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Sulfamic acid pyromellitic 
diamide‑functionalized MCM‑41 
as a multifunctional hybrid 
catalyst for melting‑assisted 
solvent‑free synthesis of bioactive 
3,4‑dihydropyrimidin‑2‑(1H)‑ones
Ehsan Valiey, Mohammad G. Dekamin* & Zahra Alirezvani

This study introduces a practical approach to fabricate a novel hybrid acidic catalyst, namely sulfamic 
acid pyromellitic diamide‑functionalized MCM‑41 (MCM‑41‑APS‑PMDA‑NHSO3H). Various techniques 
such as FTIR, TGA, XRD, BET, FESEM, and EDX were used to confirm its structural characteristics. The 
efficiency of the new MCM‑41‑APS‑PMDA‑NHSO3H organosilica nanomaterials, as a heterogenous 
nanocatalyst, was examined in the synthesis of biologically active 3,4‑dihydropyrimidin‑2‑(1H)‑one 
derivatives under solvent‑free conditions. It was found that the nanoporous MCM‑41‑APS‑PMDA‑
NHSO3H, demonstrating acidic nature and high surface area, can activate all the Biginelli reaction 
components to afford desired 3,4‑dihydropyrimidin‑2‑(1H)‑ones under solvent‑free conditions in short 
reaction time. Furthermore, easy and quick isolation of the new introduced hybrid organosilica from 
the reaction mixture as well as its reusability with negligible loss of activity in at least five consecutive 
runs are another advantages of this green protocol.

In recent decades, the synthesis and use of mesoporous structures have received much attention. The M41S fam-
ily consists mainly of silica,  SiO2. Silica has certain advantages such as high chemical and thermal stability, large 
number of silanol (Si − OH) groups and simplicity of operation, which have made it an appropriate and well-
known support in the chemical industry. MCM-41 became the most attractive member of the M41S family due 
to its ordered structure and special properties such as exceptional high surface area (> 1000  m2  g−1) and narrow 
pore-size distribution (1.5–10 nm)1–4. These properties have made MCM-41 as an appropriate nanomaterial sup-
port for metal  oxides5, heteropoly  acids6, metal–ligand  complexes7,8, etc. to immobilize catalytic active  centers9–13 
as well as to develop more efficient drug delivery  systems14–18,  sensors19, degradation inhibitors in polymer 
 industry20, adsorbents of organic  pollutants21–23. However, the acidic strength of the pure MCM-41 is relatively 
weak, which hinders its catalysis applications. Therefore, modification of its surface can lead to the formation of 
solid acids with high uniformity, which are regularly prepared by covalent anchoring of various organic moieties 
with proper functional groups in a mesoporous material or replacing of Si atoms by other tetra-, tri- and di-
valent metals such as Al, B, Fe, Mn, Zn,  etc16,24–40. Hence, covalent anchoring of both sulfamic and pyromellitic 
acids in the pore walls of MCM-41 can significantly enhance the catalytic capabilities of the designed catalyst.

On the other hand, solvent-free organic synthesis (SFOS) has been emerged as an effective tool for the rapid 
preparation of various organic compounds especially biologically active molecules during recent  years41. In fact, 
solvent-free conditions obviously form a liquid phase on heating of the reaction mixture with solid substrates. 
This melting mentions the eutectic mixture with temperature fusion below the melting points of the reactants. 
These solvent-free protocols have many advantages including the products are sufficiently pure which does not 
require further purification or recrystallization; the reactions are sometimes rapid as compared to conditions 
using often toxic solvents; functional group protection–deprotection can be avoided, and sometimes the use of 
solvent-free conditions is more  inexpensive42,43. Furthermore, the use of multicomponent reactions (MCRs) 
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allows formation of densely functionalized organic molecules such as dihydropyrimidinones (DHPMs) in a sim-
ple synthetic  procedure43–47. Hence, the simultaneous use of solid acids, solvent-free conditions and MCRs would 
be very beneficial to prepare high-value organic compounds as well as address green chemistry  principles48.

In the past few decades, dihydropyrimidinones (DHPMs) and their derivatives, as an important class of heter-
ocyclic compounds, have stimulated interest in medicinal chemistry due to their diverse biological  activities48–51. 
Theses pyrimidine-containing heterocycles are present significantly in natural products or synthetic organic 
compounds such as natural marine polycyclic guanidine alkaloids, the kinesin Eg5 inhibitor Monastrol, BACE-1 
inhibitor to prevent Alzheimer’s disease, bioprobes and fluorescent  sensors51–55. Due to important properties 
of DHMPs, different methods using Brønsted or Lewis acids catalysts have been developed for the synthesis of 
DHPMs by the Biginelli reaction in recent  years55–59. Among these catalytic systems, the immobilization of the 
catalytic active centers on a wide range of solid polymer supports, especially silica, can improve the efficiency 
of the relevant  method59–63. In continuation of our ongoing efforts towards developing of more efficient het-
erogeneous catalysts for different  MCRs63–70, we wish herein to introduce preparation and characterization of 
the new hybrid sulfamic acid pyromellitic diamide-functionalized MCM-41 (MCM-41-APS-PMDA-NHSO3H) 
nanomaterials. Also, its catalytic activity was investigated in the three-component synthesis of 3,4-dihydropy-
rimidin-2-(1H)-one derivatives from aromatic aldehydes, ethyl acetoacetate and urea (Scheme 1). To the best of 
our knowledge, there is not any report for the use of sulfamic acid pyromellitic diamide grafted on the surface 
of MCM-41, as a heterogeneous nanocatalyst, for the synthesis of Biginelli 3,4-dihydropyrimidin-2-(1H)-one 
derivatives.

Results and discussion
Characterization of the MCM‑41‑APS‑PMDA‑NHSO3H nanomaterials (1). The as prepared 
MCM-41-APS-PMDA-NHSO3H nanomaterial was analyzed using different spectroscopic, microscopic and 
analytical methods as well as porsiometric and porometric techniques including FTIR, EDX, XRD, FESEM, 
TGA and BET experiments. The FTIR spectra of MCM-41 (a), MCM-41-APS (b) MCM-41-APS-PMDA (c) and 
MCM-41-APS-PMDA-NHSO3H are show in Fig. 1. The nano-ordered MCM-41 shows a band in the 3443  cm−1 
region that is due to the presence of both Si–OH and OH groups of the adsorbed water molecules on its surface 
(Fig. 1a)71. Furthermore, the band corresponded to Si–O–Si bonds for MCM-41 and all subsequent modifica-
tions are observed around 1228–1062   cm−1. Also, the signals in the regions of 1600   cm−1 and 2883   cm−1 are 
attributed to the symmetric vibrations of  NH2 and the asymmetric vibrations of C–H of 3-APTS, respectively 
(Fig. 1b). On the other hand, the decrease in signal intensity of the OH groups of MCM-41 surface confirms 
that the MCM-41 substrate has been modified by the covalent bonding of the 3-APTS linker. In addition, the 
observed broad band at 3604–2923, 1716 and 1569  cm−1 are attributed to the stretching vibrations of the pyrom-
ellitic acid and its amide derivative (Fig. 1c). Also, the characteristic band observed at 1365 and 1066  cm−1 are 
assigned to the asymmetric and symmetric S=O stretching vibration of the  SO3H group (Fig. 1d).

Also, the morphology and textural properties of the MCM-41and MCM-41-APS-PMDA-NHSO3H (1) were 
examined using field emission scanning electron microscopy (FESEM). As shown in Fig. 2, the morphological 
distinction between the pure MCM-41 (2a–c images) and MCM-41-APS-PMDA-NHSO3H (1, 2d–f images) 
demonstrate grafting of the N-carbonyl sulfamic acid pyromellitic diamide moiety on the outer surface of MCM-
41 support.

On the other hand, the thermogravimetric analysis (TGA) of the MCM-41-APS-PMDA-NHSO3H (1) are 
shown in Fig. 3. The TGA curve of MCM-41-APS-PMDA-NHSO3H shows three distinct steps of weight loss. In 
the first step, 10% weight loss between 50 °C and 150 °C can be attributed to the absorbed water or solvent mol-
ecules held in the pores of the MCM-41-APS-PMDA-NHSO3H nanomaterial. The second weight loss between 
150 and 350 °C is due to decomposition of the grafted organic N-carbonyl sulfamic acid pyromellitic diamide 
moiety. Also, the third weight loss (17%) between 380 and 600 °C can be related to the conversion of silanol 
(Si–OH) groups to siloxane (Si–O–Si) bridges. These results also indicate that the N-carbonyl sulfamic acid 
pyromellitic diamide moiety has successfully been grafted onto the surface of MCM-41.

As shown in Fig. 4, the energy-dispersive X-ray (EDX) spectra of the MCM-41-APS-PMDA-NHSO3H (1) 
verified the presence of Si (11.61%), C (14.89%), O (57.63%), N (12.90%), and S (2.98%), respectively.

Furthermore, the powder XRD pattern of the MCM-41-APS-PMDA-NHSO3H (1, Fig. 5a) shows low angle 
reflections of (d100), (d110) and (d200) at 2θ = 2.77°, 4.67° and 5.13°, respectively. These plates confirm the for-
mation of a hexagonal mesoporous structure with regular particle size and pores, which indicates its structure 
is similar to the mesoporous MCM-41 precursor. On the other hand, the observed peaks in the wide angle XRD 
pattern are in well agreement with both Joint Committee on Powder Diffraction Standards (JCPDS) card no 
00-003-0268 (sulfamic acid) and 00-024-1864 (pyromellitic dianhydride). These data also demonstrate successful 
grafting of the the organic moieties onto the surface of nanocatalyst 1. Indeed, the diffraction signals observed at 
2θ = 14.0°, 19.0°, 23.0°, 25.0°, 26.0°, 29.3° illustrates the formation of MCM-41-APS-PMDA-NHSO3H (Fig. 5b).

Figure 6 demonstrates the  N2 adsorption/desorption isotherms of the MCM-41, MCM-41-APS-PMDA-
NHSO3H. Isotherm type V was recognizable for MCM-41-APS-PMDA-NHSO3H with hysteresis loop. The table 
shows the parameters such as pore volume as well as average pore diameter in MCM-41 and the nanocatalyst 1. 
In fact, grafting of APS-PMDA-NHSO3H groups through the (3-aminopropyl) triethoxysilane and pyromellitic 
acid linkers reduces both surface area and pore volume whereas increases pore diameter of the nanocatalyst 1.

Investigation of the catalytic activity of the MCM‑41‑APS‑PMDA‑NHSO3H nanocatalyst (1) 
for the synthesis of 3,4‑dihydropyrimidinones 5a–k. To evaluate the catalytic activity of the MCM-
41-APS-PMDA-NHSO3H nanomaterials (1) in the synthesis of 3,4-dihydropyrimidin-2(1H)-ones, the reaction 
of ethyl acetoacetate (2, 1 mmol), 4-chlorobenzaldehyde (3a, 1 mmol) and urea (4, 1.2 mmol) was investigated as 
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Scheme 1.  Schematic preparation of MCM-41-APS-PMDA-NHSO3H (1) for the three-component 
condensation of ethyl acetoacetate (2), aldehydes (3), urea (4) to afford 3,4-dihydropyrimidin-2-(1H)-one 
derivatives (5).
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the model reaction under different conditions. A systematic study was performed to optimize different param-
eters affecting of the model reaction such as solvent, catalyst loading and temperature. The results are summa-
rized in Table 1. The results of using different polar and non-polar solvents as well as solvent-free conditions 
showed that the model reaction proceeded very well with lower catalyst 1 loading under solvent-free conditions 
at 80 °C in shorter reaction time (Table 1, entries 1–11). These findings encouraged us to perform the model 
reaction under solvent-free conditions in further optimization reactions (entries 12–14). Indeed, by further 
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Figure 1.  FTIR spectra of the MCM-41 (a), MCM-41-APS (b), MCM-41-APS-PMDA (c) and MCM-41-APS-
PMDA-NHSO3H (d) (1).

Figure 2.  FESEM images of the MCM-41 (a–c) and the MCM-41-APS-PMDA-NHSO3H (1, d–f) materials.
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reducing of the catalyst loading, lower yields of the desired product ethyl 4-(4-chlorophenyl)-6-methyl-2-oxo-
1,2,3,4-tetrahydropyrimidine-5-carboxylate (5a) were obtained under similar conditions even over longer times. 
On the other hand, it is noteworthy that a very low yield of the desired product 5a was obtained in the absence 
of the MCM-41-APS-PMDA-NHSO3H nanomaterials (1). Therefore, these results strongly confirmed the role 
of MCM-41-APS-PMDA-NHSO3H (1) to promote the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under 
solvent-free conditions. Hence, 15 mg of catalyst 1 under solvent-free conditions at 80 °C were selected as the 
optimal conditions for the next experiments.

The optimized conditions were developed to different carbocyclic or heterocyclic aromatic aldehydes affording 
other 3,4-dihydropyrimidin-2(1H)-one derivatives. The results are summarized in Table 2. Noticeably, the desired 
products 5a–k were obtained in high to excellent yields. In fact, aldehydes 3 bearing electron-withdrawing groups 
on their aromatic ring generally react faster compared to those having electron-donating groups. These results 
clearly confirm the appropriate catalytic activity of the MCM-41-APS-PMDA-NHSO3H hybrid nanomaterials 
(1) to promote the Biginelli condensation of a wide range of aldehydes with ethyl acetoacetate and urea.

According to the above results and observations, the following mechanism can be proposed for the synthesis 
of 3,4-dihydropyrimidin-2(1H)-ones derivatives catalyzed by the MCM-41-APS-PMDA-NHSO3H nanocatalyst 
(1, Scheme 2). Firstly, MCM-41-APS-PMDA-NHSO3H (1) activates the carbonyl group of aromatic aldehyde 
3 for the addition of urea 4 on it to form intermediate (II). Followed by dehydration of this intermediate, the 
corresponding iminium intermediate (IV) is formed. Then, intermediate (V) is produced after addition of the 
enol form of ethyl acetoacetate (2′) on the intermediate (IV). Subsequent cyclization of the intermediate (V) and 
final dehydration of intermediate (VI) afford corresponding 3,4-dihydropyrimidin-2(1H)-ones 5. Furthermore, 
eliminated water molecules during the catalytic cycle can be adsorbed on the surface of catalyst 1 and facilitate 
the reaction.

As a part of our study, the heterogeneous solid acid catalyst 1 was separated from the model reaction mixture 
after its completion, washed several times with EtOH, and then dried in an oven at 60 °C for 1.5 h. The recycled 
catalyst 1 was reused in four consecutive model reaction under optimized conditions. The results are shown in 

50

60

70

80

90

100

110

0 100 200 300 400 500 600 700 800 900

Re
l M

as
s (

%
)

temperature (ᵒC)

Figure 3.  TGA analysis of the MCM-41-APS-PMDA-NHSO3H materials (1).

Figure 4.  EDX spectra of the MCM-41-APS-PMDA-NHSO3H materials (1).
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Fig. 7. Interestingly, only a very little decrease in the catalytic activity of the MCM-41 (MCM-41-APS-PMDA-
NHSO3H (1, approx. 10%) was observed.

To illustrate the merits of catalytic activity of the new MCM-41-APS-PMDA-NHSO3H organosilica nano-
materials, as a heterogeneous solid acid, its efficiency has been compared with some of the previously reported 
catalysts for the preparation of 5a (Table 3). The results illustrate that this study is actually superior to other 
cases in terms of desired product yield, amount of catalyst loading, reaction time, working under solvent-free 
conditions, avoiding of the use of corrosive or expensive reagents and transition metals, and the reusability of 
the catalyst for at least five consecutive runs.

Figure 5.  Low angle (a) and wide angle (b) XRD patterns of the hybrid MCM-41-APS-PMDA-NHSO3H 
nanocatalyst (1).
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Experimental section
General information. All chemicals were purchased from Merck or Aldrich chemical companies. Melting 
points were measured using an Electrothermal 9100 device and are unmodified. Characterization of the new 
hybrid nanocatalyst 1 was performed by FESEM TESCAN-MIRA3, EDX Numerix DXP-X10P, Shimadzu FTIR-
8400S and TGA Bahr Company STA 504. The XRD pattern of the catalyst was obtained using a TW 1800 diffrac-
tometer with Cu Ka radiation (λ = 1.54050 Å). The analytical thin layer chromatography (TLC) experiments was 
performed using Merck 0.2 mm silica gel 60F-254Al-plates. All compounds are known and well characterized 
by FTIR and 1H NMR (500 MHz, Bruker DRX-500 Avance, in DMSO-d6 at ambient temperature) spectroscopy.

General procedure for preparation of the MCM‑41. Nano-ordered mesoporous silica MCM-41 was 
prepared by the hydrothermal synthesis and according to known reported  method86. 2.70 g of diethyl amine 
was dissolved in 42 mL deionized water at room temperature. The mixture was stirred for 10 min, then 1.47 g 
of cetyltrimethylammonium bromide (CTAB) was added and the obtained mixture was stirred for 30 min until 
a clear solution was produced. Next, 2.10 g tetraethyl orthosilicate (TEOS) was gently added and by dropwise 
addition of HCl solution (1 M), the pH of the mixture was fixed at 8.5 to afford the final precipitate. The result-
ing mixture was stirred for 2 h and then the resulting white precipitate was filtered and washed with 100 mL of 
distilled water. Afterward, the obtained white solid was dried at 45 °C for 12 h and finally the sample was calcined 
at 550 °C with the rate of 2 °C/min for 5 h.

General procedure for preparation of the MCM‑41‑APS‑PMDA‑NHSO3H (1). In a 200 mL round 
button flask, (3-aminopropyl) triethoxysilane (3-APTS, 0.15 mmol, d = 0.946 g/mL) was added to a mixture of 
MCM-41 (0.15 g) in  dry toluene (15 mL) under stirring and reflux conditions. After 8 h, the obtained white 
MCM-41-APS solid was filtered, and washed with toluene and  CHCl3 several times to remove any excess of 
the 3-APTS linker. The MCM-41-APS-NH2 solid was heated in an oven at 80 °C for 8 h. Next, dried MCM-
41-APS-NH2 solid (0.15 g) and pyromellitic dianhydride (0.15 g) were dispersed in dry THF (30 mL) and the 
obtained mixture was stirred at r.t for 1 h. Following this, triethylamine (TEA, 0.10 g) was added to the obtained 
mixture. Then the mixture was stirred at r.t for 24 h under  N2 atmosphere. Afterward, the obtained solid was 
filtered off and washed with toluene and EtOH (2 mL), respectively, for several times. The as-prepared solid hav-
ing an anhydride functional group was first dispersed in dry toluene (20 mL) and then triethylamine (0.10 g) and 
sulfamic acid (0.10 g) were added. The obtained mixture was stirred under  N2 atmosphere and reflux conditions 

Figure 6.  Adsorption/desorption isotherm of the MCM-41-APS-PMDA-NHSO3H nanocatalyst (1).
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for 36 h. Finally, the white solid was filtered, washed with EtOH (2 mL) for several times and dried in oven at 60 
°C for 8 h. The preparation schematic route of the MCM-41-APS-PMDA-NHSO3H nanomaterials (1) has been 
shown in Scheme 1.

General procedure for the synthesis of 3,4‑dihydropyrimidinone‑2‑(1H)‑ones 5a–k catalyzed 
by the MCM‑41‑APS‑PMDA‑NHSO3H (1). In a 5 mL round-bottom flask, a mixture of ethyl acetoacetate 
(2, 1 mmol), aldehydes (3, 1 mmol), urea (4, 1.2 mmol) and MCM-41-APS-PMDA-NHSO3H (1, 15 mg) was 
heated at 80 °C under solvent-free conditions for times indicated in Table 2. The progress of the reactions was 
monitored by TLC (Eluent: EtOAc: n-hexane, 1:3). After completion of the reaction, 96% EtOH (3 mL) was 
added to the mixture. The heterogeneous catalyst was then separated by filtration and the filtrate was allowed to 
cool over time to give pure crystals of the desired 3,4-dihydropyrimidinones 5a–k. The separated catalyst was 
suspended in EtOH (2 mL) and stirred at r.t for 30 min. Then, it was filtered off and dried in an oven at 60 °C for 
1.5 h to be used for next runs.

Conclusions
In summary, we have developed an efficient and practical synthetic methodology for the preparation of 3,4-dihy-
dropyrimidin-2(1H)-ones using sulfamic acid pyromellitic diamide-functionalized MCM-41 (MCM-41-APS-
PMDA-NHSO3H), as a heterogeneous multifunctional hybrid catalyst, under solvent-free conditions. Low cata-
lyst loading, high to quantitative yield of the desired products and compatibility with various functional groups 
as well as easy and quick isolation of the products from the reaction mixture and reusability of the novel solid 
acidic hybrid organosilica with negligible loss of its activity are the main advantages of this procedure. Further 
works to expand and apply MCM-41-APS-PMDA-NHSO3H nanomaterials in different organic transformations 
is ongoing in our laboratory and would be presented in due courses.

Table 1.  Optimization of conditions in the model reaction of ethyl acetoacetate (2), 4-chlorobenzaldehyde 
(3a), urea (4) under different conditions in the presence of MCM-41-APS-PMDA-NHSO3H (1).a

 
 a Reaction conditions: ethyl acetoacetate (2, 1 mmol), 4-chlorobenzaldehyde (3a, 1 mmol), urea (4, 1.2 mmol), 
MCM-41-APS-PMDA-NHSO3H (1) and solvent (2 ml, if not otherwise stated).

Entry Catalyst loading (mg) Solvent Temperature (°C) Time (min) Yieldb (%) 5a

1 20 MeOH r.t 180 26

2 20 EtOH Reflux 90 69

3 20 CH2Cl2 Reflux 90 45

4 20 CH3CN 60 120 78

5 20 DMF Reflux 100 62

6 20 Toluene Reflux 150 48

7 20 Et2O r.t 240 35

8 20 CHCl3 60 120 75

9 20 EtOH/H2O (1:2) Reflux 55 77

10 20 EtOH/H2O (1:1) Reflux 70 73

11 15 Solvent-free 80 35 95

12 10 Solvent-free 80 65 69

13 5 Solvent-free 80 90 60

14 2 Solvent-free 80 120 57

15 0 Solvent-free 80 180 15
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Entry Aldehyde 3 Product 5 Time (min) Yield (%)b mp °C (Obs.) mp °C (Lit.)

1 4-ClC6H4–

 

35 95 210–211 210–21172

2 C6H5–

 

55 87 235–236 234–23673

3 4-NO2C6H4–

 

50 80 204 224–22774

4 3-NO2C6H4–

 

60 82 293–295 20475

5 4-CH3OC6H4–

 

55 89 201–203 202–20476

6 2-ClC6H4–

 

60 90 211–213 211–21375

Continued
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Entry Aldehyde 3 Product 5 Time (min) Yield (%)b mp °C (Obs.) mp °C (Lit.)

7 4-OHC6H4–

 

55 82 234–236 233–23577

8 2-C4H3S–

 

45 84 212–214 210–21278

9 4-Me2NC6H4–

 

45 92 213–215 213–21579

10 4-FC6H4–

 

60 85 180 18080

11 4-OH-3-MeO-C6H3–

 

40 84 188–190 188.581

Table 2.  Scope of the Biginelli condensation for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed 
by MCM-41-APS-PMDA-NHSO3H (1)a.

 
 a Reaction conditions: ethyl acetoacetate (2, 1 mmol), aldehydes (3a–k, 1 mmol), urea (4, 1.2 mmol), MCM-41-
APS-PMDA-NHSO3H (1, 15 mg) under solvent-free conditions at 80 °C. b Isolated yields were reported.
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Scheme 2.  Proposed mechanism for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by MCM-41 
(MCM-41-APS-PMDA-NHSO3H (1).
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Figure 7.  Reusability of the heterogeneous acidic nanocatalyst MCM-41-APS-PMDA-NHSO3H (1) for the 
synthesis of 5a.
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