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The SoftWipe tool and benchmark 
for assessing coding standards 
adherence of scientific software
Adrian Zapletal1,2,3, Dimitri Höhler1,2,3, Carsten Sinz2 & Alexandros Stamatakis1,2*

Scientific software from all areas of scientific research is pivotal to obtaining novel insights. Yet the 
coding standards adherence of scientific software is rarely assessed, even though it might lead to 
incorrect scientific results in the worst case. Therefore, we have developed an open source tool and 
benchmark called SoftWipe, that provides a relative software coding standards adherence ranking 
of 48 computational tools from diverse research areas. SoftWipe can be used in the review process of 
software papers and to inform the scientific software selection process.

Scientific software (henceforth called software) has become pivotal for discoveries in almost all research fields, 
including emerging areas such as the digital humanities. The importance of software has become evident to the 
broad public by the plethora of computational tools (henceforth called tools) used to analyze SARS-CoV-2 data, 
for instance. However, due to the conditions under which software is typically being developed, such as, lack of 
sustainable funding for maintaining widely used tools, lack of time, and a lack of formal training in computer 
programming and software engineering, the software quality with respect to coding standards adherence (hence-
forth called software quality for brevity) exhibits a large variance. More importantly, software quality is typically 
not taken into account in the software development, software paper review, or in the tool selection process, for 
instance, when two computational tools provide analogous functionality.

The term ’coding standards adherence’ (or ’software quality’) is admittedly fuzzy, but offers a handle to per-
form largely automated analyses of scientific open source tools based on a set of objective criteria and measures. 
Such an automated analysis of numerous tools would be hard if one wanted to apply proper software verifica-
tion techniques. When a tool exhibits ’bad’ software quality, this does absolutely not imply that it is erroneous. 
However, it does imply that the probability for it to generate faults that might, in the worst case, lead to paper 
retractions or incorrect results obtained with the faulty tool is higher (based on results from the area of empiri-
cal software  engineering1,2). See the introduction  of3 for a list of some high profile retractions and corrections 
because of software errors. For the above reasons, we strongly advocate that software quality should be assessed 
in the development, review, and tool selection process.

To this end, and based on our previous  work4 where we manually assessed the software quality of widely used 
tools for evolutionary biology, we introduce SoftWipe, a largely automated open source tool and benchmark 
for assessing the software quality of open source tools written in C or C++. We envision that SoftWipe can 
be used by authors/developers (e.g., requiring them to provide their SoftWipe score with the submission), 
reviewers and researchers to integrate software quality into the review process and to raise awareness about 
software quality and engineering issues which are crucial for the success of computational science in general.

The SoftWipe score is a relative score over a number of software quality indicators (see further below and 
the supplement for a description of these indicators). The best-ranking tool per indicator receives a score of 10 
while the worst ranking tool per indicator receives a score of 0. Subsequently, we compute the average unweighted 
score per tool over all per indicator scores to obtain a global software quality ranking. Prior to the global score 
calculation, the per indicator scores are corrected for outliers (see supplement for details).

This global relative score might change over time as more tools are being added to the benchmark and will 
therefore be difficult to reference. We have therefore also devised an absolute fixed global score (see supplement 
for mathematical details) that does not change when further tools are added to the benchmark and that can 
therefore easily be referenced.

We use the following software quality indicators (normalized by average values per 1000 lines of code (LoC)) 
to rate the tools: number of compiler, sanitizer, and static code analyzer warnings as generated by a variety 
of tools, number of assertions used, cyclomatic code complexity which is a software metric to quantify the 
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complexity/modularity of a program, inconsistent or non-standard code formatting, and the degree of code 
duplication. Further, we approximate the overall fraction of test code by detecting test files and dividing the 
lines of test code by the overall lines of code. A file is considered a test file if the path or the file name contains 
the “test” keyword.

The selection of these quality indicators is based on results from the area of empirical software engineering 
and is thus not arbitrary. For instance, a study has established the connection between the amount of gcc com-
piler warnings and the revision numbers of source files in five industrial software  projects5. Further, the predic-
tive ability of the cyclomatic complexity as a metric for bug prediction has been  demonstrated6. It has also been 
established that static analysis and code complexity metrics constitute early indicators of software  defects7 and 
that code churn, complexity metrics, and static analysis results can be used to train an enhanced fault prediction 
model for embedded  software8. The authors found that, when using a gradient boosting approach to conduct a 
simple binary classification of (automotive) software components into fault-prone and not fault-prone in a retro-
spective study, precision (number of fault-prone components returned divided by number of total components 
returned) and recall (number of fault-prone components returned divided by number of fault-prone components 
that should have been returned) values exceeded 90%.

Beyond these research results, coding recommendations by organizations that develop reliable or even secu-
rity-critical software deploy analogous metrics and criteria. More specifically, NASA has developed risk-reducing 
coding rules, based on the analysis of previous incidents, with 4 distinct levels of code compliance. Their level 1 
rule (“minimal standard of workmanship for all code”) mainly requires that “all code can pass both the compiler 
and a good static source code analyzer without triggering warnings” (see https:// cacm. acm. org/ magaz ines/ 
2014/2/ 171689- mars- code/ fullt ext). Analogous approaches are being used at CERN. See, for instance, the Master 
thesis by Thomas Hofer, (https:// infos cience. epfl. ch/ record/ 153107/ files/ ESSCAT- report- for- print ing. pdf) or 
the list of static source code analysis tools recommended for CERN developers at https:// secur ity. web. cern. ch/ 
recom menda tions/ en/ code_ tools. shtml. Finally, the INFER tool we use in SoftWipe is also being deployed by 
Facebook for code analysis and development (see https:// resea rch. fb. com/ downl oads/ infer/).

To further justify the selected indicators we computed the Spearman rank correlation between individual 
per-indicator rankings and the overall SoftWipe ranking. For all individual indicators, except for clang-tidy 
and unique, there is either a moderate or a high degree of correlation with the overall SoftWipe score.

Another approach to establishing that our indicators are reasonable and meaningful is to correlate them 
with the amount of bug reports as documented in bugzilla or git-logs, for instance. However, tools for accurate 
automatic identification of true bugs in git-logs are difficult to develop and show 50% precision and 90%  recall9. 
In the area of scientific software development, this becomes even more challenging, as some of the tools we 
studied do simply not have git-logs. Furthermore, unlike in industrial software development projects, scientific 
software developers use highly heterogeneous conventions (if any) when formulating git messages. To this end, 
we have conducted experiments using three non-scientific codes (sumo https:// github. com/ eclip se/ sumo, llvm-
openmp, and llvm-pstl) for which there exists an ample repertoire of bugzilla or git-log bug reports. Under 
the assumption that the reported issues containing the “bug” keyword are trustworthy we find that, sumo has 
a rate of 7.7 bugs per 1000 LoC (SoftWipe score: 3.7), llvm-openmp has a rate of 4.0 bugs per 1000 LoC 
(SoftWipe score: 5.2), and llvm-pstl has a rate of 0.8 bugs per 1000 LoC (SoftWipe score: 7.4). Hence, 
our experiments indicate that there is a tendency for bug reports to decrease with increasing SoftWipe score.

A more detailed description of the quality indicators including an extended rationale for the inclusion of each 
one is provided in the supplement and in the “Methods” Section.

The current benchmark comprises 48 tools from a wide range of scientific fields such as, evolutionary biol-
ogy, astrophysics, epidemiological simulation, hypergraph analysis, deep learning applied to DNA data, antigen 
typing, protein data structure mining, SAT (satisfiability) solvers, etc. The benchmark results are provided in 
Table 1. Note again that absolute fixed SoftWipe scores do not change when new tools are included in the 
benchmark, while relative scores do change (see supplement for details). A comprehensive Table including all 
individual software quality indicators as well as descriptions of the respective tools (including references) is 
available online at https:// github. com/ adria nzap/ softw ipe/ wiki/ Code- Quali ty- Bench mark and in the supplement.

One important observation is that the three out of the five top scoring tools (genesis-0.24.0, raxml-
ng_v1.0.1, kahypar) have been developed by researchers with formal training in pure computer science. 
In addition, parallel-STL is a compiler and toolchain project that was initiated by the computer science 
department of the University of Illinois. Further, the 6 worst scoring tools have all been developed by self-taught 
programmers without formal training in computer science.

For an example of how the benchmark can be used, let us consider the three evolutionary molecular sequence 
data simulators dawg10, seq-gen11, and indelible12 (highlighted in bold font in Table 1). These tools imple-
ment highly similar functionalities and models. Our benchmark suggests that dawg, is less likely to fail, albeit it 
may of course, still contain programming errors while indelible might not, despite the inferior code quality. 
The indelible tool, for instance, would not pass the NASA level 1 compliance test.

It is also noteworthy that the developers of three (genesis-0.24.0, raxml-ng_v1.0.1, kahypar) 
out of the top five tools had access to a pre-release version of SoftWipe as they are members or collaborators 
of our lab and improved their tools to obtain higher SoftWipe scores. This highlights the utility of SoftWipe 
within a lab such as ours that predominantly develops computational tools, as it fosters a healthy competi-
tion among lab members to develop the best-scoring tool. In fact, the regular deployment and integration of 
SoftWipe in the development process has also helped to avoid a bug in at least one occasion: We detected 
a missing break statement in a C++ switch instruction, which caused an overestimation of the so-called 
speciation rate in our GeneRax  tool13. This bug would not have been noticed otherwise, as it did not induce any 
crash or implausible results. Thus, SoftWipe can also aid the developer to guide code refactoring and develop 
code that will be easier to maintain and extend.

https://cacm.acm.org/magazines/2014/2/171689-mars-code/fulltext
https://cacm.acm.org/magazines/2014/2/171689-mars-code/fulltext
https://infoscience.epfl.ch/record/153107/files/ESSCAT-report-for-printing.pdf
https://security.web.cern.ch/recommendations/en/code_tools.shtml
https://security.web.cern.ch/recommendations/en/code_tools.shtml
https://research.fb.com/downloads/infer/
https://github.com/eclipse/sumo
https://github.com/adrianzap/softwipe/wiki/Code-Quality-Benchmark
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Nonetheless, the importance of implementing thorough tests for developing reliable software needs to 
be emphasized. SoftWipe takes this into consideration in two ways. First, by taking into account the most 

Table 1.  Absolute fixed and relative SoftWipe scores of 48 computational tools from a wide range of scientific 
fields such as computer science, evolutionary biology, astrophysics, and bioinformatics. The three DNA 
sequence simulation tools dawg, seq-gen, and indelible that have similar functionality are highlighted in bold 
font.

Program name Absolute score Relative score

genesis-0.24.0 9.0 9.0

fastspar 8.2 8.4

parallel-STL 7.4 7.0

raxml-ng_v1.0.1 7.3 7.5

kahypar 7.3 7.8

ExpansionHunter-4.0.2 7.2 7.2

naf-1.1.0/unnaf 6.8 7.0

bindash-1.0 6.8 6.7

dawg-1.2 6.8 6.9

naf-1.1.0/ennaf 6.8 7.0

virulign-1.0.1 6.5 6.6

Treerecs-v1.2 6.5 6.8

glucose-3-drup 6.4 6.9

swarm-3.0.0 6.3 6.1

RepeatsCounter 6.3 6.2

samtools-1.11 6.0 6.5

bpp-4.3.8 5.9 6.3

ntEdit-1.2.3 5.7 6.1

prank-msa 5.5 5.9

IQ-TREE-2.0.6 5.5 5.6

dna-nn-0.1 5.3 5.1

openmp 5.2 5.4

ngsTools/ngsLD 5.2 4.9

emeraLD 5.2 5.3

defor 5.1 5.3

copmem-0.2 5.1 5.2

BGSA-1.0 5.0 5.4

phyml-3.3.20200621 4.9 5.3

dr_sasa_n 4.8 5.5

HLA-LA 4.8 5.6

SF2 4.6 4.9

Seq-Gen-1.3.4 4.6 4.9

clustal-omega-1.2.4 4.4 5.0

Gadget-2.0.7 4.4 4.6

cellcoal-1.0.0 4.4 4.2

minimap2-2.17 4.3 4.6

ms 4.3 4.6

MrBayes-3.2.7a 3.9 3.9

prequal 3.9 4.3

cryfa-18.06 3.8 4.1

vsearch-2.15.1 3.8 4.4

sumo 3.7 3.9

PopLDdecay 3.6 3.7

crisflash 3.5 4.3

athena-public-version-21.0 3.4 3.7

mafft-7.475 3.1 3.1

covid-sim-0.13.0 2.7 3.0

INDELibleV1.03 1.9 2.3
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rudimentary form of tests as implemented via assertions. This is also required by NASA level 1; a study by Casal-
nuovo et al.14 suggests, that functions with assertions do have fewer defects. Second, by taking into account the 
fraction of test code present in the overall code.

Given the current SARS-CoV-2 pandemic it is also worth noting that the CovidSim  tool15 obtains the 
second worst score among all 48 tools tested.

We are well aware of the fact that SoftWipe is likely to generate controversial debates, as software quality 
does neither induce lack of code correctness, nor an erroneous underlying scientific model. Nonetheless, in the 
current absence of any standard routines for assessing scientific software quality and based upon the results 
of empirical software engineering research that establishes a correlation between software quality and failure, 
SoftWipe represents a step forward, as it is easy to use and does not require a substantial investment of time. 
This does not only apply to the software submission and review process, but also to software development. 
SoftWipe can also help to objectify controversial discussions about software quality, as was the case with the 
CovidSim tool (see e.g., https:// www. imper ial. ac. uk/ news/ 197875/ codec heck- confi rms- repro ducib ility- covid- 
19- model- resul ts). We are therefore convinced that a routine deployment of SoftWipe or analogous tools at 
various stages of the software development and publication process can substantially contribute to improving 
software quality across all scientific fields, raise general awareness about the importance of software quality in 
the respective research communities, and reduce the number of program faults.

Regarding future developments of SoftWipe, we intend to also include valgrind (https:// www. valgr ind. 
org/) in future releases of SoftWipe despite the fact that it is substantially slower than Infer. While Infer 
is fast, we have observed that it frequently fails to execute on some of the tools. We will also implement version 
control for the code analysis tools that are being used by SoftWipe as versions 11 and 12 of clang-tidy, 
for instance, tend to report more warnings than version 10.

Methods
SoftWipe overview. SoftWipe is a pipeline, written in Python3, that uses predominantly freely avail-
able static and dynamic code analyzers to assess the code quality of software written in C/C++. SoftWipe 
initially compiles the software using the clang compiler (https:// clang. llvm. org) and subsequently executes the 
software with clang-sanitizers. To accomplish this, the user is required to provide a text file with a command line 
call of the specific software such that it can be executed. For our benchmark, we used minimal toy examples as 
provided by the authors of the software, if available. In cases, where no examples were available, we set them up 
to the best of our abilities using freely available public datasets.

Subsequently, SoftWipe counts the lines of code, excluding comments and empty lines, and executes 
the static code analyzers described in the subsequent Subsection. Using the output of the static code analyz-
ers, SoftWipe computes a score for each static analyzer and then outputs an overall score. Note that, strictly 
speaking, the clang-sanitizers are not static, but dynamic analyzers. SoftWipe retains all intermediate code 
analysis results such that software developers can access code quality analysis results in one single place and 
analyze as well as resolve potential issues. Note that SoftWipe, does not further extend or summarize the output 
of the analysis tools for refactoring purposes. If one or several of the code analysis tools fail to produce a score, 
SoftWipe will exclude the respective category from the overall score calculation. The user can also exclude 
analysis tools from the overall score. This can be done via a respective command line switch (e.g., –exclude-
infer to exclude the Infer analysis; see supplement for further details).

Description of and rationales for indicators. Static analysis techniques come in a wide variety of fla-
vors, ranging from light-weight style checkers to full-blown formal verification tools. The latter are used in areas 
where high levels of software reliability are mandatory. They suffer, however, from long or even prohibitive 
runtime requirements. In addition, substantial manual effort is typically required to apply them and to interpret 
their results.

In SoftWipe we therefore predominantly use light-weight static analysis tools, as well as additional tech-
niques based on source code metrics:

Compiler warnings and sanitizers. We compile each tool using the clang C/C++ compiler and count the 
number of warnings. We chose clang, as we empirically found that it typically produces more warnings than 
other compilers such as gcc. We activate almost all warnings (118 in total) for this. We have manually assigned 
a weight (severity level) of 1, 2, or 3 to each warning type. The weight assignment process is described in the 
supplement. A warning with a weight of 3 is considered as being most severe; for instance, implicit type con-
versions that might result in precision loss constitute weight 3 warnings. We calculate a weighted sum of these 
warnings, where each warning issued contributes its weight (1, 2, or 3) to the weighted sum. Additionally, we 
execute the tool with clang sanitizers (ASan and UBSan). If the sanitizers issue warnings, we add them to the 
weighted sum. Sanitizer warning severeness defaults to a weight of 3. Since ASan and UBSan perform dynamic 
(run-time) analyses of programs, we run them using examples as provided by the respective developers. If no 
examples are available, we set them up to the best of our abilities using freely available public datasets. ASan, the 
AddressSanitizer, detects memory-related errors such as out-of-bound heap or stack accesses, or use-after-free 
errors. UBSan, the UndefinedBehaviorSanitizer, detects program statements that result in undefined behavior 
according to the C/C++ language standard. The compiler and sanitizer score is calculated as a rate correspond-
ing to the weighted sum of warnings per total LoC.

Assertions. We count the number of assertions (C-style assert(), static_assert(), or custom assert 
macros, if defined) per total LoC.

https://www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
https://www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
https://www.valgrind.org/
https://www.valgrind.org/
https://clang.llvm.org
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Cppcheck. This tool focuses on detecting undefined behaviour and dangerous coding constructs. It categorizes 
its warnings; we have thus assigned a weight to each category, analogous to the compiler warnings. The cpp-
check score is calculated as the weighted sum of warnings per total LoC.

Clang-tidy. Similar to cppcheck, clang-tidy is a static analyzer for detecting typical programming errors 
like style violations or interface misuse. The clang-tidy tool categorizes its warnings; we have assigned each 
category a weight, analogous to the cppcheck and compiler warnings. The clang-tidy score is calculated as 
the rate of the weighted sum of warnings found per total LoC.

Cyclomatic complexity. The cyclomatic complexity is a software metric to quantify the complexity/modular-
ity of a program. We use the lizard tool to assess the cyclomatic complexity of our benchmark tools. Lizard 
reports the number of functions that are considered too complex, relative to the total number of functions. Liz-
ard considers a function as “too complex” if its cyclomatic complexity, its length, or its parameter count exceeds 
a certain threshold value. The score is calculated using the cyclomatic complexity value returned by lizard.

Unique rate. We determine the amount of “unique code”; a higher amount of code duplication decreases this 
value. A low unique rate is problematic, as it may induce copy-paste errors. The score used here is simply the 
unique rate returned by lizard.

KWStyle. This is a configurable, light-weight style checker for C/C++. We configure KWStyle using the 
KWStyle.xml file that ships with SoftWipe. The KWStyle score is calculated as the rate of the number of 
warnings found by the static style analyzer KWStyle per total LoC.

Infer. This is a static analyzer for C/C++ and Objective-C developed by Facebook. It can detect null 
pointer dereferences, memory leaks, violations of coding conventions, or unavailable APIs. The Infer score 
corresponds to the rate of the the weighted sum of warnings per LoC.

Test count. SoftWipe also tries to detect files containing unit tests and calculates the test count rate as the 
fraction of LoC in test files divided by the overall number of LoC.

SoftWipe code quality. We also assessed the quality of our SoftWipe code by deploying the following 
commonly used static analyzers for Python:

• Pylint (https:// www. pylint. org/)
• Pyflakes (https:// github. com/ PyCQA/ pyfla kes)
• Radon (https:// radon. readt hedocs. io/ en/ latest/)

Overall, we found that the quality of SoftWipe is “good” (see supplement for details and a full transcript of 
the analyses).

The open source code of SoftWipe including the up-to-date benchmark and a user manual is available at: 
https:// github. com/ adria nzap/ softw ipe/ wiki.
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