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Predicting distribution of malaria 
vector larval habitats in Ethiopia 
by integrating distributed 
hydrologic modeling with remotely 
sensed data
Ai‑Ling Jiang1*, Ming‑Chieh Lee2, Guofa Zhou2, Daibin Zhong2, Dawit Hawaria3,4, 
Solomon Kibret2, Delenasaw Yewhalaw4,5, Brett F. Sanders1,6, Guiyun Yan2* & Kuolin Hsu1*

Larval source management has gained renewed interest as a malaria control strategy in Africa but 
the widespread and transient nature of larval breeding sites poses a challenge to its implementation. 
To address this problem, we propose combining an integrated high resolution (50 m) distributed 
hydrological model and remotely sensed data to simulate potential malaria vector aquatic habitats. 
The novelty of our approach lies in its consideration of irrigation practices and its ability to resolve 
complex ponding processes that contribute to potential larval habitats. The simulation was performed 
for the year of 2018 using ParFlow‑Common Land Model (CLM) in a sugarcane plantation in the 
Oromia region, Ethiopia to examine the effects of rainfall and irrigation. The model was calibrated 
using field observations of larval habitats to successfully predict ponding at all surveyed locations from 
the validation dataset. Results show that without irrigation, at least half of the area inside the farms 
had a 40% probability of potential larval habitat occurrence. With irrigation, the probability increased 
to 56%. Irrigation dampened the seasonality of the potential larval habitats such that the peak larval 
habitat occurrence window during the rainy season was extended into the dry season. Furthermore, 
the stability of the habitats was prolonged, with a significant shift from semi‑permanent to permanent 
habitats. Our study provides a hydrological perspective on the impact of environmental modification 
on malaria vector ecology, which can potentially inform malaria control strategies through better 
water management.

Long-lasting insecticide-treated nets (LLINs) and indoor residual spray (IRS) are the key tools for malaria vector 
 control1,2. Scale-up of LLINs and IRS in the past decade has reduced malaria burden in Africa by  half3, however 
the progress of malaria control has stalled in many African countries due to limited efficacy of LLINs and IRS as 
a result of insecticide resistance and increased outdoor biting  behavior4. Thus, there is a recent renewed inter-
est in larval source management (LSM) as a supplementary vector control  tool5. LSM involves larviciding and 
biological control of malaria vectors, and also modification and manipulation of aquatic  habitats5. LSM has not 
been widely used in malaria vector control in Africa, partly due to the challenge of widespread and unstable larval 
sites in many ecosystems. LSM may not be suited to all ecosystems, however LSM would be greatly facilitated 
if larval habitat distribution under natural climatic conditions can be predicted a priori, so that regions best 
suited to LSM can be identified. Further, prediction of how environmental modification such as irrigation, canal 
construction and landscape alteration through engineering approach may change the distribution of transient, 
semi-permanent and permanent aquatic habitats would greatly help LSM-based malaria vector control program 
which is much needed in Africa.
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The LSM program requires identification of aquatic habitats for malaria vectors. Past studies have attempted 
to use field-based surveys or harness remotely sensed data for larval habitat  identification6,7. Field-based surveys 
involve the use of manual labor or unmanned aerial vehicles (UAVs) with geographic information system (GIS) 
to map larval habitats, which can be time  consuming4, limited in geographic coverage and weather  dependent8,9. 
Alternatively, researchers have relied on satellite imagery and supervised classification into land use and land 
cover (LULC) maps to delineate potential larval aquatic  habitats10–12. The type of satellite imagery used is usually 
optical, which tends to be limited by cloud cover and is unable to identify water bodies hidden by vegetation 
 cover13,14.

An alternative approach is required as the aforementioned inadequacies in the existing methods often result 
in larval habitat mapping of limited coverage or discontinuous frequencies that are unable to support effective 
LSM. We propose a novel approach using a physics-based integrated hydrological model that draws on funda-
mental principles to realistically model potential larval aquatic habitats. Complex hydrologic processes built into 
the model such as infiltration, evapotranspiration and runoff help to provide a mechanistic understanding of 
aquatic habitat behavior. The primary inputs of a hydrological model, namely meteorological and topographic 
datasets, can be acquired globally and are available at high temporal and spatial resolutions respectively through 
remote  sensing15,16. Notably, the larvae of the major malaria vector in Ethiopia, Anopheles arabiensis17, have been 
associated with transient  pools18 and our approach allows the larval habitats to be resolved down to sub-daily 
frequencies and tens of meters resolutions necessary to capture the dynamic nature of the habitats. It can also 
be scaled up in coverage if required.

Several studies in malaria transmission have incorporated hydrologic modeling. Soti et al. combined a simple 
water balance model with a mosquito population model to predict the abundance of mosquitoes contributing 
to the transmission of Rift Valley fever in West  Africa19. Asare et al. applied another simplified water balance 
model (VECTRI) and parameterized the processes to simulate the fractional water coverage in central  Ghana20. 
The empirical nature of the model and unrealistic assumptions made about infiltration and runoff result in heavy 
reliance on calibration and can increase model uncertainty substantially. Bomblies et al. used a mechanistic 
hydrologic model to simulate the surface water area for two villages in  Niger21. However, the subsurface and 
surface water components are only coupled one-way such that surface water can only flow to the subsurface but 
not the other way round. The lack of exfiltration and re-infiltration components precludes the representation of 
spring-fed pools from groundwater recharge. Additionally, the model did not account for lateral subsurface flow, 
which can influence evapotranspiration and redistribute groundwater to low-lying areas, especially at higher spa-
tial  resolutions22,23. To simulate the dynamics of the aquatic larval habitats, the hydrologic model chosen must be 
able to detail the surface–subsurface interactions and plant processes associated with ponding given the complex 
interdependence between larval habitats and the environment. In addition, none of the existing hydrology-based 
malaria models have been used to investigate the impact of irrigation on larval habitats.

In the present study, we aim to examine the potential of integrated hydrological models in predicting the 
location of mosquito larval habitats by capturing the shallow subsurface dynamics and improve our understand-
ing of the hydrologic processes and environmental modifications that render larval habitats. Specifically, we 
seek to answer the following: (1) Where are the potential larval habitats located and what is the probability of 
occurrence? (2) How long can the larval habitats be sustained? (3) Is there a cyclical pattern in the extent of the 
larval habitats? (4) What is the impact of irrigation on each of the above? The uniqueness of our approach lies 
in its consideration of irrigation practices and its ability to resolve complex ponding processes that contribute 
to potential larval habitats such as groundwater-surface water  interactions24. We chose  ParFlow22,25–28 for its 
open-source nature, robust numerical  solver28, and compatibility with high-performance  computing29. To take 
into account irrigation and land cover characteristics, ParFlow was coupled with the Community Land Model 
(CLM)30 to simulate soil moisture for the identification of malaria larval habitats in a sugarcane plantation and 
its vicinity in Arjo, Ethiopia.

Methods
Model description. ParFlow has been applied in many studies to simulate complex surface–subsurface 
interactions in heterogeneous  environments31,32. Richards’  equation33, which governs water movement through 
the unsaturated zone, is used to simulate subsurface flow in three dimensions. The diffusive wave and Manning’s 
equations, which calculate the depth and velocity of the routed water, are used to represent the overland flow in 
two  dimensions22. To connect the overland flow and subsurface, the former is imposed as a boundary condition 
on the latter for natural feedbacks between the two  components22.

Considering the non-linear nature of the governing equations, ParFlow solves the coupled system implicitly 
using the Newton–Krylov method for robust convergence to the solution and multigrid preconditioning for 
parallel scalability. This allows the system to be solved efficiently through parallel  computing29. For details, see 
Ashby and  Falgout25, Jones and  Woodward26, and Kollet and  Maxwell22. Additionally, CLM simulates the land 
surface water and energy balance which includes evaporation, transpiration, snow processes, heat fluxes, and 
radiation  partitioning30,34. The water fluxes calculated by CLM are incorporated in ParFlow through the source or 
sink terms in Richards’ equation for subsurface  flow30. The two models are coupled over a user-defined number 
of subsurface layers and this allows ParFlow to take into account the characteristics of the vegetation cover as 
CLM simulates plant function types corresponding to different vegetation  parameters27,30.

Study area. The study area is 208  km2 and comprises Arjo-Didessa sugarcane plantation and its vicinity 
in the Oromia Region State, western Ethiopia (Fig. 1). The altitude of the study area is 1,350 m above sea level 
and the annual rainfall received is 1,477  mm35, with a rainy season between May and October. The area cov-
ers most of the Arjo-Didessa sugarcane plantation site, which is characterized by clay and clay loam with low 
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 permeability36. Due to the slow rate of infiltration, rainwater can accumulate easily and form ponds in the area, 
which is exacerbated by irrigation of the sugarcane plantation. The widespread and persistent nature of this 
ponding contributes to the breeding of malaria vector mosquitoes.

A recent study indicated that malaria is seasonal in this area; transmission mainly followed the rainy season, 
with the highest cases recorded between September and  November37. However, some localities experienced 
persistent malaria due to environmental modifications such as irrigation that support the continuous availability 
of breeding sites. Anopheles arabiensis is the predominant malaria vector species in the area. The major mosquito 
breeding habitat types included rain pools, stream shoreline, animal foot prints, irrigation canal, hippo trenches, 
drainage ditches, and puddles in rice  cultivation35 (Supplementary Fig S1).

In the ParFlow-CLM model, the study area was discretized with a resolution of 50 m, resulting in a grid con-
figuration of 332 by 248 cells. The subsurface component was divided into 10 layers and the thickness of each 
layer varies, depending on the granularity of the data available. In general, the resolution of the subsurface layer 
increased nearer to the surface to capture the shallow surface processes in greater detail. The layer thicknesses 
ranged from 0.25 m to 20 m, over a total vertical depth of 100 m.

Input data. As the model domain is a rural area where field data for model construction was scarce, remotely 
sensed data and global synthetic datasets from published works were used. For example, 1 arc-second digital 
elevation model (DEM) from  SRTM38 was resampled to the 50 m model grid and converted to ground surface 
slopes as an input to ParFlow. The land cover for each grid cell in CLM was determined by the classification of 
30 m resolution Landsat-8  imagery39 taken on a cloud-free day in January 2018 into International Geosphere-
Biosphere Programme (IGBP) types. To characterize the subsurface, the soil taxonomy distribution (Supple-
mentary Fig S2) for the top 2 m from the surface was referenced from the SoilGrids250m TAXOUSDA  dataset40. 
The saturated hydraulic conductivity of the deeper zone beyond the top 2 m was based on GLHYMPS 2.041. The 
depth to bedrock data from SoilGrids250m BDRICM  dataset40 was used to delineate the bedrock zone, which 
was assigned a very low hydraulic conductivity. For the meteorological forcing, 0.04 degree by 0.04-degree pre-
cipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-

Figure 1.  Study area at Arjo-Dedissa sugarcane plantation and its vicinity. This area is found in the Oromia 
Region of western Ethiopia and located 395 km west of the capital, Addis Ababa, at the intersection of the three 
woredas (districts), Jimma Arjo (East Wollega Zone), Bedele (Buno Badale Zone), and Dabo Hana (Illubabor 
Zone) at the Didessa River valley. The model area is enclosed by the gray box. The sugarcane plantations in 
the study area were demarcated by the green lines. To simplify model simulation, the irrigation parcels in the 
plantation area were further grouped and generalized into four farms, which will be explained in greater detail 
in the later subsection.
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works-Cloud Classification System (PERSIANN-CCS)42,43 was resampled to the model grid using bilinear inter-
polation. In addition, wind speed from the second version of Modern-Era Retrospective analysis for Research 
and Applications (MERRA-2)44 of 0.5 degrees by 0.625 degrees resolution and air temperature, pressure, specific 
humidity and radiation data from Global Land Data Assimilation System (GLDAS)45 of 0.25 degree by 0.25 
degree resolution were averaged for the entire domain. All the forcing data were obtained from 2018 and input 
to the model hourly. The list of model input data and the relevant details can be found in Supplementary Table S1 
and Supplementary Note Section 1.

Model scenarios. A 1-year baseline period in 2018 from January 1 to December 31 was simulated with an 
hourly time step to produce daily soil saturation and groundwater pressure head. Sugarcane is a plant with high 
water consumption so irrigation during the dry season is essential. Hence, a separate scenario was run for the 
same period with the implementation of a synthesized irrigation scheme corresponding to the dry season from 
January to April and November to December. This synthesis was based on the sugarcane plantation irrigation 
schedule and detailed plans acquired from Arjo-Didessa Sugar Factory in Supplementary Fig S336. Specifically, 
the sugarcane plantation in the study area was grouped into four irrigation sub-zones as a simplified representa-
tion (Fig. 1). In each irrigation cycle, Farms 1 and 3 are sprinkler-irrigated for 10 days, followed by Farms 2 and 
4. Each farm receives a total of 10 mm of irrigation over 22 h each day during its turn for irrigation.

As an illustration of the hydrological process for the baseline scenario, Fig. 2 shows a time series of the 
simulated spatially averaged surface layer soil saturation, along with snapshots of the resulting surface layer soil 
saturation at five particular time instances in May 2018 when a 7-day rainfall event occurred. The instantaneous 
snapshots of the soil saturation reflect the spatial distribution of the rainfall. The details of the baseline simula-
tion for the entire year and the irrigation scenario results can be found in Supplementary Fig S4, Supplementary 
Fig S5, and Supplementary Note Section 2. The animations of the simulated soil saturation dynamics for the 
baseline condition and irrigation scenario with daily precipitation in 2018 can be found in Supplementary 
Videos S1 and S2.

Wetness index calculation. As mosquito reproduction is successful only if larval habitats remain stable 
for a period sufficient to sustain the aquatic  stage46,47, the viability of the habitat was determined by the persis-
tence of ponding. Hence, we developed a Wetness Index (WI) metric to quantify the persistence of ponding 
as a basis for potential habitat representation after rain and irrigation. This will be used later on to answer our 
research questions.

Figure 2.  The simulated surface layer (25 cm depth) soil saturation at five time instances during a rain event in 
May 2018. The snapshots illustrate the close-up views of the soil saturation for the rainfall event between May 
5, 2018, and May 11, 2018, along with the time series of the spatially averaged precipitation, temperature, and 
simulated surface layer. On May 3(t1), the surface was generally dry before the onset of the rainfall, except for 
the mountainous areas on the left. On May 5 (t2), the rain started to spread from the mountainous areas. By 
May 7 (t3), the rain had spread to the entire area. The snapshot at t4 shows the post-rainfall distribution on May 
10, and the snapshot at t5 shows the area drying up again after the rainfall event on May 13. The soil saturation 
increased to more than 85% at the peak of the storm across most of the study area and decreased quickly after 
about 5 days but the streams and the vicinities remain wet. There were no large depressions (e.g. lakes, pools) 
observed in the simulation.
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As the aquatic habitats at site were typically shallow and the lateral scale was of the order 10 m or smaller, 
it was not feasible to explicitly simulate the surface water depth of the individual habitat. Hence, the simulated 
soil saturation of the top surface layer as described in the previous section, coupled with a threshold, was used 
to assess the availability of the surface water that could contribute to ponding. Since soil saturation measures 
the extent to which the water content has filled up the voids within the soil, a higher soil saturation means there 
is a larger volume of water stored in the soil within the 50 m grid cell. Hence, a potential occurrence of pond-
ing was assumed if the surface layer soil saturation exceeded the threshold. Otherwise, no ponding occured. To 
evaluate the duration of ponding, WI was used and defined as the cumulative number of days of ponding from 
the start of the simulation year at any grid cell (x,y) and day (t), based on the simulated soil saturation of the top 
surface layer S(x,y,t) and a soil saturation threshold θ. The computation of the index is as shown below in Eq. (1):

 The initial WI for every grid cell was set to 0. The index increases each day if the soil saturation exceeds the 
threshold. Otherwise, it will reset to zero, implying that the habitats in the grid cell are no longer able to sustain 
the development of the larvae population.

The soil saturation threshold θ in Eq. (1) was calibrated based on a field survey of aquatic larval habitats. 134 
ponding locations were surveyed for larval growth during the dry (December 2017–February 2018) and rainy 
(June 2018–September 2018)  seasons35. For each surveyed location, information regarding whether larval growth 
was detected, the type of species identified, larval density, habitat dimension, habitat type and land use type 
were recorded. Regardless of whether larval growth was detected, each survey location served as an indication 
of ponding for calibration and validation. Some of the surveyed locations such as man-made ponds, tire track 
puddles, and animal footprints which could not be simulated by the hydrologic model were omitted. In addition, 
to minimize the influence of dry season irrigation on the parameterization considering that the irrigation in the 
model was approximated by a simplified scheme, the calibration was only conducted for the rainy season from 
May to October. In total, 102 of the surveyed locations were used for calibration and validation as shown in Fig. 3.

The objective of the calibration was to maximize the probability of detection (POD), which determines if 
the model can predict an aquatic habitat successfully. Other measures which can capture overprediction were 
not chosen as the field data only covered locations with ponding and it was challenging to rule out small pud-
dles within the grid cell using other types of data. To ensure the relevance of the calibrated θ, a bootstrapping 
method was applied and it was found that the optimal θ was 0.48. In other words, the model would predict the 
occurrence of ponding for soil saturation above 0.48 at locations in line with the survey. Details of the survey 
data and calibration method can be found in Supplementary Note Section 3.

In summary, the overall schematic of our methodology is shown in Fig. 4. Using the Wetness Index, we ana-
lyzed the potential larval habitats in terms of their spatial distribution, stability and temporal pattern and the 
results are presented in the next section.

(1)WI
(

x, y, t
)

=
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WI
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)
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)

≥ θ
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Figure 3.  Location of the surveyed aquatic habitats. All accessible potential mosquito breeding habitats were 
surveyed and identified the presence of mosquito larvae during the dry (December 2017–February 2018) and 
rainy (June 2018–August 2018) seasons.
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Results
Location of potential larval habitats and probability of occurrence. Generally, Anopheles arabi-
ensis mosquito takes around 15 days to develop from egg to adult, but the duration can be as short as 10 days 
due to selection pressures from the stressed environment such as drought, temperature anomaly, or limited food 
 resources48,49. In this regard, we considered areas with WI exceeding 10 and 15 days to be potential larval habitats 
under critical and normal conditions, respectively.

To determine the probability of potential larval habitat occurrence, we computed the probability of pond-
ing occurring longer than 10 and 15 days, P(WI > T), as shown in Eq. (2). P(WI > T) is defined as the ratio of 
D(WI(x,y,t) > T), the number of cumulated days for which the WI (i.e. persistence of ponding) of a grid cell (x,y) 
at time t that exceeded T days, to Dperiod, the number of days within a defined period of simulation.

Figure 5 shows the results for the spatial distribution of P(WI > T) over the three periods of simulation, 
namely the entire year of 2018, the dry season (i.e. January to April and November to December) and the rainy 
season (i.e. May to October). It can be observed that ponding was persistent throughout the year around the 
stream edges and the vicinity. P(WI > 10) and P(WI > 15) were consistently close to 1, reflecting a high potential 
of these areas as larval habitats.

(2)P(WI > T) =
D(WI

(

x, y, t
)

> T)

Dperiod
, T ∈ {10, 15}

Figure 4.  Overall schematic of methodology.

Figure 5.  Spatial distribution for the probability of potential larval habitat occurrence. (a–d) represent the 
probability of WI exceeding 10 days and 15 days for the baseline scenario and the irrigation scenario for the 
entire year. Similarly, (e–h) represent the probability of WI exceeding 10 days and 15 days during the dry season, 
and (i–l) represent the probability of WI exceeding 10 days and 15 days during the rainy season. Areas where 
the simulated surface water flowrate exceeded 0.01  m3/s for 90% of the time in the simulated year were masked 
out for all the sub-figures since Anopheles larvae have a lower chance of surviving in fast-moving  water61.
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For the baseline scenario shown in Fig. 5a,b, the P(WI > T) for the areas outside of the streams was predomi-
nantly determined by soil type. The areas characterized by Usterts (see Supplementary Fig S2) with the lowest 
hydraulic conductivity in the model domain were the next most at risk, with a P(WI > T) of about 0.4–0.5. In the 
remaining areas, P(WI > T) was generally 0.2 or less. Comparing Fig. 5a,b, the differences were minimal except 
for the steep areas at the watershed upstream boundary where P(WI > 15) was predominantly zero. The surface 
water ponding was unable to last more than 15 days due to the terrain gradient.

Figure 5c,d show the results for the irrigation scenario. Compared to the baseline scenario, the year-round 
persistent ponding around the streams and the vicinity was wider in coverage and more noticeable. Irrigation 
also increased P(WI > 10) in Fig. 5c and P(WI > 15) in Fig. 5d from 0.4–0.5 to about 0.7 and 0.6 respectively 
for Farm #1, Farm #2, and a significant portion of Farm #3 and Farm #4. The P(WI > T) for the remaining area 
within the farms remained relatively unchanged at 0.2 and this could be attributed to the Ustoll soil type which 
drains easily. The increase in the probability of potential larval habitat occurrence from the baseline was more 
pronounced for P(WI > 10) than P(WI > 15) since the interval of irrigation was set at 10 days, after which the 
farm drained without replenishment until the next irrigation cycle.

For the dry season, it can be observed in Fig. 5e,f that the stream edges were the only areas with high potential 
of larval habitat occurrence. In Fig. 5g,h, P(WI > T) increased visibly in the farms after irrigation, with a distinct 
similarity between Farms #1/#3 and Farms #2/#4 that points to the irrigation schedule. While irrigation was 
alternated evenly between the two groups, Farms#1 and #3 showed a higher P(WI > T) than Farms #2 and #4, 
possibly due to the timing of the irrigation relative to the rainfall. Irrigation could either coincide with rainfall 
or act as a supplement when there was no rainfall to augment soil moisture. Noticeably, there was an area to the 
northeast straddling both Farm #3 and Farm #4 where P(WI > 10) was around 0.1 but P(WI > 15) was almost 
zero, indicating that irrigation only allowed for larval habitats under critical conditions in that area during the 
dry season.

For the rainy season, it can be observed in the baseline scenario (Fig. 5i,j) that the areas characterized by 
Ustert exhibited a high potential of larval habitat occurrence, apart from the stream edges. Particularly, there 
was an area to the north where P(WI > T) was lower than the other parts which could be due to the relatively 
steeper terrain. In the irrigation scenario (Fig. 5k,l), there was no visible difference in P(WI > T) as compared to 
the baseline scenario, apart from a minor increase around the western part of Farm #4.

As a summary, we present the results in boxplots as shown in Fig. 6 to illustrate the effect of irrigation in dif-
ferent seasons for the areas inside and outside farms. The relevant statistics can be found in Table 1. The P(WI > T) 
had a highly asymmetrical distribution because it was very low in most of the model domain but could be very 
high in the remaining areas due to the streams. For the following comparison, we will use the median as it was 
more representative of the distribution.

In the baseline scenario, there was a higher potential for larval habitats to form inside the farms, with a median 
P(WI > 10) of 0.427 and a median P(WI > 15) of 0.400, than outside the farms, with a median P(WI > 10) of 0.06 
and a median P(WI > 15) of 0.019. This is expected because the farms are located in an area with relatively flat ter-
rain and a higher concentration of streams. The difference in the median P(WI > T) inside and outside the farms 
was bigger in the rainy season compared to the dry season, as the higher rainfall received intensified ponding.

Irrigation increased the median P(WI > T) inside the farms drastically in the dry season, with the median 
P(WI > 10) increasing from 0 to 0.442 and the median P(WI > 15) increasing from 0 to 0.282. Although irrigation 
was only applied over the dry season, there was also a statistically significant increase in the median P(WI > T) 
during the rainy season (p < 0.01). The median P(WI > 10) increased from 0.848 to 0.864 while the median 
P(WI > 15) increased from 0.794 to 0.810. This was due to irrigation contributing to the antecedent soil moisture 
before the onset of the rainy season, which shortened the time for the soil to become saturated and ponding to 

Figure 6.  Box plots for the probability of potential larval habitat occurrence for the whole year, dry, and rainy 
season. Probability of WI exceeding (a) 10 days and 15 days (b) for the area inside farms and the area outside 
farms. The line within each box is the sample median and the top and bottom of each box are the 25th and 75th 
percentiles. The whiskers were drawn from the two ends of the box and demarcate the observations which were 
within 1.5 times the interquartile range from the top and bottom of the box.
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occur. On the other hand, there was no strong evidence outside the farms of an increase in the median P(WI > T) 
due to irrigation (p > 0.01). This applied to both rainy and dry seasons.

Stability of larval habitats. In the previous section, we showed that irrigation did not have a significant 
impact on areas outside the farms. Here, we evaluated the stability of the potential larval habitats specifically for 
the areas inside farms based on the distribution of the maximum duration of ponding for each grid cell within 
the year as shown in the histogram (Fig. 7a). The total number of cells corresponding to each bin interval of 
15 days was expressed as a fraction of the total number of cells in the area inside farms.

From the baseline scenario, 13.2% of the area was not favorable for larval habitats because the maximum dura-
tion of ponding in those areas was less than 15 days. The most common maximum ponding duration was between 
150 and 165 days, which accounted for more than 20% of the area. This was followed by 15–30 days and 360 days 
and above which made up 17.6% and 13.8% of the area respectively. With irrigation, there was a general increase 
in the maximum ponding durations. The most common maximum ponding duration was 360 days and above, 
accounting for 18% of the area. Noticeably, the area with maximum ponding duration between 210–225 days 
increased fourfold to 10%. The remaining increase was for 285 days and above. Counter-intuitively, the area that 
was not conducive as larval habitats (i.e. maximum ponding duration less than 15 days) also increased slightly 
by 0.6%. This was because irrigation raised the overland flowrate in these areas, mostly near streams, and made 
them unfavorable for breeding.

In Fig. 7b, we grouped the maximum ponding durations into stability periods corresponding to temporary 
(2 weeks to 3 months), semi-permanent (3–6 months), and permanent (6 months and above) habitats based on 
field observations from a study at the  site35. Temporary habitats such as puddles retain water for a short period 
while permanent habitats such as stream edges and swamps hold water much longer and are more stable. For 
the baseline scenario, semi-permanent habitats were the most common, occupying 33.1% of the area, while 
permanent and temporary habitats also accounted for 29.6% and 24.1% of the area respectively. After irrigation, 
there was a significant shift from semi-permanent habitats, which reduced to 22.9% of the area, to permanent 
habitats which increased to 41% of the area. There was also a slight reduction in the extent of temporary habitats 
to 22.4% of the area.

Temporal pattern of potential larval habitats. To shed light on the temporal patterns, we evaluated 
F(WI > T), the fractional coverage of potential larval habitats inside farm, for each day throughout the year. We 
only focused on the area inside farms since irrigation does not have a significant impact on the area outside 
farms. As shown in Eq. (3), F(WI > T) is defined as the ratio of C(WI > T), the number of cells for which the WI 
(i.e. persistence of ponding) exceeded T days, to Cfarm, the number of cells within the farm area. T is set as 10 days 
and 15 days, corresponding to critical and normal conditions respectively.

Table 1.  Summary statistics of the probability of potential larval habitat occurence for the whole year, dry 
season, and rainy season. Mean, 25th percentile (P25), median and 75th percentile (P75) of the probability 
of WI exceeding 10 days and 15 days for the (a) areas inside farms and (b) areas outside farms. The p value 
was derived from the Wilcoxon Rank-Sum test under the null hypothesis that irrigation did not increase the 
median probability of exceedance from the baseline scenario.

Baseline Irrigation

p valueMean P25 Median P75 Mean P25 Median P75

(a) Area inside Farms

Wetness Index Exceeding 10 Days

 Dry season 0.173 0.000 0.000 0.111 0.424 0.039 0.442 0.680  < 0.01

 Rainy season 0.607 0.185 0.848 0.924 0.643 0.201 0.864 1.000  < 0.01

 Year round 0.392 0.093 0.427 0.515 0.534 0.123 0.674 0.836  < 0.01

Wetness Index Exceeding 15 Days

 Dry season 0.168 0.000 0.000 0.111 0.347 0.000 0.282 0.553  < 0.01

 Rainy season 0.553 0.076 0.794 0.897 0.597 0.076 0.810 1.000  < 0.01

 Year round 0.362 0.038 0.400 0.501 0.473 0.038 0.559 0.778  < 0.01

(b) Area outside farms

Wetness Index Exceeding 10 Days

 Dry season 0.053 0.000 0.000 0.000 0.053 0.000 0.000 0.000 0.254

 Rainy season 0.202 0.082 0.120 0.201 0.202 0.082 0.120 0.201 0.437

 Year round 0.128 0.041 0.060 0.101 0.128 0.041 0.060 0.101 0.430

Wetness Index Exceeding 15 Days

 Dry season 0.051 0.000 0.000 0.000 0.051 0.000 0.000 0.000 0.385

 Rainy season 0.125 0.005 0.038 0.098 0.125 0.005 0.038 0.098 0.440

 Year round 0.089 0.003 0.019 0.049 0.088 0.003 0.019 0.049 0.443
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(3)F(WI > T) =
C
(

WI
(

x, y, t
)

≥ T
)

Cfarm
, T ∈ {10, 15}

Figure 7.  The fraction of area inside the irrigated farms for each potential larval habitat types under the 
baseline and irrigation scenarios. (a) Shows the histogram of the maximum duration of ponding within the 
year for the grid cells in each type of habitats expressed as a fraction of the total area of the farms. The bin 
size was 15 days. Temporary, semi-permanent, and permanent larval habitats were typically characterized by 
ponding duration of 15–90 days, 90–180 days, and 180 days and above, respectively. The baseline scenario is 
represented in blue and the irrigation scenario is represented in orange. The darker orange bin is a result of the 
two overlapping. (b) Shows the comparison of the fractional area occupied by non-habitats (less than 15 days) 
as well as potential temporary, semi-permanent, and permanent larval habitats inside the farms. Each grid cell 
within the farm was categorized based on its maximum ponding duration.

Figure 8.  Daily variations in the extent of the potential larval habitats for the year. Time series of the fractional 
coverage of areas with Wetness Index (WI) exceeding (a) 10 days and (b) 15 days.
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In Fig. 8a, F(WI > 10) increased steeply on January 10 as WI started increasing from 0 at the beginning of 
the year. For the baseline scenario, the fractional coverage decreased minimally from 0.18 throughout the dry 
season despite the sporadic spike in precipitation. At the onset of the rainy season, the peak rainfall event of 
the year from May 5th to May 11th caused a sharp increase in F(WI > 10) from 0.15 to 0.61 and thereafter, the 
relentless rainfall maintained the fractional coverage at about 0.6. Throughout the rainy season, there were four 
recurring peaks at a frequency of about 2 months. Post-rainy season, F(WI > 10) dropped gradually to below 0.2 
after the last peak at the end of October.

For the irrigation scenario, F(WI > 10) increased during the dry season from January to March with visible 
cyclical variations between 0.2 and 0.4 due to the rotation of irrigation among the four farms. Subsequently, the 
spike in rainfall at the end of March combined with the higher antecedent soil moisture from irrigation brought 
forward the step increase in the fractional coverage to April from May in the baseline scenario. As irrigation 
stopped at the end of April, F(WI > 10) gradually dropped back to the same level as the baseline scenario at the 
end of June. In the dry season from November to December, the fractional coverage started to deviate from the 
baseline scenario again with cyclical fluctuations, gradually decreasing towards the end of the year.

In Fig. 8b, F(WI > 15) remained largely the same for the dry season but the peaks were moderated in the rainy 
season, compared to F(WI > 10). There was one less peak at the end of May in the early rainy season because 
the watershed did not accumulate enough rainfall for the persistence of the ponded areas to exceed 15 days. 
Specifically, for the irrigation scenario, the increase in fractional coverage during the dry season was moderated 
and less sensitive to the spikes in rainfall. Similarly, irrigation resulted in the early onset of the steep increase in 
F(WI > 15) in April following the spike in rainfall at the end of March. Also, it took two months after the end of 
irrigation in April for the fractional coverage to return to the same level as the baseline.

From F(WI > 10) and F(WI > 15), we calculated the corresponding monthly mean, MF(WI > 10), and 
MF(WI > 15) as well as the 95th confidence interval as shown in Fig. 9. In Fig. 9a, MF(WI > 10) in the baseline 
was the highest for the months between June and September, constituting a four-month window in which at 
least 50% of the area was conducive for larval habitat formation. Of the four months, the highest monthly mean 
fractional coverage was in July at 79.9%. Irrigation extended the window to include the months of April and 
May. The monthly mean fractional coverage increased 4.5 times to 64.3% in April and 1.4 times to 63.7% in May. 
The MF(WI > 10) for the rest of the months in the window (i.e. June to September) remained one of the highest 

Figure 9.  Monthly variation in the extent of the potential larval habitats for the year. Monthly mean fractional 
coverage of areas with a probability of WI exceeding 10 days (a) and 15 days (b). The 95% confidence interval 
is indicated at the top of each bar chart. The asterisks (*) next to the month on the x-axis indicate that irrigation 
increased the fractional coverage of the potential larval habitats for the month from the baseline scenario based 
on a 2-sample t-test (p < 0.01).
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but the increase due to irrigation was not statistically significant (p > 0.01). July remained as the month with the 
highest monthly mean fractional coverage at 80.0%. In Fig. 9b, MF(WI > 15) was generally slightly lower than 
MF(WI > 10) for both the baseline and irrigation scenarios but the general trends were the same.

Discussion
Impact of irrigation on spatiotemporal distribution of potential larval habitats. This study, for 
the first time, employed an integrated hydrological model to predict the proliferation of potential larval habitats 
around an irrigated field during the dry and rainy seasons. Irrigation resulted in a much higher probability to 
find potential larval habitats in the dry season. Although irrigation was not applied during the rainy season, 
a slight increase in the probability of potential larval habitat occurrence was also observed due to the higher 
antecedent soil moisture from the dry season promoting the formation of larval habitats further. Considering 
that larval habitat availability is one of the direct predictors for vector abundance, our findings tie in with local 
 studies35,50,51 in the Arjo-Didessa sugarcane plantation which showed a higher occurrence of Anopheline mos-
quito larval habitats, larval productivity and abundance in the irrigated areas than non-irrigated areas in both 
dry and wet seasons.

Separately, previous studies have identified irrigation schemes as the cause for prolonging mosquito season 
and extending the period of malaria  transmission52,53. In our study, it was found that the stability of potential 
larval habitats was similarly prolonged, with a significant shift from semi-permanent (3–6 months) to permanent 
habitats (6 months and above) in the irrigated farm areas. Originally, the semi-permanent habitats were the most 
common, occupying a third of the area inside farm without irrigation. In the irrigation scenario, the area of the 
permanent habitats became the most common, increasing to more than 40% of the area inside farm.

The temporal variations in the extent of the potential larval habitats indicate that rainfall exerts a strong 
influence. It is common that peak mosquito breeding seasons follow rainfall in the  tropics54. In our study, the 
occurrence of potential larval habitats was highest for the period from June to September, during which at least 
50% of the area inside farms were potential larval habitats. This overlaps with a significant portion of the rainy 
season. From the irrigation scenario, we observed that irrigation dampened the seasonality of the potential lar-
val habitats by increasing the wetness index in the dry season and extending the peak larval habitat occurrence 
window to include the months of April and May. Elsewhere in Africa, irrigation is also known to reduce the 
dependence of larval habitat patterns on rainfall, changing them from seasonal to  perennial55.

This calls for the need to modify current irrigation strategies and develop tailor-made interventions to miti-
gate mosquito breeding around irrigated fields in order to combat malaria. Ideally, the aim is to optimize irriga-
tion to minimize larval habitat availability while meeting crop water requirement. To this end, our model has 
the flexibility to simulate different types of irrigation such as flood irrigation, groundwater irrigation, sprinkler 
irrigation and drip irrigation as well as water allocation strategies. Hence, beyond predicting potential larval 
habitats, the model can help configure the outline of the irrigation design and sieve out some of the more perti-
nent and effective strategies. For example, the main method of irrigation in Ethiopia is surface irrigation which 
has low implementation cost but is known to be inefficient in water  use56 and can aggravate malaria transmission 
by providing an ideal larval  habitat57. For regions where resources are limited, our model can be used to identify 
irrigated farms with the most serious ponding to prioritize the installation of higher water efficiency but also 
costlier irrigation systems such as drip or sprinkler irrigation. It can also be coupled with a water allocation 
 algorithm58 to investigate the larval habitat distribution under more complex water management operations.

The implication of model assumptions and simplifications on results. In this study, we chose to 
simulate the surface layer soil saturation at 50 m resolution, coupled with a threshold, to quantify ponding instead 
of explicitly simulating the surface water depth. Without high resolution and accurate topographic information, 
it was not feasible to achieve the latter at the scale of the larval habitats surveyed in the study area, most of which 
measure less than 100  m2 each. It has been shown that a minimum of 3 model grid cells is required across the 
width of the land depression for a good balance between accuracy and computational effort when simulating a 
flood  extent59. This requires accurate data with a minimum resolution of 3 m that can only be obtained using 
Lidar, RTK (Real-Time Kinematics), or PPK (Post Processed Kinematics) with aircraft or drone, which is time 
consuming and expensive. Regardless, the computational efficiency of the model with high-resolution DEM will 
pose another challenge even if they were available. As such, the model is not intended to pinpoint the exact loca-
tion of each larval habitat in the study area. Instead, it provides information on the overall likelihood of ponding 
for each grid cell based on the interactions between system properties and forcing variables at various temporal 
and spatial scales. The strength of this approach is that the model can afford to run on a regional scale at a fairly 
high spatial resolution while keeping computational requirements manageable. Furthermore, all the primary 
data used are freely available for all regions of the world and hence, this framework provides a great opportunity 
to extend potential larval habitat simulation into other locations without incurring high data acquisition cost.

In terms of performance, the model was able to predict ponding at all the validation points after calibration. 
As shown in Supplementary Fig S6, the probability of detection for both calibration and validation reached 1 (i.e. 
all the points are detected) at the optimal soil saturation threshold θ of 0.48. However, this does not mean the 
model is perfect as the calibration and validation did not account for overprediction at locations without pond-
ing since the survey was only for locations with ponding. This will be resolved in future by ongoing field survey 
efforts toward compiling a more spatiotemporally comprehensive dataset including locations without ponding. 
Another limitation was that calibration was only performed on the soil saturation threshold but not the ParFlow 
model per se although the simulated soil saturation was realistic from its general behavior. This was due to the 
lack of data to verify surface and subsurface flow rates at a relevant spatial scale. With the collection of more data 
in future, the key parameters can be fine-tuned to improve model predictions. A more detailed irrigation schedule 
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would also provide insight into the water usage, irrigation management, and surface land cover during sugar-
cane growth. Such data could serve as a better guide in modeling pond formation that incorporates the effect of 
irrigation. Unfortunately, records for canal water flow, water usage, and field operations were not available at the 
time of visit to the Arjo-Didessa Sugar Factory, and only the summary data and annual plan could be obtained.

Conclusion and future prospects
Using high resolution distributed hydrologic modeling with remotely sensed data, we demonstrated a quantitative 
assessment of potential malaria vector larval habitats in terms of the spatial distribution and temporal variation. 
We also evaluated the relative influence of key environmental processes such as rainfall and irrigation on the 
habitats. Results indicated a higher probability to find potential larval habitats inside the farms, at around 40% 
of the year, than outside the farms, at less than 10% of the year. Our model also showed that rainfall exerted 
a strong influence on larval habitat availability based on predictions that at least 50% of the area inside farms 
were potential larval habitats from June to September during the rainy season. Further, modeling revealed that 
irrigation increased the probability of finding potential larval habitats inside the farms to 67%. Irrigation also 
dampened the seasonality of the potential larval habitats such that the peak larval habitat occurrence window 
during the rainy season was extended. Lastly, the stability of larval habitats was prolonged, with a significant 
shift from semi-permanent habitats to permanent habitats lasting beyond 6 months, pointing to the impact of 
irrigation in creating conducive mosquito habitats throughout most of the year.

Since the effectiveness of major malaria vector control measures is decreasing due to mosquito insecticide 
resistance and outdoor transmission, the role of LSM as a supplementary vector control tool to reduce malaria 
transmission becomes more significant. As such, hydrologic modeling with publicly available data, presented 
herein, constitutes a promising direction in terms of providing a dynamic and systematic approach for the iden-
tification and elimination of larval habitats by environmental modification and manipulation. For hydrologic 
modeling to fulfill its promise in the area, enhanced observational efforts are required in future. Thorough cali-
bration and validation will be critical in evaluating the robustness and quantifying the uncertainty of the model.

Food security will bring economic growth and remains one of the priorities in Africa. To this end, invest-
ment in dams and irrigation systems is increasing rapidly in Africa over the past decade. Unfortunately, this 
might increase the risk of malaria due to environmental modifications and microclimate changes. The broader 
goal of our research is to harness the hydrological results, along with other epidemiological, entomological and 
social-economic factors, to translate the knowledge of potential larval habitats to useful information on the 
spatio-temporal distribution of malaria transmission risks. Remotely sensed data can enable this type of modeling 
in data-scarce regions where malaria presents a grave threat. This framework has great potential to integrate 
with malaria epidemiologic modeling such as  EMOD60 to predict malaria risk under different environmental 
modifications to guide decision-making in water resource management, changes to agricultural practice, and 
disease prevention.
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