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Detecting infected asymptomatic 
cases in a stochastic model 
for spread of Covid‑19: the case 
of Argentina
N. L. Barreiro1*, T. Govezensky2, P. G. Bolcatto1,3 & R. A. Barrio  4

We have studied the dynamic evolution of the Covid-19 pandemic in Argentina. The marked 
heterogeneity in population density and the very extensive geography of the country becomes a 
challenge itself. Standard compartment models fail when they are implemented in the Argentina case. 
We extended a previous successful model to describe the geographical spread of the AH1N1 influenza 
epidemic of 2009 in two essential ways: we added a stochastic local mobility mechanism, and we 
introduced a new compartment in order to take into account the isolation of infected asymptomatic 
detected people. Two fundamental parameters drive the dynamics: the time elapsed between 
contagious and isolation of infected individuals ( α ) and the ratio of people isolated over the total 
infected ones (p). The evolution is more sensitive to the p−parameter. The model not only reproduces 
the real data but also predicts the second wave before the former vanishes. This effect is intrinsic of 
extensive countries with heterogeneous population density and interconnection.The model presented 
has proven to be a reliable predictor of the effects of public policies as, for instance, the unavoidable 
vaccination campaigns starting at present in the world an particularly in Argentina.

The pandemic of 2020 has changed life in many respects. The scientific community was not indifferent to the 
urgency to find strategies to face up with this global disease. More than 23,500 articles published containing the 
word COVID-19 in the last year account for this fact. All the issues related with this phenomenon have been 
covered. There are studies on the medical and biological aspects of the virus, the mechanisms of contagion, the 
strategies to avoid the spread of the disease, the comprehension of the dynamical evolution of contagion, etc. 
Even recommendations to health authorities to prevent infection as to keep a respectable distance for others, the 
use of masks, washing hands profusely and frequently, and compulsory test and tracking techniques, measure-
ments of air quality, between others1.

When a new virus emerges, and there is not effective treatment or vaccine yet, non-pharmacological inter-
ventions (NPIs) constitute the main response option for mitigating the effects of the pandemic. Assumed as an 
extreme measurement, total confinement (or quarantine) has been applied since the 14th century2. It is obviously 
effective because no personal contact means no infection spread, but, in the modern societies, this NPI is not 
feasible for a long period of time. Nevertheless, its effectiveness increases when applied early in the pandemic 
and in combination with other NPIs3,4. A recent action that has proved useful is to detect not only infected, but 
also asymptomatic people by random testing and isolate the ones that come out positive5.

Researches based on observational data and mathematical models are an irreplaceable tool in order to help 
to identify effective NPIs. Active searching for infected people who are asymptomatic or present mild symptoms 
and subsequent isolation was not included in the above mentioned researches, probably because few countries 
had implemented it. For SARS-CoV-2 a great proportion of infected people are asymptomatic or present mild 
symptoms6,7, however, they are mainly not detected. Consequently they still remain infectious and becomes 
transmission vector of the disease8. More research is needed to further assess the effect of this kind of combined 
procedure of NPIs.
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Several compartmental epidemiological models have been expanded to include quarantined individuals9–12. 
The classical approaches assume general homogeneous populations and equally probable interactions among 
people. However, when modeling pandemics, demographic heterogeneity and people mobility could be key 
elements to be considered. In particular, human mobility is strongly affected by governments’ policies and it is 
almost imperative to include this feature in order to render meaningful simulations comparable to the real data. 
Because of this, several models have been proposed to include the actual geographic spread using real data or 
time-dependent parameters to simulate people’s mobility13–20.

Here we propose a model in which the noisy interactions of human society and the inhomogeneities of geo-
graphical spread are taken into account. We use an extension of a model proposed in Ref.20 to predict the influ-
ence of these measures of detection and subsequent isolation. The original model has been extremely successful 
in predicting the behavior of COVID-19 in various countries, as different in all respects as Mexico, Finland, and 
Iceland21. The dynamic works in two scales: on the one side a micro or local one in which the disease spread 
follow a (almost) standard compartmental evolution. It contains the biology-related parameters of the disease. 
On the other side, a macro or long range dynamics, which describes the geographical interconnection in a given 
region or country. However, the implementation as in21 was surprisingly inaccurate for the Argentina case. To 
understand this singular behavior we have to give more versatility to the model by incorporating the influence 
of detecting and isolating infected asymptomatic people as well as to account for local stochastic mobility.

In the next Section we describe the model in detail, then we explain how it is applied to the Argentina case, 
and then present some results from numerical calculations for the period from March to December of 2020. 
Finally we conclude with some important remarks.

Theoretical model
The approach is based on a collection of SEIR models acting in cells distributed along (and filling) the whole 
geography of the country. The network is weighted by the population density of each cell. Connections between 
cells are realized by the national ground and/or air roads. This approach has the advantage that the parameters 
proper to the disease (only in the SEIR part of the model) are separated from the ones related to spreading infec-
tions between people, which ultimately translate into mobility quantities between cells.

Local dynamics: SEIQR stochastic model (mycrodinamics).  The SEIR model of Ref.20 was converted 
into a SEIQR stochastic model in order to analyse the influence of detection and isolation of infected people. This 
was done by adding a quarantine compartment, Q. Figure 1 shows a diagram of the five-compartmental model: 
susceptible individual (S), exposed but not infectious yet (E), infectious (I), isolated in quarantine (Q), and a last 
compartment named recovered (R) but including the deaths also. Some parameters drive the link between com-
partments: incubation period ( ǫ ), infectiousness period ( σ ) and immunity period ( ω ) are parameters depending 
on the specific disease studied and host’s immune response. After the immunity period, people could be again 
susceptible to the disease according to the survival parameter z. Two new parameters are added to the model: α
—the time lapsed from infection to detection (and isolation) of infected individuals, and p—the proportion of 
infected people detected and put in quarantine, either symptomatic or asymptomatic.

Demography is added using a constant mortality rate µ=1/L, where L is life expectancy. The total population 
N = S + E + I + Q + R depends only on the survival parameter z; at time zero S = N . In order to keep N fixed, 
the birth rate is considered a constant ( µ · N ) and all the newborns are included in the susceptible compartment. 
Since we assume that the disease is spread due to daily contacts, the dynamical evolution of the model should 
be given in discrete steps of one day, which is the time unit of all the delay parameters. All time parameters are 
assumed to be constant along the simulations.

With all these assumptions, the SEIQR model -acting in each cell of the geographical region of interest- could 
be written as discrete mathematical map with five variables,

(1)St+1 =(1− µ) (St − Gt + z (1− µ)ǫ+σ+ωGt−1−ǫ−σ−ω)+ N · µ

Figure 1.   Compartment scheme of a SEIQR model. ǫ , α , σ and ω are the latency, isolation, infectiousness and 
immunity periods, p is the portion of infected people which is isolated and z is the survival parameter.
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where Gt is the incidence function evaluated at time t. Assuming a homogeneously mixed population within a 
cell, the probability of getting infected is calculated using the Poisson probability distribution; then the incidence 
rate is given by: Gt = St(1− e−βIt ), where β is a transmission parameter that characterizes the intrinsic behavior 
of the disease and it is a dimensionless constant We assume Gt = 0 for t < 1.

While this system of equations is deterministic, people do not move only to fixed places following daily rou-
tine activities, but also may go to nearby unpredictable places. Thus, a random mobility within a cell should also 
be considered22. We denote as local mobility. This is done by adding a threshold parameter νL < 1 that accounts 
for people’s short distance mobility. Each day t, in every geographical cell with coordinates (i; j), we compare 
a random number (r, with uniform probability distribution between 0 and 1) with this threshold parameter. If 
νL < r the systems keep its normal evolution but, if νL > r the mobility was lower enough so that the epidemic is 
not able to evolve. In this case, there are not new infected people during this day in the cell under consideration.

Geographical disease spreading (macrodynamics).  A realistic model of epidemics must include its 
geographical spread in big regions or counties with heterogeneous population densities. For this purpose, the 
map of the country under study is divided in a two dimensional grid of squares of size of a few km2 . For each cell 
of coordinates (i; j), the actual population density ρ(i; j) is known. Within each cell population is normalized 
to N = 1 , local dynamics is simulated by a SEIQR stochastic model using the incidence function weighed by its 
population density:

To consider the spread among first neighbor regions we use a Metropolis Monte-Carlo algorithm. For each 
square in the grid, if It(i, j) ≤ η and νn < r , there is propagation of the disease to a neighbor cell. The value η is 
related to the infectiousness of the disease and νn varies between 0 and 1 and accounts for the mobility between 
neighbors. r is a random number given by a uniform distribution between 0 and 1. To start the disease in a 
new cell of coordinates (i, j + 1) , which is one first neighbor of the cell (i, j), the initial conditions are given by 
It(i, j + 1) = η and St(i, j + 1) = 1− η . The disease can also be spread randomly to distant regions because of 
people traveling between connected cities. Another Metropolis Monte-Carlo algorithm is used for long distance 
new infections, either by road or by air. It is more likely that bigger cities are infected first because they are more 
populated and connected. Because of this, the long distance mobility parameter νa is weighed by the normalized 
densities of both, origin and destiny cells. In this case propagation occurs between a cell already infected ( It(i, j) 
≤ η ) and a cell connected to the first one by air, trains or national routes. If νaρ(i, j)ρ(m, n) < r , (with r a random 
number from a uniform probability distribution between 0 and 1) the cell at the new coordinates (m, n) starts 
the disease with initial conditions It(m, n) = η and St(m, n) = 1− η.

Finally, since people occasionally move in an apparent random way, it is possible to find people travelling to 
distant cities or even isolated towns with lower population densities. This is accounted for by the noise parameter 
KT representing the “kinetic energy” of the system. In this case a new Monte-Carlo algorithm is applied. For each 
cell with coordinates (i, j) with ρ(i, j) > T , (with T a normalized population density threshold), if e−1/KT < r (r 
a random number with uniform probability distribution between 0 and 1), then the disease will start at the cell 
(i, j) with initial conditions It(i, j) = η and St(i, j) = 1− η.

In this model β does not depend on ρ and/or on mobility of people as in traditional SEIR models. β is con-
sidered constant throughout the pandemic, and mobility parameters can be used to reflect measures applied by 
different governments trying to control the pandemic.

Another advantage of this model is that the detected and reported individuals are clearly separated from non-
reported ones, the model traces both groups. This is an important point in the case of COVID-19 where there are 
so many asymptomatic and mildly symptomatic people which dramatically impact on the spread of the viruses.

Results
Application of the model to COVID‑19 in Argentina.  In order to apply these ideas to the case of 
Argentina we have divided the continental part of the country’s territory in a grid of around 67000 squares of 
7 km × 7 km. The total population inside of each parcel was assigned from the data provided by the National 
Geographic Institute of Argentina (IGN). The interconnection between cities by commercial flights was canceled 
by public policies since the early days of the pandemic. Consequently, only land connections are possible. There-
fore, we allow traveling (both, short and large distances) across the network of roads and routes also provided 
by the IGN (see figure 2).

Fitting parameters to Argentina.  For the process to fit parameters, it is important to remark that in this 
model the disease parameters are well separated from those that account for the social distancing and mobility. 
Since there is not much information about latency, infectiousness and immune periods of COVID-19, and this 

(2)Et+1 =(1− µ)(Et + Gt − (1− µ)ǫG(t − 1− ǫ))

(3)It+1 =(1− µ) (It + (1− µ)ǫGt−1−ǫ − (1− p) (1− µ)ǫ+σGt−1−ǫ−σ − p (1− µ)ǫ+αGt−1−ǫ−α)

(4)Qt+1 =(1− µ) (Qt + p (1− µ)ǫ+αGt−1−ǫ−α − p (1− µ)ǫ+σ+ωGt−1−ǫ−σ−ω)

(5)Rt+1 =(1− µ) (Rt + (1− p) (1− µ)ǫ+σGt−1−ǫ−σ − (1− p) (1− µ)ǫ+σ+ωGt−1−ǫ−σ−ω)

(6)Gt(i, j) = St(i, j)ρ(i, j)(1− e−βIt (i,j)),
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values could vary significantly from person to person, one can fit this values to the actual data within upper and 
lower thresholds found in the literature23.

The first confirmed case of COVID-19 in Argentina was a person coming from abroad on March 3th, 2020. 
And, in general, the disease evolution during the first 20 days was because of infected people coming from 
Europe and USA and not because of community spread. On March 20th a strict lock-down started all around 
the country and mobility was drastically reduced. Because of this, disease parameters cannot be fitted straight 
from Argentina data. In this sense we decided to use the same parameters as in Mexico, Iceland and Finland 
models21: ǫ = 1 , σ = 14 and β = 0.91 . ω was conservatively chosen as 140 days because the center for disease 
control and prevention (CDC) states that there are no reports of people being reinfected within 5 months of 
first infection23 . σ is set to the quarantine standard time used in several countries (Argentina among them). A 
resume of the main parameters and the values used can be found in Table 1.

At present, there are scarcely any available studies in Argentina to assure how many infected people is detected 
and put in quarantine (quantified in our model by the p− parameter). One particular study in urban slum 
dwellers of Buenos Aires City suggests that only 10% of the actually infected peoples was PCR tested and nearly 
90% were asymptomatic cases24. Patients are tested only when they present two or more concurrent symptoms 
and, in the case of a positive result, all of the close contacts are isolated independently of new tests. Since some 

Figure 2.   Density map and distribution of routes used in the model. The information to create the maps was 
provided by the IGN. Each pixel corresponds to a 7 km x 7 km parcel.

Table 1.   Model parameters. a In the case of SARS-Cov-2, infectiousness starts before the onset of symptomatic 
period31,32,34,35. Therefore, in terms of the model, ǫ is shorter than the non-symptomatic period (1–6 days31,36) 
and σ is larger so that compartment E includes noninfectious people, and compartment I includes all the 
infectious ones. Since presymptomatic infections occur up to 4 days32 before symptoms onset, and most 
COVID-19 ill people can have replicable viruses 10 or more days after that33, we estimate ǫ and σ as showed 
above. b β was obtained by fitting the model with the mentioned ǫ and σ values in Ref.21.

Parameter Description Value Reference

ǫ Latency period 1 21,31a

σ Infectiousness period 14 21,32a

ω Immunity period 140 23,33

β Transmission parameter 0.91 21b

η
Triggers the dynamic in a new cell. Corresponds to start the disease in a city 
with at least 10 infectedpeople 10−5 Estimated from geographical data.

z Survival parameter 0.9973 Case fatality rate 2.7% obtained from data28. Fatality rate depends on the 
amount of tested cases (10% of infected for p = 0.1)

KT Noise parameter 0.1 Estimated from NPIs
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studies suggest that most COVID-19 patients have mild symptoms or are asymptomatic25–27, we estimate that 
tested and isolated cases in Argentina are between 10% and 20% of the actual number of infected people, i.e. 
0.1 ≤ p ≤ 0.2 . These values are similar in order of magnitude to those found in Spain and France6,8. To estimate 
α we use the information provided by the Health Ministry of Argentina for each patient28 . From this data, we 
found that 80% of the people start the isolation between 3 and 7 days after they get infectious although mostly 
at 5 days. Since this is a mean value model, we decided to use 5 as a good estimation. Conservatively, we choose 
the values p = 0.1 and α = 5 to study the evolution of the pandemic in Argentina.

For simplicity, mobility parameters are regarded equal νa=νl=νn=ν . Consequently when they change, they do it 
at the same time in the same way. Since mobility was drastically reduced during the first stages of the pandemic, 
the noise was considered very low taking a value KT = 0.1 . We take four intervention times to account for the 
changes in the stringency of the government measures in the period March–December 2020. This intervention 
dates were fitted with a delay of around 7–8 days with the real implementation dates because we noticed that 
this is, in average, the time taken by a measure to impact in the growth rate of the pandemic. The government 
measures are described in Table 2. As it is shown in the table, five values of ν were fitted to daily cases for the 
different intervention periods. The fitting was done until day 180 verifying that real data were included within 
one standard deviation from the mean value taken from 100 simulations. A two-sample Kolmogorov-Smirnov 
test was also applied to verify the goodness of the fit.

Comparison with reported data.  In Fig. 3 we show the result of this model obtained from adding the 
newly isolated people from all the cells in the grid scaled by each region’s own population. This plot is obtained 
by averaging 100 model runs. We should keep in mind that most governments are not able to detect all the actual 
COVID-19 cases but a fraction p and that only the confirmed and isolated people should be compared with the 
data provided by official sources.

In order to understand Fig. 3, three points should be kept in mind. First one is that the mobility parameter 
from day 166 onward was fixed to 0.358. This means that this prediction will be adequate as long as the people 
keep respecting social distancing measures. It should be regarded that if all the mobility and group meeting 
restrictions are lifted the evolution will be different. The second topic to consider is the appearance of a second 
pandemic wave. This wave is strongly related with the immunity period which was fixed at 140 days. Since there 
is not enough data available at this time it is possible that this second wave appears a few weeks earlier or later. 
Obviously, this dynamic will be dramatically different if a campaign of massive vaccination occurs.

The third issue to notice is that, as it is expected, the infected are 10 times higher than the isolated as it can 
be observed by comparing figures (A) and (B) or (C) and (D). At the current transmission rate, this implies that 
by the end of 2021 the pandemic will have infected a number of people equivalent to the country’s population. 
If we compute fatalities as the 0.027% of the infected, we can predict that there will be 116.000 deaths by the 
beginning of 2022.

In order to study how the p and α parameters affect the evolution of the pandemic, we analyzed different 
combinations of them and fixing the values of ν as in the Table 2. Firstly, we study the model by varying α . Figure 4 
shows the curves obtained from 100 runs of the model for p = 0.1 and different values of α . As it is clear from 
the figure, the early discovery of a case reduces the height and the width of the peak in (A) and (B) but not in 
a significant way. This can be seen clearly in the curves (E) and (F) were the accumulated isolated and infected 
cases in 600 days are shown. The expected difference between early and late case discovery for p = 0.1 is around 
8%, which is within the spread of the model. The value taken by α could become more significant for bigger p 
but, as we have seen before, the fraction of discovered and isolated people is small in most countries.

Next we studied the variation of the fraction of isolated people, p. The results can be seen in Fig. 5. It is clear 
from the figures (C) and (E) that the accumulated isolated are smaller for lower values of p. This result is reason-
able since the higher the fraction of discovered infected people, the smaller is the population that continues to 
infect others reducing the spread of the pandemic. This shows that the implementation of an efficient COVID-19 
tracking and testing program could be of great significance to control its evolution.

Figure 5D and F show the number of accumulated infected cases. In this case, as the number of discovered 
cases raises, the infected population decreases leaving a smaller pool of people with the virus to be found. 
Therefore, once that more than 40% of those infected are discovered, a decrease in the number of isolated cases 
is observed as a consequence of the reduction in the total diseased population. It is interesting to notice that, 
for the same parameters and mobility, we found that the total accumulated infected cases in 600 days is 57% 
smaller for p = 0.6 than for p = 0.1 . This would imply a reduction in the expected fatalities to less than 50.000.

Table 2.   Mobility according to government measures.

Period (days) ν Government measures

1 to 22 0.33 Schools and mass attendance events were closed and people were asked to stay at home

23 to 78 0.135 Strict lock-down in all the territory

79 to 101 0.185 Banks and other businesses were allowed

102 to 165 0.225
After a massive strike the pandemic evolution raised consistently

The lock down started to be lifted

166 to present 0.358 Some restrictions were gradually lifted. The pandemic spread over all the country
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Discussion and conclusions
In this work we have proposed a novel model to study the influence of geographical and sociological conditions 
on the spread of the virus SARS-CoV2, causing the COVID-19 pandemic in Argentina.

We introduce two fundamental parameters: α , the time elapsed between contagious and isolation of infected 
individuals, and p, the ratio of people isolated over the total infected ones. The results show clearly that the 
detection and consequent isolation of infected people are crucial to the dynamics of the virus propagation ( p−
sensitivity) while the time lasted between infection and isolation is not a relevant issue ( α−insensitivity).

We also introduced local mobility into the model to account for random social behavior within each cell. 
This allowed a better prediction of the pandemic evolution and enabled the appearance of new features that were 
actually observed in real data (uneven slowed-down pandemic growth).

The model also predicts new waves which are dependent on the immunity time parameter ( ω ) and are modu-
lated by the NPIs. This feature was already observed in some European countries where “stay at home” policies 
were taken: a second wave appeared as soon as restriction were lifted and reinfection was possible.

Moreover, the model shows an interesting behavior in countries with a wide geographic span and high 
mobility. Particularly, it accurately describes the geographical spread of the pandemic in the Argentinean terri-
tory. From all the figures it can be clearly seen that the model predicts the appearance of a second wave before 
the end of the first one. This implies that , without any government measures as mobility reductions, effective 
infectious tracking or vaccines, the disease is not expected to disappear by itself. This is a direct consequence 
of the geographical extension of the territory and the stochasticity of the model. When the pandemic starts in 
a certain region of the country it also diminishes in another area at the same time (see Fig. 6). In this way, the 
disease oscillates between different regions delayed in time. Consequently, it never completely stops or vanishes. 
For instance, Fig. 6 show the pandemic evolution divided in two geographical areas: The main part of metropoli-
tan area of Buenos Aires (AMBA) and the rest of the country. The illness started mainly in the AMBA region, 
which concentrates almost 33% of the population of Argentina. After several months of evolution, the pandemic 
moved to other important urban areas of the country as Córdoba, Santa Fe, Río Negro, Mendoza, Chaco, etc., 

A

Figure 3.   Geographical spread stochastic SEIQR Model fitted to Argentine data for p = 0.1 and α = 5 . (A) 
Daily isolated cases of infected people who were discovered, tested positive for COVID and isolated (orange 
lines) compared to official data (blue bars). The light blue shaded area corresponds to one standard deviation 
from the mean. (B) Daily infected cases in turquoise compared with official data (blue bars). Notice that infected 
are 10 times higher than the actual official data. (C) Time evolution of accumulated isolated cases obtained as 
the mean value (orange line) of 100 model runs. Light orange curves are the 100 individual numerical runs. 
The blue curve corresponds to official accumulated cases. (D) Time evolution of accumulated infected cases 
obtained as the mean value (turquoise line) of 100 model runs (lighter curves).
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and started diminishing in the AMBA region. The model predicts a ∼50-day elapsed between maxima on both 
areas which is very close to that actually seen in the official data. The great mobility between these areas will 
eventually create a new peak in the AMBA region once the immunity period is finished for most of its popula-
tion and some restrictions are lifted.

This kind of geographic behaviour can also be seen in countries like USA, Brazil and Mexico because they have 
big territories with several important urban areas. As an example, USA had its first cases peaks in the North east 
states during April and then the pandemic moved to south western states where the cases peaks where on July. 
Because of this it never experienced an overall decrease in the amount of cases as in most European countries 

Figure 4.   Model prediction according to different values of the parameter α , the period of time between 
infection and isolation. For each curve we did 100 runs of the model. The value p is fixed to 0.1 and the mobility 
is the one fitted for α = 5 . (A) Daily discovered (isolated) cases for different values of α . (B) Daily actually 
infected cases for different values of α . (C) Accumulated discovered (isolated) cases as function of time. The 
blue curve represents the temporal evolution of the actual accumulated cases obtained from official data. (D) 
Accumulated infected cases as function of time. (E) Accumulated isolated cases after 600 days as a function of α . 
(F) Accumulated infected cases after 600 days as a function of α . The longer the time to discover and isolate new 
infected cases, the greater the number of patients expected and, therefore, the greater the number of isolated 
people.
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and, as a consequence, they are facing the second wave in states like New York without reaching the end of the 
first wave in other states.

As a conclusion,for large territory countries, the new daily cases are expected to come from different regions at 
different moments as the pandemic evolves. This creates unsynchronized oscillations of the daily case curves for 
different areas and prevents the disease from being completely eradicated. In order to stop this kind of behavior, a 
better control of the mobility between distant regions should be adopted. Testing and quarantine policies already 
embraced in some countries could prevent the appearance of new infectious foci.

The model described in this paper accurately accounts for the pandemic evolution in Argentina and in other 
countries as well21. Nevertheless, it should be noted that this prediction is limited by several assumptions. For 
instance long-term predictions are restricted by the available information on the mobility parameters. Their 
value is governed by social compliance with government restrictions and recommendations, and they can change 

Figure 5.   Prediction of geographical spread SEIQRS model according to different values of p. For each curve we 
did 100 runs of the model. The value α is fixed in 5 days and the mobility is the one fitted for p = 0.1 (A) Daily 
discovered (isolated) cases for different values of p compared with official data. (B) Daily actually infected cases. 
(C) Time evolution of accumulated isolated cases for different values of p. (D) Time evolution of accumulated 
infected cases for different values of p. (E) Accumulated isolated cases after 600 days as a function of the fraction 
of isolated infected people. (F) Accumulated infected cases after 600 days as function of the value p. In this case, 
the larger is the value of p the smaller is the amount of accumulated infected after 600 days.
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rapidly if interventions are lifted or tightened. New government policies and the obedience of ordinary people 
to the recommendations cannot be predicted accurately in the long-term. This reduces the predictive power of 
the model. Additionally, when this model was developed, most parameters were unknown and were estimated 
from the available information and by fitting to real data. For instance, we assumed ω = 140 . If this value changes 
new pandemic waves could appear before or after it was predicted. Other limitation is that we are not taking 
into account new strains with different properties. SARS-CoV-2 variants exhibit an increase in the transmission 
rate and in the infectiousness period, giving place to a growth in daily new cases in some countries29. Finally, 
reduction of the daily cases because of vaccination is neither considered in this model.

As final remarks, we want to emphasize the importance of tracking and isolating infected people. In this 
sense, countries as Iceland and South Korea have shown the effectiveness of these methods to reduce the pan-
demic spread21,30. On the other hand, cultural habits and social behavior have shown to be important factors as 
well. The increase in the number of cases because of the mobility growth was clearly demonstrated in the fitted 
ν parameters. With this in mind, social distancing measures and case tracking are two key factors to contain 
the pandemic evolution. Furthermore, as this model shows robustness as a global predictor in a very extensive 
and heterogeneously connected country like Argentina, we are confident that it gives strong support to analyze 
vaccination strategies for the future mitigation of the disease.

Data availability
The information to create the “daily cases” dataset used during the current study is available in the repository 
of the Health Ministry of Argentina. http://​datos.​salud.​gob.​ar/​datas​et/​covid-​19-​casos-​regis​trados-​en-​la-​repub​
lica-​argen​tina. Datasets generated during this study will be available from corresponding author upon request.

Code availability
Python codes used during the current study are available from the corresponding author upon request.
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