, by means 
of replacing the vertex degree with the valence vertex degree. The valence connectivity index of order 3, X3v, 
describes molecular size and shape.

By correlating log Kp to the two descriptors,  cos2[(4.31 + A log P)/8.66] and X3v, we obtained the following 
regression equation:

(9)A log P =
∑

i

niai

(10)
log Kp = 0.624−5.178 cos2

[(
4.31+ A log P

)
/8.66

]

n = 274, R = 0.695, R2 = 0.483, R2
adj = 0.481, se = 0.713, F = 253.903

(11)Xk =

k∑

j=1

(
n∏

i=1

δi

)−1/2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-7

-6

-5

-4

-3

-2

-1

0

R=-0.695

Ex
pe

rim
en

ta
l l

og
K

p

cos2[(4.31+AlogP)/8.66]

Figure 1.  Plot of the descriptor  cos2[(4.31 + A log P)/8.66] versus log Kp, generated by OriginPro 7.5 SR1.
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Compared with Eq. (10), the quality of Eq. (12) improved noticeably when the descriptor X3v was added. 
Figure 2 shows the correlation between the experimental and calculated log Kp with Eq. (12). As illustrated in 
Fig. 2, there were two samples, ouabain (No. 5 in Table S1), and fluocinonide (No. 11) with larger prediction 
errors for log Kp. Thus, more molecular descriptors should be added.

The descriptor Ghose–Viswanadhan–Wendoloski antineoplastic-like index at the qualifying range that cov-
ers approximately 80% of the drugs studied, Neoplastic-80, depends on A log P and reflects molecular polarity 
and  hydrophobicity17. The Neoplastic-80 value of a molecule that has a benzene ring, heterocyclic ring, aliphatic 
amine, carboxamide group, alcoholic hydroxyl group, carboxy ester and/or keto group, was equal to 1, when its A 
log P value is in the range of − 1.5 to 4.7, the molar refractivity of 43–128, the molecular weight of 180–470, and 
the total number of atoms of 21–63; otherwise Neoplastic-80 equals zero. A molecule with larger Neoplastic-80 
might have a smaller log Kp value. Carrying out regression analysis between log Kp of 274 compounds and the 
three descriptors stated above resulted in Eq. (13):

The correlation coefficient R of 0.945 in Eq. (13) was slightly higher than the 0.942 of the  model13. Moreover, 
Eq. (13) has accurate prediction for the skin permeability log Kp of compounds including the two samples (Nos. 
5 and 11 in Table S1 in “Supplementary Materials”) stated above, since Fig. 3 shows that there are no samples 
with obvious larger errors. When the descriptor A log P, together with X3v and Neoplastic-80, was directly 
used to develop the MLR model, its correlation coefficient R was only 0.939, which was lower than the 0.945 of 
Eq. (13). Thus the three descriptors,  cos2[(4.31 + A log P)/8.66], X3v, and Neoplastic-80 shown in Table S1 in 
“Supplementary Materials” were used to develop QSAR models.

A correlation analysis between the skin permeability log Kp of 139 compounds in the training set and the 
three descriptors resulted in Eq. (14) (i.e., MLR model):

The characteristics of molecular descriptors in MLR model are listed in Table 1. As can been observed in 
Table 1, the three descriptors,  cos2[(4.31 + A log P)/8.66], X3v, and Neoplastic-80 descriptor all were significant 
and made a contribution to log Kp, because their significance values (or P values) are less than 0.05. In addition, 
their variance inflation factors (VIF) were far less than ten suggesting that the three descriptors describe dif-
ferent structure factors affecting skin permeability log Kp. The t-test can be used to measure the significance of 
descriptors in making a contribution to molecular physicochemical properties. The higher the absolute value 
of the t-test, the greater the significance of the descriptor. According to the t-test values in Table 1, the absolute 
values of t-test increased in the sequence: Neoplastic-80, X3v, and  cos2[(4.31 + A log P)/8.66], the significance 
of descriptors increased in the same sequence.
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Figure 2.  Plot of experimental versus calculated log Kp with Eq. (12), generated by OriginPro 7.5 SR1.
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The MLR model was further used to predict the skin permeability log Kp of 135 compounds in the test set. 
The correlation coefficient R of the test set was 0.928. The rms errors for the training set, test set and total set were 
0.343, 0.302, and 0.323, respectively. The prediction log Kp values are illustrated in Fig. 4 and listed in Table S1 
in “Supplementary Materials”.

The three molecular descriptors used in Eq. (14) were used as input variables to develop SVM models for skin 
permeability log Kp from the training set of 139 compounds, by applying the LibSVM toolbox in the MATLAB 
R2014a software platform. A genetic algorithm was adopted to optimize the SVM parameters C and γ under the 
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Figure 3.  Plot of experimental versus calculated log Kp with Eq. (13), generated by OriginPro 7.5 SR1.

Table 1.  Characteristics of molecular descriptors in MLR model.

Descriptor Coefficients Std. error t-test P-value VIF

Constant 2.068 0.145 14.221 0.000 –

cos2[(4.31 + A log P)/8.66] − 6.515 0.206 − 31.625 0.000 1.102

X3v − 0.722 0.074 − 9.750 0.000 1.420

Neoplastic-80 − 0.168 0.012 − 14.248 0.000 1.442
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Figure 4.  Plot of experimental versus predicted log Kp with Eq. (14), generated by OriginPro 7.5 SR1.
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following conditions: the searching range of parameters C was [0, 1000], the searching range of γ was [0, 10], 
the m in m-fold-cross-validation was 5, the maximum generation was 200, the maximum population size was 
20, and the ε in the ε-insensitive loss function was 0.001.

The optimization results for the SVM model were obtained: the parameters C being 7.2906 and γ being 1.7200, 
and the internal correlation coefficient based on leave-one-out (LOO) cross-validation method being 0.82. The 
optimal SVM model was further validated with the test set of 135 compounds. The SVM prediction results are 
listed in Table S1 in “Supplementary Materials” and illustrated in Fig. 5. The coefficient of determination R2 
and rms error for the training set of 139 compounds were 0.946 and 0.253, respectively; R2 and rms for the test 
set of 135 compounds were 0.872 and 0.302, respectively; and R2 and rms error for the total set were 0.925 and 
0.270, respectively. The rms errors of 0.253, 0.302, and 0.270, respectively, for the training set, test set and total 
set from the SVM model were lower than those (0.343, 0.302, and 0.323, respectively) of Eq. (14) (MLR model) 
in this study. Therefore, there were non-linear relationships between the skin permeability log Kp and molecular 
descriptors used.

The SVM model was further evaluated with the criteria by Golbraikh and Tropsha:22

where q2ext is external correlation coefficient; R0
2 and R0

′2 are determination coefficients of the predicted vs. the 
observed values and of the observed vs. the predicted values, respectively; k and k′ are slopes of regression lines of 
the predicted vs. the observed values and of the observed values vs. the predicted values; ytrain is the average value 
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)2
∑(

yi − y
)2 = 0.872

(20)
∣∣R2 − R2

0

∣∣/R2 = 0.016 < 0.1;

(21)
∣∣R2 − R′2

0

∣∣/R2 = 0 < 0.1

-7 -6 -5 -4 -3 -2 -1
-7

-6

-5

-4

-3

-2

-1
R=0.973 (Training set)
R=0.934 (Test set)

Ex
pe

rim
en

ta
l l

og
K

p

Calculated logKp

Figure 5.  Plot of experimental versus predicted log Kp with SVM model, generated by OriginPro 7.5 SR1.
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of the training set;  yi and yi are the observed and the predicted activities, respectively; yr0i = kỹi and ỹr0i = k′yi . 
Obviously, our SVM model satisfied the validation  criteria22,23.

The coefficient of determination R2 (= 0.946) in this study is higher than the R2 of 0.907, 0.8158, 0.7609, 0.93610, 
0.7011, 0.85812, and 0.9313. In addition, the rms errors of the training set, test set and total set from the ANFIS 
model of Khajeh and Modarress that dealt with the 283 samples were 0.318, 0.308, and 0.316  respectively14, which 
were greater than the rms errors ( 0.253, 0.302, and 0.270, respectively) from our SVM model. Compared with 
results of other models reported in the  literature9–14, our SVM model shows better statistical performance in a 
model that deals with more samples in the test set.

Conclusions
A three-descriptor SVM model with SVM parameters C of 7.2906 and γ of 1.7200 was successfully built for 
the skin permeability log Kp of a sufficiently large data set consisting of 274 compounds, by means of a genetic 
algorithm. The SVM model possesses rms errors of 0.253 for the training set (139 compounds), 0.302 for the 
test set (135 compounds), and 0.270 for the total set (274 compounds). Our SVM model shows better statistical 
performance in a model that deals with more samples in the test set, compared with other QSARs of the skin 
permeability of log Kp reported in the literature. There were non-linear relationships between the skin perme-
ability log Kp and molecular descriptors used. It was reasonable applying a SVM algorithm to develop a nonlinear 
QSAR model for skin permeability.

Data availability
All data generated or analysed during this study are included in this published article (and its “Supplementary 
Information” files).
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