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A nickel phosphide nanoalloy 
catalyst for the C‑3 alkylation 
of oxindoles with alcohols
Shu Fujita1, Kohei Imagawa1, Sho Yamaguchi1, Jun Yamasaki2, Seiji Yamazoe3, 
Tomoo Mizugaki1,4 & Takato Mitsudome1*

Although transition metal phosphides are well studied as electrocatalysts and hydrotreating catalysts, 
the application of metal phosphides in organic synthesis is rare, and cooperative catalysis between 
metal phosphides and supports remains unexplored. Herein, we report that a cerium dioxide-
supported nickel phosphide nanoalloy (nano-Ni2P/CeO2) efficiently promoted the C-3 alkylation 
of oxindoles with alcohols without any additives through the borrowing hydrogen methodology. 
Oxindoles were alkylated with various alcohols to provide the corresponding C-3 alkylated oxindoles 
in high yields. This is the first catalytic system for the C-3 alkylation of oxindoles with alcohols using 
a non-precious metal-based heterogeneous catalyst. The catalytic activity of nano-Ni2P/CeO2 was 
comparable to that reported for precious metal-based catalysts. Moreover, nano-Ni2P/CeO2 was 
easily recoverable and reusable without any significant loss of activity. Control experiments revealed 
that the Ni2P nanoalloy and the CeO2 support functioned cooperatively, leading to a high catalytic 
performance.

Metal–metal nanoalloys have been recognized as key materials for the development of novel catalysts. In con-
trast, metal–nonmetal nanoalloys have not been widely studied in the field of fine chemical synthesis. In this 
context, metal phosphides have recently received growing attention as electrocatalysts for the hydrogen evolu-
tion reaction1–3 and hydrodesulfurization catalysts in the petroleum industry4–6 due to the fact that they exhibit 
unique catalysis derived from the charge transfer effect of metal to phosphorus7,8 and the ensemble effect9,10. 
Despite these fascinating properties, the application of metal phosphides in liquid-phase organic synthesis is 
rare11–19, with the majority of reported reactions to date being simple hydrogenation reactions20–47. Therefore, 
the study of metal phosphide catalysis for organic synthesis remains an exciting and unexplored research area. 
Furthermore, although supports are known to greatly improve catalytic performances, cooperative catalysis 
between metal phosphides and supports has yet to be comprehensively explored. Therefore, functionalization 
by combining a support and a metal phosphide catalyst is expected to lead to new metal phosphide catalysts for 
other organic transformations.

The C-3 alkylation of oxindoles is one of the key routes to the synthesis of functionalized oxindoles that pos-
sess significant potential for use in a wide range of biological applications, including as NMDA antagonists48, 
antiangiogenic agents49, and anti-cancer drugs50. Recently, catalytic methods using alcohols as alkylating rea-
gents have attracted attention for the C-3 alkylation of oxindoles because this reaction proceeds through the 
borrowing hydrogen (BH) methodology with the co-production of only water, thereby providing a high atom 
efficiency (Scheme 1)51. In addition, various metal complex catalysts have been reported for the alkylation reac-
tion with alcohols50–63. However, these catalysts inevitably require complex ligands and the addition of strong 
bases. Furthermore, difficulties in the separation and reuse of these catalysts remain an ongoing issue. As an 
alternative, reusable heterogeneous catalysts based on precious metals have been developed for the C-3 alkylation 
reaction64–66. Although these catalysts are effective, they are both expensive and rare. In terms of non-precious 
metal-based heterogeneous catalysts, only Raney Ni has been reported to date67,68. However, a large amount of 
Ni is required to promote the alkylation, and the turnover number (TON) tends to be low (i.e., < 0.6), thereby 
indicating that this system possesses an inadequate catalytic efficiency. Therefore, the development of highly 
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active and reusable non-precious metal-based catalysts for the C-3 alkylation of oxindoles with alcohols remains 
a great challenge.

We herein report the preparation and application of a cerium dioxide-supported nickel phosphide nanoalloy 
(nano-Ni2P/CeO2) for the synthesis of C-3 functionalized oxindoles using alcohols through the BH methodology 
without the need for additives. This constitutes the first catalytic system for the synthesis of C-3 functionalized 
oxindoles using a non-precious metal-based heterogeneous catalyst. Furthermore, the recovery and reuse of 
nano-Ni2P/CeO2 are also evaluated.

Results and discussion
The desired nano-Ni2P was prepared according to our previous report with some modifications (see Supple-
mentary Information for details)43. More specifically, NiCl2·6H2O was added to hexadecylamine in the presence 
of triphenylphosphite. The mixture was heated at 120 °C in vacuo, and then the temperature was increased to 
320 °C under Ar atmosphere. The precipitate was collected by centrifugation and washed with acetone and 
chloroform to afford the nano-Ni2P. Subsequently, this nano-Ni2P was dispersed in hexane and stirred with 
CeO2, yielding the desired nano-Ni2P/CeO2 (Fig. S1). BET surface area of the transmission electron microscopy 
(TEM) images of the nano-Ni2P/support catalysts are shown in Table S1 and Fig. S2, respectively. The formation 
of nano-Ni2P was confirmed by X-ray diffraction (XRD) measurements, whereby the diffraction peaks located at 
2θ = 40.8, 44.7, 47.3, and 54.1° were attributed to the (111), (201), (210), and (300) planes of Ni2P (JCPDS card 
no. 03-0953), respectively (Fig. S3). A representative TEM image of nano-Ni2P revealed a collection of spherical 
nanoparticles with a mean diameter of 5.4 nm (Fig. 1a). The elemental distributions of Ni and P on CeO2 were 
determined using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) 
coupled with energy dispersive X-ray spectroscopy (EDX; Fig. 1b–f). It was found that nano-Ni2P was highly 
dispersed on the CeO2 support, in which Ni and P were homogeneously distributed. These results demonstrate 
that nano-Ni2P is uniformly immobilized on the surface of CeO2. Furthermore, the Ni K-edge X-ray absorption 
near edge structure (XANES) spectrum shows that the absorption edge energy of nano-Ni2P/CeO2 is close to 
that of Ni foil, suggesting that the Ni species in nano-Ni2P/CeO2 possesses metallic states (Fig. S4). This conclu-
sion is also supported by the result of the XPS analysis of nano-Ni2P/CeO2, where two peaks observed at 852.7 
and 869.9 eV are similar to those of metallic Ni 2p3/2 (852.8 eV) and Ni 2p1/2 (870.0 eV), respectively (Fig. S5).

Initially, the catalytic potential of the nano-Ni2P/support catalysts for the C-3 alkylation of oxindole with 
benzyl alcohol was investigated at 140 °C for 10 h in toluene (Table 1). Notably, nano-Ni2P/CeO2 exhibited a 
high catalytic activity to provide 3-benzyl-2-oxindole (1a) in 95% yield (entry 1). In contrast, nano-Ni2P/TiO2 
and nano-Ni2P/SiO2 gave low yields of 1a, accompanied by the production of 3-benzylideneoxindole (2a) in ca. 
30% yield (entries 2 and 3). Furthermore, nano-Ni2P immobilized on other supports such as Al2O3, hydrotalcite 
(HT, Mg6Al2(OH)16CO3·4H2O), MgO, Nb2O5, and ZnO showed almost no activity for the C-3 alkylation of 
oxindole (entries 4–8), indicating that modulation of the support significantly affects the catalytic performance 
of nano-Ni2P for the alkylation reaction. For comparison with nano-Ni2P/CeO2, Ni/CeO2 was prepared via the 
impregnation method, and H2-treated Ni/CeO2 (Ni/CeO2-Red) was also synthesized. These species were sub-
jected to testing as model catalysts for the conventional Ni nanoparticles of NiO and Ni(0), respectively, in the C-3 
alkylation of oxindole with benzyl alcohol (see Supplementary Information for details regarding catalyst prepara-
tion). However, in sharp contrast to the highly active nano-Ni2P/CeO2, these conventional nickel nanoparticle 
catalysts exhibited very low activities (entries 9 and 10). These results clearly demonstrate the importance of the 
combination of nano-Ni2P with a CeO2 support for efficiently promoting the alkylation of oxindole.

With the nano-Ni2P/CeO2 in hand, we explored the substrate scope in the C-3 alkylation of oxindoles with 
alcohols (Scheme 2). Benzyl alcohols substituted with electron-withdrawing or electron-donating groups, 
such as methyl, halogen, trifluoromethyl, methoxy, and phenyl groups, were reacted with oxindole to afford 
the corresponding mono-C-3 alkylated oxindoles in high yields (1a–1j). It was also found that nano-Ni2P/
CeO2 promoted the C-3 alkylation of oxindole with heterocyclic alcohols, such as 2-thiophenemethanol and 
4-pylidinemethanol, although nitrogen or sulfur atoms often coordinate strongly to the metals, resulting in 
catalyst deactivation (1k and 1l)69,70. Furfuryl alcohol, which is an important biomass-derived chemical alterna-
tive to petroleum-based chemicals, also acted as a good alkylation reagent to provide the corresponding C-3 
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Scheme 1.   C-3 alkylation of oxindole with alcohols through the borrowing hydrogen methodology.
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alkylated oxindole (1m)71. Less active aliphatic alcohols (1n–1r) and secondary alcohols (1s and 1t) could be 
applied to this catalytic system, giving the corresponding products in high yields. Notably, when 1,4-butanediol 
was used as the alkylating agent, mono-C3-alkylated oxindole was selectively obtained without the formation 
of di-alkylated products (1r). The excellent performance of nano-Ni2P/CeO2 was also demonstrated in the 
C-3 alkylation using 1-phenylethanol and 1-(p-tolyl)ethanol, which are challenging reagents due to their steric 

Figure 1.   (a) TEM image of nano-Ni2P (the inset shows the histogram of nano-Ni2P). (b) HAADF-STEM 
image of nano-Ni2P/CeO2. Elemental mapping of (c) Ce, (d) Ni, and (e) P, and (f) a composite overlay of (d,e).

Table 1.   C-3 alkylation of oxindole with benzyl alcohol using Ni catalystsa. a Reaction conditions: catalyst (0.15 
g, 5 mol% Ni), oxindole (0.5 mmol), benzyl alcohol (1 mmol), toluene (2 mL), 140 °C, 10 h, N2 atmosphere. 
b Yields based on oxindole were determined by gas chromatography-mass spectrometry (GC-MS) using 
naphthalene as an internal standard.
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Entry Catalyst Conv. (%)

Yield (%)b

1a 2a

1 Nano-Ni2P/CeO2  > 99 95 4

2 Nano-Ni2P/TiO2 51 12 26

3 Nano-Ni2P/SiO2 33 3 29

4 Nano-Ni2P/Al2O3 3 1 1

5 Nano-Ni2P/HT 3 0 1

6 Nano-Ni2P/MgO 2 0 0

7 Nano-Ni2P/Nb2O5 5 0 0

8 Nano-Ni2P/ZnO 4 0 0

9 Ni/CeO2 30 14 10

10 Ni/CeO2-Red 9 6 3
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hindrances (1s and 1t)61. Various oxindoles such as 1-methyloxindole, 1-phenyloxindole, 5-methyloxindole, 
5-chlorooxindole, methyl-2-oxoindole-6-carboxylate, and 6-chlorooxindole, were also alkylated with benzyl 
alcohol to provide the desired products in > 90% yields (1u–1z). The above results therefore demonstrate that 
nano-Ni2P/CeO2 functions as a highly active catalyst for the C-3 alkylation of oxindoles with a wide range of 
alcohols.

Furthermore, Ni2P/CeO2 was found to be applicable to a gram-scale reaction, with 1.0 g of oxindole being 
converted into 1a in 85% yield, where the TON reached 212 (Scheme 3). This TON is greater than those of previ-
ously reported precious metal-based heterogeneous catalyst systems (Table S2), indicating the high performance 
of nano-Ni2P/CeO2 compared to those of the precious metal catalysts.

Subsequently, the durability of nano-Ni2P/CeO2 was assessed through recycling experiments. After the 
alkylation of oxindole with benzyl alcohol, nano-Ni2P/CeO2 was easily recovered from the reaction mixture by 
centrifugation, and was used again in the following run without any pre-treatment (Fig. 2). Indeed, nano-Ni2P/
CeO2 provided a high yield of 1a even after the 6th recycling experiment. We further investigated the reaction 
rate at an incomplete reaction time (4 h), and found that 1a (open diamond in Fig. 2) was obtained in similar 
yields using reused and fresh nano-Ni2P/CeO2, thereby demonstrating the excellent reusability of this catalyst. 
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Scheme 2.   Substrate scope of the C-3 alkylation of oxindoles with alcohols catalyzed by nano-Ni2P/CeO2. 
Reaction conditions: nano-Ni2P/CeO2 (0.15 g, 5 mol% Ni), oxindole (0.5 mmol), alcohol (1 mmol), toluene 
(2 mL), 140 °C, 10 h, N2 atmosphere. Yields based on oxindole were determined by GC–MS using naphthalene 
as an internal standard. aAlcohol (5 mmol), 180 °C, 24 h. bAlcohol (5 mmol), 160 °C, 24 h. c160 °C, 24 h.
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Scheme 3.   The gram-scale C-3 alkylation of oxindole with benzyl alcohol catalyzed by nano-Ni2P/CeO2. 
Reaction conditions: nano-Ni2P/CeO2 (0.4 mol% Ni), oxindole (1.0 g; 7.5 mmol), benzyl alcohol (1.6 g; 
15 mmol), 140 °C, 72 h, N2 atmosphere. The yield based on oxindole was determined by GC–MS using 
naphthalene as an internal standard.
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Inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis revealed that the concentration 
of Ni in the solution after the alkylation was below the detection limit (0.1 ppm), and elemental analysis of the 
nano-Ni2P/CeO2 showed that the Ni content of catalyst did not change following the reaction (Table S3). These 
results clearly demonstrate the high durability of nano-Ni2P/CeO2 in the C-3 alkylation reactions of oxindole.

Figure 3 shows the time profile of the C-3 alkylation of oxindole with benzyl alcohol catalyzed by nano-Ni2P/
CeO2. During the first 4 h, oxindole was rapidly consumed, accompanied by the formation of 2a. Afterwards, 
the yield of 2a gradually decreased with an increase in the yield of 1a. These results indicate that 2a is an inter-
mediate in the C-3 alkylation of oxindole with benzyl alcohol. To clarify the roles of nano-Ni2P and CeO2 in the 
C-3 alkylation of oxindole using alcohols, control experiments were conducted, as outlined in Fig. 4. Initially, a 
reaction using oxindole and benzyl alcohol was carried out in the presence of nano-Ni2P, CeO2, or nano-Ni2P/
CeO2 under the same reaction conditions as presented in Table 1, with the exception that a shorter reaction time 
was employed (i.e., 3 h) (Fig. 4a). As shown, nano-Ni2P/CeO2 promoted the reaction, giving 1a and 2a in 20 and 
60% yields, respectively. On the other hand, nano-Ni2P yielded  a trace of the desired product 1a, and reaction 
intermediate 2a was formed in 14% yield. When CeO2 was used, the reaction produced only small amounts of 
1a and 2a. Subsequently, the condensation of oxindole with benzaldehyde was carried out using nano-Ni2P or 
CeO2 (Fig. 4b). When either nano-Ni2P or CeO2 was used, the aldol-type condensation proceeded efficiently to 
provide 2a in a high yield. In a blank test, no formation of 2a was observed, indicating that nano-Ni2P and CeO2 
are active for the condensation reaction. The above results demonstrate that benzaldehyde is produced on nano-
Ni2P by the dehydrogenation of benzyl alcohol, and subsequently, the aldol-type condensation of benzaldehyde 
with oxindole occurs on either nano-Ni2P or CeO2

72. It is therefore considered that the hydrogen generated on 
nano-Ni2P during dehydrogenation may spill over onto the CeO2 surface, thereby allowing the hydrogenation of 
2a to 1a on CeO2

73,74. Indeed, hydrogen spillover on metal nanoparticle-supported CeO2 and hydrogen transfer 
catalysis by CeO2 have both been reported75,76. Considering the above information, we proposed a reaction 
pathway for the C-3 alkylation of oxindole with alcohol catalyzed by nano-Ni2P/CeO2 using the BH methodology 
(Scheme 4). Initially, the alcohol is dehydrogenated to the corresponding carbonyl compound by nano-Ni2P (I). 
The hydrogen generated on the nano-Ni2P then spills over onto the CeO2 surface (II), and the aldol-type con-
densation of oxindole with the carbonyl compound occurs catalyzed by either nano-Ni2P or CeO2 to provide an 

Figure 2.   Nano-Ni2P/CeO2 recycling experiments for the C-3 alkylation of oxindole with benzyl alcohol. 
Reaction conditions: nano-Ni2P/CeO2 (0.15 g; 5 mol% Ni), oxindole (0.5 mmol), benzyl alcohol (1 mmol), 
toluene (2 mL), 140 °C, N2 atmosphere. Reaction time: 10 h (blue bars), 4 h (open diamond). Yields based on 
oxindole were determined by GC–MS using naphthalene as an internal standard.
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alkenyloxindole intermediate (III). Finally, the subsequent hydrogenation of alkenyloxindole following hydrogen 
spillover to CeO2 yields the desired C3-alkylated product (IV). This well-designed cooperative catalysis by nano-
Ni2P and CeO2 is a key factor in efficiently promoting the C-3 alkylation of oxindole using alcohols.

Conclusions
We herein report the development of a highly efficient and reusable non-precious metal-based heterogene-
ous catalyst for promoting the C-3 alkylation of oxindoles with alcohols. More specifically, a cerium dioxide-
supported nickel phosphide nanoalloy (nano-Ni2P/CeO2) catalyst efficiently promoted the C-3 alkylation of 
oxindoles with alcohols. This catalytic system was applicable to various alcohols, including benzylic and aliphatic 

Figure 3.   Reaction profile for the C-3 alkylation of oxindole with benzyl alcohol catalyzed by nano-Ni2P/CeO2. 
Reaction conditions: nano-Ni2P/CeO2 (5 mol% Ni), oxindole (0.5 mmol), benzyl alcohol (1 mmol), toluene 
(2 mL), 140 °C, N2 atmosphere. The conversions and yields were calculated based on oxindole.

Figure 4.   Control experiments for (a) the C-3 alkylation of oxindole with benzyl alcohol, and (b) the aldol-type 
condensation of oxindole with benzaldehyde. Reaction conditions: nano-Ni2P (4.3 mg), CeO2 or nano-Ni2P/
CeO2 (0.15 g), oxindole (0.5 mmol), benzyl alcohol or benzaldehyde (1 mmol), toluene (2 mL), N2 atmosphere. 
Yields based on oxindole were determined by GC–MS using naphthalene as an internal standard.
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alcohols, providing the corresponding products in high yields. Indeed, this is the first catalytic system for the 
C-3 alkylation of oxindoles with alcohols using non-precious metal-based heterogeneous catalysts. Furthermore, 
nano-Ni2P/CeO2 was easily recoverable and reusable without any significant loss in activity. The catalytic activity 
of nano-Ni2P/CeO2 was high, and was comparable to those of previously reported precious metal-based catalysts. 
In this reaction, the cooperation between nano-Ni2P and CeO2 was found to play a key role; nano-Ni2P dehydro-
genates the alcohol to generate the corresponding carbonyl compound and hydrogen. Subsequently, nano-Ni2P 
or CeO2 promotes the aldol condensation of oxindoles with the produced carbonyl compound to provide an 
alkenyl oxindole. CeO2 then receives hydrogen from nano-Ni2P and hydrogenates the C-3 alkenyl oxindole to 
give the desired product. Such concerted catalysis by nano-Ni2P and CeO2 occurs efficiently, leading to a high 
catalytic performance in the C-3 alkylation of oxindoles with alcohols. The results of this study also demonstrate 
that metal phosphides have great potential as highly efficient heterogeneous catalysts, not only in hydrogena-
tion reactions, but also in various other organic syntheses, through concerted effects with metal oxide supports.
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