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Canonical Hamiltonian ensemble 
representation of dephasing 
dynamics and the impact 
of thermal fluctuations 
on quantum‑to‑classical transition
Hong‑Bin Chen1,2* & Yueh‑Nan Chen2,3*

An important mathematical tool for studying open quantum system theory, which studies the 
dynamics of a reduced system, is the completely positive and trace‑preserving dynamical linear map 
parameterized by a special parameter‑time. Counter‑intuitively, akin to the Fourier transform of a 
signal in time‑sequence to its frequency distribution, the time evolution of a reduced system can 
also be studied in the frequency domain. A recent proposed idea which studies the representation 
of dynamical processes in the frequency domain, referred to as canonical Hamiltonian ensemble 
representation (CHER), proved its capability of characterizing the noncalssical traits of the dynamics. 
Here we elaborate in detail the theoretical foundation within a unified framework and demonstrate 
several examples for further studies of its properties. In particular, we find that the thermal 
fluctuations are clearly manifested in the manner of broadening CHER, and consequently rendering 
the CHER less nonclassical. We also point out the discrepancy between the notions of nonclassicality 
and non‑Markovianity, show multiple CHERs beyond pure dephasing, and, finally, to support 
the practical viability, propose an experimental realization based upon the free induction decay 
measurement of nitrogen‑vacancy center in diamond.

The ubiquity of the open quantum theory has attracted many attentions among the quantum physics community, 
with applications ranging from physics, chemistry, to  biology1–9, note to mention its fundamental importance in 
the development of frontier  technologies10–12. Irrespective of the unitary time evolution of the total system–envi-
ronment arrangement, the reduced system dynamics typically exhibits an incoherent behaviour after dropping 
the inaccessible ambient environment. One of the main causes of such incoherent behaviour stems from the loss 
of information on the system–environment correlations, which comes from the interactions between the system 
and its ambient environment, and significantly modulate the properties of the reduced system dynamics, e.g., 
from Markovianity to non-Markovianity13–18.

Generically, such incoherent dynamics are described in terms of a family of time-parametrized completely 
positive and trace-preserving (CPTP) maps acting on the system density  matrices19–22. However, since the set 
of CPTP maps does not form a well-characterized algebraic structure, its mathematical characterization is non-
trivial; consequently, it stimulates the development of several different, but intimately related, techniques for 
characterizing CPTP maps, including operator-sum representation, Kraus  operators23, process  matrices24, and 
Choi–Jamiołkowski  isomorphism25,26.

In addition, to derive appropriate equations of motion governing the open system dynamics, one typically 
adopts an assumption of Born–Markov approximation, which leads to the master equation in the standard 
Lindblad  form27,28. However, practical problems, e.g., with strong system–environment interactions and/or when 
long-lived environmental correlations play significant roles, usually do not meet this assumption. To go beyond 
the Born–Markov regime while taking the memory effects into account, many efforts have been devoted to 
the construction of improved techniques, such as path-integral  formalisms29–31, hierarchy equations of motion 
(HEOM)32–34, the reaction-coordinate  method35,36, and non-Markovian quantum master  equations37–39.
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In the aforementioned approaches, the dynamics of a reduced system has been studied along the time-axis; 
nevertheless, conventional time evolutions can be studied from a brand new viewpoint. Let us first recall that 
Fourier transform, which transforms signals in time domain to a frequency domain, enables one to study and 
manipulate the characters of the signal in the frequency domain. Then, a similar picture emerges where a bosonic 
field can be described with the Wigner  function40 or the Glauber–Sudarshan P  representations41,42. These are 
(quasi-)distribution functions over certain corresponding phase spaces, rather than real spaces, and are capable 
of characterizing the nonclassical features of the boson field. On the other hand, even a century after the birth 
of quantum theory, the essential quantum nature and the question of distinguishing the genuine quantum traits 
from classical counterparts remain contentious and intriguing due to the fundamental importance. In particular, 
the boundary between quantum and classical realm and how classical characters emerge from quantum essence 
have given rise to vast  debates43–46.

Inspired by the above insights, we have proposed to describe a unital dynamics with a (quasi-)distribution 
function over frequency domain, referred to as the canonical Hamiltonian ensemble representation (CHER)47,48. 
In order to acquire additional properties of the CHER, exploring its versatility in characterizing the nonclassi-
cality of unital dynamics, and the impact of thermal fluctuations, here we first elaborate in detail the theoretical 
foundation within a unified framework and recast it into Fourier transform formalism. We then demonstrate 
several examples of qubit pure dephasing dynamics with or without revealing nonclassical traits. We conclude 
that, generically, increasing the environmental temperature broadens the CHERs and leads to shallower nega-
tive wings, i.e., diminishment of nonclassical traits. This agrees with the usual intuition that thermal fluctua-
tions are detrimental to the quantum nature and constitute one of the primary origins of quantum-to-classical 
transitions. Furthermore, by varying the Ohmicity of the spectral density and the environmental temperature, 
we can observe a transition between Markovianity and non-Markovianity as well as competition between non-
Markovian memory effect and Markovian thermal fluctuations. These phenomena can be easily understood 
from the deformation of the CHERs. Our results suggest that the notion of nonclassicality is different from the 
non-Markovianity. Further studies on distinguishing the two notions are highly desired.

We have also discussed the uniqueness of CHER for pure dephasing dynamics, which is underpinned by 
the abelian algebraic structure of the Hamiltonian ensemble (HE). Therefore, one can expect the breakdown of 
uniqueness when going beyond pure dephasing. To explicitly show this breakdown of uniqueness, we consider 
an example of general qubit unital dynamics. Based on the approach we have established, one has redundant 
freedom in constructing the CHER for unital dynamics. Upon arriving at a CHER for a unital dynamics, one 
can arbitrarily generate more CHERs by adding high order spherical harmonics with l ≥ 3 to the known one. 
Notably, these CHERs lead to the same qubit unital dynamics. We therefore draw the conclusion that there are 
multiple representations for unital dynamics.

Finally, we have elucidated a promising experimental proposal based on the free induction decay measure-
ment of the electron spin associated with a diamond defect. Due to the three-order difference between spin qubit 
relaxation time T1 and dephasing time T∗

2  , the qubit dynamics can be well approximated by pure dephasing. 
Therefore, the dynamical behaviour and the corresponding CHER can be determined experimentally by using 
a variant of Ramsey pulse sequence. This circumvents the burden of performing the standard quantum process 
tomography experiment, meanwhile underpinning the practical viability and the compatibility of CHER theory 
with present-day techniques.

Results
Averaged dynamics under HE. The mathematical tool of fundamental importance in this work is the 
Hamiltonian ensemble (HE). A HE {(p�, Ĥ�)}� consists of a collection of (time-independent) Hermitian opera-
tors Ĥ� of the same dimension, and a probability distribution p� of occurrence. The index � is generic and may 
be continuous and/or a multi-index. Each member Hamiltonian Ĥ� generates a unitary time-evolution operator 
Û� = exp(−iĤ�t/�) . For each single run of an experiment, we input an initial state ρ(0) into the HE, which ran-
domly assigns ρ(0) to a unitary channel Û� according to the probability distribution p� (Fig. 1). The ensemble-
averaged dynamics after many runs is given by the unital map

Due to the averaging procedure over all unitary realizations, the time-evolved state ρ(t) undergoes a dephasing 
dynamics and behaves  incoherently49–52.

An instructive  example50 is on a single qubit subject to spectral disorder with HE given by {(p(ω), �ωσ̂z/2)}ω ; 
i.e., all the member Hamiltonian operators are proportional to σ̂z with fluctuating energy level spacing �ω and 
p(ω) can be any probability distribution function. The resulting dynamics is pure dephasing

with the dephasing factor φ(t) =
∫
p(ω)e−iωtdω being the Fourier transform of p(ω).

Since each time-evolution operator Ûω = exp(−iωσ̂z t/2) has a geometric interpretation, namely, an unitary 
rotation about the z-axis of the Bloch sphere at an angular velocity ω , the above HE, as well as the resulting pure 
dephasing dynamics (2), can be schematically illustrated in terms of random phase (Fig. 2). The ensemble of 
red arrows in Fig. 2a denotes the random unitary rotations generated by the member Hamiltonian operators 
�ωσ̂z/2 weighted by the probability distribution p(ω) . The ensemble average results in the blue arrow, whose 
dynamical behaviour is pure dephasing due to the random phase of the ensemble of red arrows. Consequently, 

(1)ρ(t) = Et{ρ(0)} =
∫

p�Û�ρ(0)Û
†
�
d�.

(2)ρ(t) =
∫ ∞

−∞
p(ω)e−iωσ̂z t/2ρ0e

iωσ̂z t/2dω =
[

ρ↑↑ ρ↑↓φ(t)
ρ↓↑φ∗(t) ρ↓↓

]
,
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such HE-description of pure dephasing agrees with the conventional interpretation of random phase and capable 
of providing further insights into the algebraic structure behind the dephasing  dynamics48.

Additionally, whenever the probability distribution function p(ω) is specified, the pure dephasing dynam-
ics (2) is fully determined. This implies that, as illustrated in Fig. 2b, one can use p(ω) to characterize the qubit 
pure dephasing dynamics, and can be recovered by the Fourier transform in Eq. (2). Particularly, as p(ω) is dis-
tributee over the angular velocity ω and is related to the pure dephasing via the Fourier transform, it becomes a 
representation of qubit pure dephasing in the frequency domain. It is worth noting that the concept of HE is origi-
nally proposed to describe the influence of a disordered  environment49,50; whereas the experimental realizations 
of the controlled dephasing are achieved in a similar spirit of statistical  mixture53–55, and the revival of quantum 
correlations in the absence of back-action has also been studied in terms of similar ensemble  description56,57.

Canonical Hamiltonian‑ensemble representation. Exploration of the full power of the (quasi-)prob-
ability representation in the frequency domain, referred to as CHER, and its ability to characterize the nonclas-
sical nature of dephasing dynamics is undertaken here.

In the case of n-dimension, both member Hamiltonian operators Ĥ� and density matrices ρ are Hermitian 
and belong to the Lie algebra u(n) = u(1)⊕ su(n) . Every Ĥ� ∈ u(n) is a linear combination

of identity operator Î  and n2 − 1 traceless Hermitian generators L̂m of su(n) ; and so does ρ . Therefore, the index 
� = {�0, ��} parameterizing the HE consists of two components, �0 ∈ R and �� = {�m}m ∈ R

n2−1 . In order to 
highlight the role of the representation of a time evolution in the frequency domain played by p� encapsulated 

(3)Ĥ� = �0 Î +
n2−1∑

m=1

�mL̂m = �0 Î + �� · L̂

Figure 1.  Schematic illustration of a HE. A HE {(p�, Ĥ�)}� consists of a collection of Hermitian operators Ĥ� 
and a probability distribution p� of occurrence. In each single run of an experiment, the initial state ρ(0) is 
randomly assigned to a unitary channel Û� = exp(−iĤ�t/�) , denoted by red boxes, according to p� . Finally, all 
the output states are mixed together, leading to an ensemble-averaged dynamics given by Eq. (1).

Figure 2.  (a) Random phase model of qubit pure dephasing. The ensemble of red arrows denotes the random 
unitary rotations generated by �ωσ̂z/2 . The opacity reflects that each of the unitary operators Ûω is weighted 
by the probability distribution p(ω) . The ensemble-averaged state, denoted by the blue arrow, then undergoes a 
pure dephasing dynamics. (b) The probability distribution function p(ω) fully determines the pure dephasing 
dynamics via the Fourier transform; consequently, it is promoted to a representation of qubit pure dephasing in 
frequency domain.
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within the HE, we will recast Eq. (1) into a similar form to Fourier transform. This is achieved with the help of 
several Lie algebra techniques.

To investigate further, we begin with

where we have set � = 1 so that � is in unit of angular frequency, and the multiple commutators are defined as

and

Since every density matrix ρ = n−1 Î + �ρ · L̂ enjoys the same linear combination as Eq. (3), the commutator in 
Eq. (6) is determined by n2 − 1 components [Ĥ�, L̂m] = M̂�,m ∈ su(n) as

Note that [Ĥ�, Î] = 0 . Furthermore, as each M̂�,m is also an element in su(n) , it can be expanded as a linear 
combination as well:

where each �h�,m is an (n2 − 1)-dimensional real vector for m = 1, . . . , n2 − 1.
Accordingly, the action of the commutator [Ĥ�, ] can be conceived as an endomorphism in the sense that it 

maps a generator L̂m ∈ su(n) to the other element M̂�,m ∈ su(n) and Î  to 0; consequently, we can uniquely associ-
ate each member Hamiltonian Ĥ� with a linear map H̃� : u(n) → u(n) , referred to as the adjoint representation 
of Ĥ� , whose action can be expressed in terms of usual matrix multiplication:

It is straightforward to see that the multiple commutator in Eq. (7) can be expressed in terms of the adjoint 
representation [Ĥ�, ρ](µ) ⇒ H̃

µ

�
{ρ} , as well as Eq. (4) in the adjoint representation

Along with above equations, for a given time-independent HE {(℘�, Ĥ�)}� , we can recast the right hand 
side of Eq. (1) into a Fourier transform expression from a (quasi-)distribution ℘� , on a locally compact group G 
parameterized by � = {�0, ��} , to the dynamical linear map E (L̂)

t
48:

Then the action of Et on a density matrix ρ can be expressed in terms of usual matrix multiplication

Note that the ρ on the left hand side of Eq. (13) is an n× n density matrix, while the one on the right hand 
side is an n2-dimensional real vector ρ = {n−1, �ρ} . The equation is valid in the sense of the linear combination 
ρ = n−1 Î + �ρ · L̂.

Equation (12) associates a (quasi-)distribution ℘� with the dynamical process Et,

via the Fourier transform on group formalism. This manifests that the role of ℘� as a CHER for Et . Moreover, 
in the above formalism, we have replaced p� with ℘� to incorporate the possibility that ℘� may contain negative 

(4)exp
(
−iĤ�t

)
ρ exp

(
iĤ�t

)
=

∞∑

µ=0

(−it)µ

µ!
[
Ĥ�, ρ

]
(µ)

,

(5)
[
Ĥ�, ρ

]
(0)

= ρ,

(6)
[
Ĥ�, ρ

]
(1)

=
[
Ĥ�, ρ

]
,

(7)
[
Ĥ�, ρ

]
(µ)

=
[
Ĥ�,

[
Ĥ�, ρ

]
(µ−1)

]
.

(8)
[
Ĥ�, ρ

]
=

n2−1∑

m=1

ρmM̂�,m = �ρ · M̂�.

(9)M̂�,m = �h�,m · L̂,

(10)
�
�H�, ρ

�
⇒ �H�{ρ} =




0 0 · · · 0
0
... �h�,1 · · · �h�,n2−1
0


 ·



n−1

�ρ


.

(11)exp
(
−iĤ�t

)
ρ exp

(
iĤ�t

)
⇒

∞∑

µ=0

(−it)µ

µ! H̃
µ

�
{ρ} = exp(−iH̃�t){ρ}.

(12)E
(L̃)
t =

∫

G

℘�e
−i�L̃td�.

(13)Et{ρ} ⇒ E
(L̂)
t · ρ.

(14)℘�  → E
(L̃)
t ,
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values. The underlying physical meaning is an indicator of the nonclassical nature in the dynamical process Et . 
This will be clarified in the following discussion.

Virtual classical environment. Suppose that a system ρ undergoes an averaged dynamics governed by a 
HE {(p�, Ĥ�)}� with p� being a legitimate probability distribution. Equation (1) has implicitly assumed that the 
system is isolated in the sense that, beside the uncertainty described by p� , there is no other redundant envi-
ronmental degree of freedom. However, Eq. (1) results in an incoherent dynamical behaviour, which arises as 
a consequence of the ensemble average. This is reminiscent of open quantum  systems50, where the incoherent 
properties are caused by the interaction to the environment.

Now we can further strengthen this connection between a HE and an open system dynamics by fabricating 
a virtual environment for a HE encapsulating a legitimate probability distribution p� . Let {|��}� be an ortho-
normal basis for the environmental Hilbert space and ρE =

∫
p�|����|d� be the virtual environment, then the 

averaged dynamics in Eq. (1) coincides with the open system dynamics, Et{ρ(0)} = TrEρT(t) , reduced from 
the total system

by tracing over the environmental Hilbert space. The total unitary operator ÛT =
∫
exp(−iĤ�t)⊗ |����|d� is 

generated by the total Hamiltonian ĤT =
∫
Ĥ� ⊗ |����|d� acting both on the system and the environmental 

Hilbert spaces.
Additionally, it is noteworthily that the system and the virtual environment in ρT(t) are at most classically 

correlated during the evolution, without establishing quantum  discord58,59. Consequently, the effect of the uncer-
tainty p� in the HE can be resembled by fabricating a virtual environment, which is classically correlated to the 
system during the evolution.

Process nonclassicality. On the other hand, for a genuine quantum system, the inevitable interaction with 
its environment and the resulting bipartite correlations established during their evolution constitute the primary 
cause of the incoherent behaviour. As a result, one naive way to characterize the incoherent dynamical processes 
is based on the properties of the system–environment correlations. Nevertheless, as the environment typically 
consists of a hug degrees of freedom and cannot be fully accessed in most practical situations, this prevents the 
viability of this naive approach.

Inspired by the analogy between HE and a classical environment and to circumvent the practical difficulties, 
we propose an alternative definition of process (non)classicality according to the (im)possibility to simulate the 
open system with a legitimate  HE47. The underlying idea of our definition is to deliberately ignore the inacces-
sible actual environment and try to interpret its effects classically in terms of HE-simulation; meanwhile, the 
definition relies only on the properties of the system properties, irrespective of the inaccessible environment.

For a given dynamical process Et , whenever one is able to simulate it with a legitimate HE, i.e., its CHER in 
Eq. (12) is a legitimate probability distribution, Et admits a classical interpretation of mixture of random rota-
tions, and we call such Et classical-like, irrespective of actual system–environment correlations. On the other 
hand, if its CHER necessarily contains negative values, this witnesses the establishment of quantum correlations 
during the evolution, and the dynamics is nonclassical. Further rigorous proof is shown in Ref. 47, relying on the 
technique of group theory.

CHER of qubit pure dephasing reduced from spin‑boson model. To explicitly exemplify the con-
cept of CHER and the impact of thermal fluctuations, we consider the spin-boson model with total Hamiltonian

where the system Hamiltonain ĤS = �ω0σ̂z/2 , the environment Hamiltonian ĤE = ∑
�k �ω�kb̂

†
�kb̂�k , and the inter-

action Hamiltonian ĤI = σ̂z ⊗
∑

�k �(g�kb̂
†
�k + g∗�k b̂�k) . Assuming that the environment is in a thermal equilibrium 

state at temperature T, then this model can be analytically  solved1 and the qubit dynamics exhibits pure dephasing 
with the dephasing factor

where �(t) = 4
∫∞
0 [J (ω)/ω2] coth(�ω/2kBT)(1− cosωt)dω incorporates the information for the interaction 

and the environmental density of states in terms of the spectral density J (ω) = ∑
�k |g�k|2δ(ω − ω�k).

In view of Eq. (2), the CHER of the qubit pure dephasing can be obtained from the inverse Fourier transform

with respect to the diagonal member Hamiltonian operators �ωσ̂z/2 in the simulating HE {(℘ (ω), �ωσ̂z/2)}ω . 
Note that the effect of ω0 is merely to shift ℘(ω) . Therefore, we can, without loss of generality, assume that ω0 = 0 
from this position on.

To be a legitimate probability distribution, the resulting CHER ℘(ω) (18) is expected to satisfy the following 
conditions: 

C1 Normalization to unity: 
∫∞
−∞ ℘(ω)dω = 1.

C2 Real function: ℘(ω) ∈ R, ∀ω ∈ R.

(15)ρT(t) = ÛT[ρ(0)⊗ ρE]Û
†
T

(16)ĤT = ĤS + ĤE + ĤI,

(17)φ(t) = exp[−iω0t −�(t)],

(18)℘(ω) = 1

2π

∫ ∞

−∞
φ(t)eiωtdt,
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C3 Positivity: ℘(ω) ≥ 0,∀ω ∈ R.

Nor m a l i z at i on   C 1  f o l l ow s  s t r a i g ht f or w a rd l y  f rom  t h e  f a c t  t h at  φ(0) = 1 ;  i . e . , ∫∞
−∞ ℘(ω)dω = (2π)−1

∫∞
−∞ φ(t)2πδ(t − 0)dt = 1 . Since one typically considers the dynamical behaviour of 

φ(t) only for t ≥ 0 , we can freely extend the time domain to all t ∈ R such that �(t) is even and φ(−t) = φ(t)∗ . 
Then ℘(ω) = π−1

∫∞
0 exp[−�(t)] cosωtdt is guaranteed to be real, fulfilling condition C2.

While conditions C1 and C2 are straightforward consequences, it cannot be seen immediately whether the 
condition C3 is fulfilled by ℘(ω) due to the sinusoidally oscillating behaviour of the integrand in Eq. (18). To 
prove the positivity of ℘(ω) for the qubit pure dephasing reduced from the spin-boson mdoel (16), we turn to 
Bochner’s  theory60 for help. Further details are given in "Methods". One of our crucial conclusions, the validity 
of ℘(ω) , is described as follows:

Proposition 1 Suppose that the qubit pure dephasing dynamics characterized by φ(t) = exp [−iω0t −�(t)] is 
CP. There exists a unique Hamiltonian ensemble of diagonal member Hamiltonian operators {(℘ (ω), �ωσ̂z/2)}ω 
which can simulate the system dynamics. Additionally, the CHER ℘(ω) = (2π)−1

∫∞
−∞ φ(t) exp(iωt)dt obtained 

by the inverse Fourier transform of φ(t) is a legitimate probability distribution, satisfying the three conditions for a 
probability distribution function that are listed above.

In the following, we consider several heuristic examples of different spectral densities. We have also assumed 
a degenerate qubit such that ω0 = 0 in these examples. The resulting ℘(ω) ’s are therefore centered at ω = 0 . 
Earlier  study1 shows that the dephasing factor can be split into the vacuum and thermal contributions as 
φ(t) = exp

[
−�(vac)(t)−�(th)(t)

]
 , where The impact of thermal fluctuations is taken into account by �(th)(t) . 

Further detailed calculations are given in "Methods".
We first consider the Ohmic spectral density J1(ω) = ω exp(−ω/ωc) , as shown in the inset of Fig. 3a, where 

ωc is the cut-off frequency. The dephasing factor is given by

with kB being the Boltzmann constant. It can be seen that Eq.  (19) reproduces the case of zero-tem-
perature limit φ1(t) =

(
1+ ω2

c t
2
)−2 as T → 047. In the case of finite temperature T, the CHER 

℘1(ω) = (2π)−1
∫∞
−∞ φ1(t) exp(iωt)dt can only be calculated numerically. The numerical results are shown in 

Fig. 3a with ωc = 1 , kB/� = 1 , and increasing T from 0 to 5 (decreasing opacity). The left panel of Fig. 3a shows 
the dynamical behaviour of φ1(t) . It exhibits a Markovian pure dephasing as φ1(t) decreases monotonically; 
meanwhile, as expected, the coherence time decreases with increasing T. The right panel of Fig. 3a shows the 
corresponding ℘1(ω) , which broadens when increasing T, reflecting stronger thermal fluctuations.

We next consider the family of super-Ohmic spectral densities Js(ω) = ηωsω1−s
c exp(−ω/ωc) parameterized 

by the coupling strength η and the Ohmicity s > 1 . In the zero-temperature limit, the dephasing factor is exclu-
sively given by the vacuum contribution φs(t) = exp

[
−�

(vac)
s (t)

]
 with

where Ŵ(z) is the gamma function. The dynamical behaviours of φs(t) ’s are shown in the left panel of Fig. 3b with 
η = 1/3 , ωc = 1 , and s ranging from 1.5 to 6.5 (decreasing opacity). A transition from Markovianity to non-
Markovainity can be seen with increasing s. As clearly indicated in the inset, for 1 < s ≤ 2 (dashed curves), the 
qubit exhibits a Markovian trait as φs(t) ’s decrease monotonically. On the other hand, for s > 2 (solid curves), 
the qubit pure dephasing is definitely non-Markovian due to the revivals following the initial rapid descents. We 
stress that the dynamics is always non-Markovian for s > 2 ; however the revivals are negligibly small for s > 4.5 . 
These results are compatible with a previous study 61. The numerical results of ℘s(ω) ’s are shown in the right panel 
of Fig. 3b with increasing Ohmicity s from 1.5 to 6.5 (decreasing opacity). The aforementioned transition in the 
dynamical behaviour manifests itself dramatically in terms of the shape of ℘s(ω) . Particularly, when s is large, 
φs(t) drops off sharply, therefore the corresponding ℘s(ω) gradually flattens. The underlying reason lies in the 
fact that the varying of the curvature of φs(t) will significantly modulate the shape of its Fourier transform ℘s(ω).

In the case of finite temperature T, the expression of the dephasing factor φs(t) = exp [−�s(t)] is complicated 
due to the presence of thermal fluctuations:

where ζ(s, q) = ∑∞
n=0(q+ n)−s is the Hurwitz zeta function. The impact of thermal fluctuations is shown in 

Fig. 3c with η = 1/3 , ωc = 1 , Ohmicity s = 4 , and increasing T from 0 to 5 (decreasing opacity). In the left panel, 
the dynamical behaviour of φ4(t) exhibits a transition from non-Markovianity to Markovianity with increas-
ing T, reflecting the fact that the thermal fluctuations will wash out the memory effect and lead to a Markovian 

(19)φ1(t) =
1

(
1+ ω2

c t
2
)2

∞∏

n=1

[
1+

(
ωckBT

kBT + n�ωc

)2

t2

]−4

,

(20)�(vac)
s (t) = 2ηŴ(s − 1)

[
2− (1+ iωct)

s−1 + (1− iωct)
s−1

(
1+ ω2

c t
2
)s−1

]
,

(21)

�s(t) =− 2ηŴ(s − 1)

[
2− (1+ iωct)

s−1 + (1− iωct)
s−1

(
1+ ω2

c t
2
)s−1

]

+ 4ηŴ(s − 1)

(
kBT

�ωc

)s−1[
2ζ

(
s − 1,

kBT

�ωc

)
− ζ

(
s − 1,

kBT

�ωc
(1+ iωct)

)
− ζ

(
s − 1,

kBT

�ωc
(1− iωct)

)]
,
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dynamics. The right panel shows the corresponding ℘4(ω) , which generically tends to broaden with increasing 
T. However, it is interesting to note that the aforementioned dynamical transition causes an uneven deformation 
of ℘4(ω) , revealing a competition between non-Markovian memory effect and Markovian thermal fluctuations. 
Additionally, by further comparing the three right panels of Fig. 3, we can qualitatively understand that the effects 
of thermal fluctuations and increasing s are different, even though they both broaden the CHERs.

We have seen several examples of qubit pure dephasing dynamics admitting HE-simulation, i.e., positive 
CHER. This does not imply the absence of quantum correlations during the evolution. We stress that the qubit 
does establish entanglement with its  environment62–65; however, it is not easy to witness its emergence if the total 
system evolves autonomously without further manipulation. Consequently, its effects are considered classically 
in terms of HE-simulation and resulting positive CHER. On the other hand, given the above examples, one may 
question the nonexistence of HE-simulation for other types of qubit pure dephasing dynamics. However, to prove 
the failure of HE-simulation is, in general, a nontrivial task. In the following, we will study a counterexample of 
biased spin-boson model leading to CHER showing negative values.

Figure 3.  Dynamical behaviour (left panels) and CHER (right panels) of the spin-boson model with various 
spectral densities. (a) The Ohmic spectral density J1(ω) (inset) results in a Markovian pure dephasing as 
φ1(t) decreases monotonically. The increasing T reduces the coherence time, while the corresponding ℘1(ω) 
broadens with increasing T. In these plots, we have assumed ωc = 1 , kB/� = 1 , and increasing T from 0 to 5 
(decreasing opacity). (b) The family of super-Ohmic spectral densities Js(ω) may result in either Markovian 
(dashed curves) or non-Markovian (solid curves) pure dephasing depending on the Ohmicity s, as indicated 
in the inset. Interestingly, this dynamical transition between Markovian and non-Markovian pure dephasing 
can also be understood in terms of the deformation of ℘s(ω) . In these plots, we have assumed η = 1/3 , ωc = 1 , 
and s ranging from 1.5 to 6.5 (decreasing opacity). (c) Ohmicity s = 4 is considered and a dynamical transition 
of φ4(t) with increasing T from 0 to 5 (decreasing opacity) can be observed, reflecting the fact that the thermal 
fluctuations will wash out the non-Markovian memory effect. Meanwhile, the competition between the non-
Markovian memory effect and the Markovian thermal fluctuations can be observed in terms of the uneven 
deformation of ℘4(ω) with increasing T.
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Nonclassicality of biased spin‑boson model. The most general form of interaction Hamiltonian lead-
ing to qubit pure dephasing is given by

where B̂j can be any Hermitian operators acting on the environmental Hilbert space. For the conventional spin-
boson model (16), the environmental operators are taken to be B̂↑ = −B̂↓ = ∑

�k �(g�kb̂
†
�k + g∗�k b̂�k) . We slightly 

generalize the conventional model (16) to a biased one and replace the environmental operators with

Note that the coupling constants g
j,�k ’s have j-dependence and would vary with j.

In the interaction picture (with respect to ĤS + ĤE ), the total system evolves according to 
Û I(t) = T

{
exp

[
(−i/�)

∫ t
0 ĤI(τ )dτ

]}
 , where T  is the time-ordering operator. To investigate the nonclassical 

effects caused by the relative phase between the coupling constants, we assume, for simplicity, a balanced condi-
tion with finite relative phase, i.e., g↓,�k = g↑,�ke

iϕ . This model can also be solved analytically and the qubit pure 
dephasing is characterized by the dephasing factor

where ϑ(B)(t) = 2sign(t) sin ϕ
∫∞
0 [J (ω)/ω2](1− cosωt)dω and �(B)(t) = 2(1− cosϕ)

∫∞
0 [J (ω)/ω2] coth(�ω/2kBT)

(1− cosωt)dω . In the expression of ϑ(B)(t) , we have manually inserted sign(t) . While this does not affect the 
pure dephasing dynamics for t ≥ 0 , it ensures that the property φ(B)(−t) = φ(B)∗(t) holds and the CHER ℘(B)(ω) 
is a real function (condition C2). Details can be found in "Methods".

We now revisit the Ohmic spectral density J1(ω) = ω exp(−ω/ωc) at finite temperature T, where the dephas-
ing factor is given by

The numerical results of the corresponding CHER ℘(B)
1 (ω) = (2π)−1

∫∞
−∞ φ

(B)
1 (t) exp(iωt)dt are shown in Fig. 4 

with ωc = 1 , kB/� = 1 , and an increasing T from 0 to 2 (decreasing opacity). In the left ( ϕ = 2π/4 ) and middle 
( ϕ = 3π/4 ) panels of Fig. 4, we can see a shallow, and stretched, negative wing for each curve. The insets further 
zoom in to the negative wings. This is a signature of the nonclassical trait of this biased model, clearly indicating 
the emergence of nonclassical correlations between the qubit and it environment. As T increases from 0 to 2 
(decreasing opacity), the negative wing gradually fades away and the CHER becomes broader and lower, in line 
with the usual intuition that the thermal fluctuations are detrimental to quantum nature. On the other hand, 
for the case of ϕ = π , all the formulae reduce to the conventional ones; consequently, the CHER for ϕ = π is 
positive and the right panel of Fig. 4 reproduces the one of Fig. 3.

Uniqueness of CHER for pure dephasing. Through the above examples, one may be convinced of the 
uniqueness of the CHER for qubit pure dephasing, as ℘(ω) is obtained from the Fourier inverse transform of 
dephasing factor φ(t) via Eq. (18). Nevertheless, whenever one considers the case of higher dimensional pure 
dephasing, this becomes problematic as Eq. (18) is never applicable for higher dimensional cases.

In fact, the uniqueness still holds, with respect to diagonal member Hamiltonian operators, even if one consid-
ers the case of any dimensional pure dephasing. More precisely, it has been  proven48 that, given any dimensional 

(22)ĤI =
∑

j=↑,↓
|j��j| ⊗ B̂j ,

(23)B̂j =
∑

�k
�(g

j,�kb̂
†
�k + g∗

j,�kb̂�k).

(24)φ(B)(t) = exp
[
−iϑ(B)(t)−�(B)(t)

]
,

(25)φ
(B)
1 (t) = 1

(
1+ ω2

c t
2
)(1−cosϕ)+isign(t) sin ϕ

∞∏

n=1

[
1+

(
ωckBT

kBT + n�ωc

)2

t2

]−2(1−cosϕ)

.

Figure 4.  The CHER of the biased spin-boson model. We investigate the nonclassical effects of the relative 
phase ϕ between the two coupling constants under the balanced condition. In the left ( ϕ = 2π/4 ) and middle 
( ϕ = 3π/4 ) panels, we can see shallow, and stretched, negative wings, which are further enlarged in the insets. 
As T increases, the CHER broadens, and the negative wing gradually fades away. As ϕ approaching π (from left, 
middle, to right panels), it recovers the conventional model, and, consequently, the CHER for ϕ = π is positive. 
In these plots, we have assumed ωc = 1 , kB/� = 1 , and increasing T from 0 to 2 (decreasing opacity).
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pure dephasing, there exists a unique CHER, encapsulated within a HE of diagonal member Hamiltonian opera-
tors, satisfying Eq. (12). The spirit of the proof is based on the abelian nature of diagonal member Hamiltonian 
operators in the HE and provides further insights into the algebraic structure behind the CHER.

The Fourier transform in Eq. (2) integrates over full real numbers, which forms an abelian group with respect 
to multiplication. However, the unitary group generated by Hermitian operators fails to be abelian. This renders 
the general solution to Eq. (12) highly nontrivial. Therefore, the closely related problem of random-unitary 
decomposition can only be tackled numerically 66.

To circumvent this issue, we may restrict ourselves to an abelian one. Accordingly, if we consider the group G 
in Eq. (12) to be generated by a maximally abelian subalgebra, i.e., the Cartan subalgebra of su(n) , then several 
intuitive algebraic properties are inherited from the conventional Fourier transform, including the one-to-one 
correspondence between ℘ and Et . Consequently, under the framework of Cartan subalgebra, we can explicitly 
deal with the bijective correspondence between pure dephasing and the CHER with respect to diagonal member 
Hamiltonian operators. In other words, the uniqueness of CHER for pure dephasing straightforwardly follows, 
with respect to diagonal member Hamiltonian operators.

Multiple representations for unital dynamics. Based on the above algebraic insights into the CHER, 
it is straightforward to deduce the breakdown of the uniqueness of the CHER whenever one goes beyond pure 
dephasing. To examine this, we explain how to construct multiple ℘ satisfying Eq.  (12) simultaneously for a 
given qubit unital dynamics Et , which may either result theoretically from solving certain master equation or 
experimentally from process tomography raw data.

Since now we are working with u(2) = u(1)⊕ su(2) , the generators are explicitly chosen to be identity Î  
and Pauli matrices σ̂j . The matrix elements of the dynamical linear map E (σ̃ )

t  on the left hand side of Eq. (12) are 
determined according to

On the other hand, according to the commutation relation [σ̂j , σ̂k] = εjkl i2σ̂l , the Pauli matrices in the adjoint 
representation are written as

Note that Ĩ = 0 as [̂I , σ̂j] = 0 , ∀ j . For any Ĥ� = (�0 Î + � · σ̂ )/2 ∈ u(2) , its adjoint representation reads

Then the unitary operator in the adjoint representation on the right hand side of Eq. (12) can be expressed as

where Ũt is a 3× 3 orthogonal matrix. Its elements are given in "Methods" with the change of parameters to 
spherical coordinate �x = ω sin θ cosψ , �y = ω sin θ sinψ , and �z = ω cos θ . After determining the matrix ele-
ments on both sides, Eq. (12) implies 9 equations governing ℘(ω, θ ,ψ):

As shown in "Methods", each 
[
Ũt

]
j,k

 can also be expanded in terms of spherical harmonics Yl,m(θ ,ψ) in real 
form with l ≤ 2 . We can therefore expand ℘(ω, θ ,ψ) as well and divide the expansion into two types according 
to the index l

There are 9 terms in the first type with l ≤ 2 ; therefore ℘l,m(ω) can be solved with Eq. (30). Onthe other hand, 
the second type with l ≥ 3 has no contribution to Eq. (30) due to the orthogonality of Yl,m(θ ,ψ).

These observations also imply that, if two CHERs only differ in the second type with l ≥ 3 , i.e., 
℘1 − ℘2 =

∑
l≥3,m �℘l,m(ω)Yl,m(θ ,ψ) , then the two CHERs simultaneously satisfy Eq. (30), as well as Eq. (12). 

Consequently, we can draw the conclusion of the breakdown of the uniqueness of the CHER beyond pure 
dephasing.

(26)
[
E
(σ̃ )
t

]
j,k

= 1

2
Tr

[
σ̂j · Et{σ̂k}

]
.

(27)σ̃x =



0 0 0 0
0 0 0 0
0 0 0 − i2
0 0 i2 0


, σ̃y =



0 0 0 0
0 0 0 i2
0 0 0 0
0 − i2 0 0


, σ̃z =



0 0 0 0
0 0 − i2 0
0 i2 0 0
0 0 0 0


.

(28)�H� = (� · σ̃ )/2 =




0 0 0 0
0 0 − i�z i�y
0 i�z 0 − i�x
0 − i�y i�x 0


.

(29)e−i(�·σ̃ t)/2 =




1 0 0 0
0

0 �Ut

0


,

(30)
[
E
(σ̃ )
t

]
j,k

=
∫ ∫ ∞

0
℘(ω, θ ,ψ)

[
Ũt

]
j,k
ω2dωd�.

(31)℘(ω, θ ,ψ) =
∑

l≤2,m

℘l,m(ω)Yl,m(θ ,ψ)+
∑

l≥3,m

℘l,m(ω)Yl,m(θ ,ψ).
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Experimental proposal. Finally, in order to underpin the practical viability of the CHER theory, here we 
present a promising experimental proposal based upon free induction decay (FID) measurement of the nega-
tively charged nitrogen-vacancy (NV− ) center in a  diamond67–69. The NV− center has an electron spin-1 triplet 
as its ground states, with a zero-field splitting D = 2.87 GHz between mS = 0 and mS = ±1 . The degeneracy 
between mS = ±1 can be lifted by applying an external magnetic field, allowing selective microwave (MW) 
excitation of a single spin transition |0� ↔ |1� and forming a logical qubit. Due to strong binding between car-
bon atoms in the diamond lattice, the electron spin coherence time is not limited by the spin-lattice interac-
tions. Therefore, many interesting quantum effects can be observed even at room temperature. Rather, the spin 
qubit operation is subjected to noise mainly from the nuclear spin bath formed by the 13 C isotope (1.1% natural 
abundance), leading to a spin qubit relaxation time T1 in the order of  milliseconds70,71 and a dephasing time T∗

2  
of  microseconds72,73. Several techniques have been developed for prolonging the coherence time, e.g., isotopic 
 purification74 and nuclear spin  polarization75,76.

To experimentally reconstruct the dynamical linear map E (L̂)
t  in Eq. (12), one should, in principle, perform 

the quantum process tomography experiment to gather necessary information on the qubit dynamics. Fortu-
nately, due to the three-order difference between T1 and T∗

2  , as well as the unique optical properties of the NV− 
center, the qubit dynamics can be well approximated by pure dephasing. Meanwhile, an appropriate variation of 
the standard Ramsey pulse sequence shown in Fig. 5 is sufficient for our purpose, circumventing the burden of 
performing the standard quantum process tomography experiment.

Figure 5a shows the standard Ramsey pulse sequence, beginning with an electron spin initialization to |0� by 
a 532-nm green laser. A successive MW (π/2)x pulse creates a superposition state and, consequently, turns on 
the interaction with the nuclear spin bath. The qubit will then undergo an FID process for a period (FID time). 
The second MW (π/2)x pulse converts the phase information into population. The final 532-nm green laser 
pumping is used to detect the remaining population in the |0� state and the signal is recorded as the normalized 
fluorescence Ix(t) . To completely reconstruct the phase information, an additional measurement is necessary. As 
shown in Fig. 5b, the second MW pulse is replaced by (π/2)y to extract the phase information along the other 
orthogonal axis and the signal is recorded as Iy(t) . The dephasing factor is then determined by the two measured 
fluorescence signals according to

The Fourier transform (18) leads to the resulting ℘(ω) . We stress that this proposed experimental setup is fully 
compatible with present-day techniques. Finally, it is worth noting that, the entanglement between the electron 
spin and its 13 C nuclear spin bath established during the FID procedure can be detected with local operations 

(32)φ(t) = −[2Ix(t)− 1]+ i
[
2Iy(t)− 1

]
.

Figure 5.  The proposed experimental realization is composed of two FID signals. (a) After the electron spin 
initialization to |0� by a 532-nm green laser, the standard Ramsey pulse sequence consists of two MW (π/2)x 
pulses separated by an FID time period, during which the spin qubit pure dephasing takes place. The final laser 
is used to detect the remaining population in the |0� state and the normalized fluorescence Ix(t) is recorded. (b) 
To completely reconstruct the phase information, we need to measure the signal along the other orthogonal 
axis. A variation of the standard Ramsey pulse sequence is adopted by replacing the second MW pulse with 
(π/2)y and the signal Iy(t) is recorded. Then the dephasing factor φ(t) and the CHER ℘(ω) can be determined 
accordingly.
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focussing exclusively on the electron  spin65. This locally detectable entanglement constitutes the origin of non-
classicality in the CHER theory. Our experimental proposal provides further protocol to estimate the presence 
of the entanglement.

Discussions and conclusion
In summary, we have elaborated the theoretical foundation for the notion of CHER within a unified framework in 
detail, as well as its geometrical interpretation in terms of random phase model. Through the Fourier transform 
on group formalism, it is clearer that CHER plays the role of being the representation of a unital dynamics in the 
frequency domain. Meanwhile, along with the investigation into the system–environment correlations, we have 
also discussed its capability of characterizing the nonclassical treats of dephasing dynamics.

Nonclassical distribution over phase space for a state is extensively studied, particularly in the field of quantum 
optics with the Wigner  function40 or the Glauber-Sudarshan P  representation41,42. It should be pointed out that 
similar notion of process nonclassicality has attracted increasing research interests and alternative definitions 
based on monitoring certain nonclassical traits of the states have been  discussed77–80 in recent years. Neverthe-
less, rather than a specified quantum state, we focus on the dynamical processes. More insights can be provided 
with some further comparative studies.

With several examples, we have also shown generically that the increasing environmental temperature will 
broaden the CHERs and diminish the nonclassical traits. This is in agreement with the common intuition that 
the thermal fluctuations are detrimental to the quantum nature. Additionally, we have also demonstrated the 
transition between Markovianity and non-Markovianity by varying the Ohmicity of the spectral density and 
the environmental temperature. It is known that non-Markovianity may result from statistical mixture of ran-
dom  unitary50,66,81,82 or, more generally, some other dynamical  processes83,84. Our results suggest that there are 
discrepancies between the nonclassicality and non-Markovianity, which raise the question of the true quan-
tum non-Markovianity85. Notably, as the aforementioned transition phenomenon is even manifest from the 
shape of CHERs, this may stimulate the development of the techniques of probe for the properties of ambient 
 environments86–90.

Furthermore, we have also discussed the uniqueness of CHER for pure dephasing with respect to the Cartan 
subslgebra of su(n) . However, when going beyond pure dephasing, the uniqueness breaks down as a result of 
the analysis on the underlying algebraic structure. To explicitly show the breakdown of uniqueness and explain 
how to construct multiple CHER beyond pure dephasing, we have considered a general unital dynamics. If two 
CHERs only differ in the spherical harmonics of an order larger than 3 ( l ≥ 3 ), the two CHERs represent the 
same unital dynamics. Interestingly, the question of how to define a principal one among multiple CHERs for 
unital dynamics can be intriguing. These unresolved points could be seminal and stimulate further studies from 
many different aspects in the future.

Finally, we have also proposed a promising experimental setup to explain how to realize our CHER theory 
with measured signals. As the NV− center possesses several prominent properties and can work under ambient 
conditions, many techniques have been extensively developed. Therefore, the NV− center is widely adopted as 
the testbed of fundamental quantum physics and advanced quantum technologies, e.g., Refs.91–93. We propose 
to utilize this mature platform, along with an appropriate variation of the pulse sequence, and elucidate how 
to reconstruct the dephasing factor φ(t) and the resulting CHER ℘(ω) from the measured fluorescence signals 
Ix(t) and Iy(t).

Methods
Bochner’s theorem. To prove Proposition 1 in the main text, we need to utilize several mathematical sup-
plements, including the Bochner’s  theorem60. We first recall the definition of positive definiteness:

Definition 2 A function f : R → C is called to be positive definite if it satisfies

for any finite number of pairs {(tj , zj)|tj ∈ R, zj ∈ C}.

We stress that the notion of positive definiteness is very different from a positive function since a positive 
function may not necessarily be positive definite and vice versa. Instead, it is equivalent to the positive semidefi-
niteness of an Hermitian matrix 

[
f (tj − tk)

]
j,k∈S formed by collecting function values f (tj − tk) in accordance 

with certain set of indices S . Particularly, the function f in Definition 2 can even be complex. We then find that 
φ(t) in Eq. (17) is positive  definite47, as stated in the following lemma:

Lemma 3 Suppose that the dephasing factor (17) defines a CP qubit pure dephasing dynamics. If we further assume 
that �(t) is even and φ(−t) = φ(t)∗ , then φ(t) defined on R is positive definite.

Now we are ready to introduce the Bochner’s theorem. The following expression facilitates our sequential 
discussions:

Theorem 4 (Bochner’s theorem) A function f : R → C is the Fourier transform of unique positive measure with 
density function ℘ if and only if f is continuous and positive definite.

(33)
∑

j,k

f
(
tj − tk

)
zjz

∗
k ≥ 0
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Combining above, we can conclude that φ(t) in Eq. (17) is positive definite and, consequently, is the Fourier 
transform of certain legitimate probability distribution ℘(ω) , an analog to that in Eq. (2). These results are sum-
marized in Proposition 1 in the main text.

Vacuum and thermal contributions to the dephasing factor. As discussed in the main text, 
the qubit pure dephasing reduced from the spin-boson mdoel  (16) is characterized by the dephasing factor 
φ(t) = exp[−iω0t −�(t)] with �(t) = 4

∫∞
0 [J (ω)/ω2] coth(�ω/2kBT)(1− cosωt)dω . It is convenient to 

split it into the vacuum and thermal  parts1 as �(t) = �(vac)(t)+�(th)(t) , where

and

It can be seen that �(vac)(t) is independent of temperature and corresponds to the contribution in the zero-
temperature limit. The impact of thermal fluctuations is taken into account by the thermal contribution �(th)(t).

Ohmic spectral density. Considering the case of Ohmic spectral density J1(ω) = ω exp(−ω/ωc) , the 
vacuum contribution (34) can be obtained with the help of series expansion as

With the help of the expansion coth x = 1+ 2
∑∞

n=1 exp(−2nx) , the thermal contribution (35) can be easily 
obtained in a similar manner:

Then the dephasing factor is given by φ1(t) = exp[−�
(vac)
1 (t)−�

(th)
1 (t)] . This reproduces Eq. (19) in the main 

text.

Family of super‑Ohmic spectral densities. In the example of super-Ohmic spectral densities 
Js(ω) = ηωsω1−s

c exp(−ω/ωc) , the vacuum part can be split into three terms:

Then, along with the definition of gamma function Ŵ(s + 1) =
∫∞
0 xs exp(−x)dx and usual calculation, one can 

obtain Eq. (20) in the main text.
In the case of finite temperature T, the thermal part is present and written as

By using similar approaches, one can obtain

(34)�(vac)(t) = 4

∫ ∞

0

J (ω)

ω2
(1− cosωt)dω

(35)�(th)(t) = 4

∫ ∞

0

J (ω)

ω2

[
coth

(
�ω

2kBT

)
− 1

]
(1− cosωt)dω.

(36)

�
(vac)
1 (t) =4

∫ ∞

0

1− cosωt

ω
e−

ω
ωc dω

=4

∞∑

n=1

∫ ∞

0

(−1)n−1

2n! ω2n−1t2ne−
ω
ωc dω

=4

∞∑

n=1

(−1)n−1

2n
ω2n
c t2n = 2 ln

(
1+ ω2

c t
2
)
.

(37)

�
(th)
1 (t) =4

∫ ∞

0

1− cosωt

ω
e−

ω
ωc

[
coth

(
�ω

2kBT

)
− 1

]
dω =

∞∑

n=1

4

∫ ∞

0

1− cosωt

ω
2e

−
(

1
ωc

+ n�
kBT

)
ω
dω

=4

∞∑

n=1

ln

[
1+

(
ωckBT

kBT + n�ωc

)2

t2

]
.

(38)
�(vac)

s (t) =4

∫ ∞

0
η
ωs−2

ωs−1
c

(1− cosωt)e−
ω
ωc dω

=4η

∫ ∞

0

ωs−2

ωs−1
c

e−
ω
ωc dω − 2η

∫ ∞

0

ωs−2

ωs−1
c

e−iωt e−
ω
ωc dω − 2η

∫ ∞

0

ωs−2

ωs−1
c

eiωt e−
ω
ωc dω.

(39)�(th)
s (t) = 4

∫ ∞

0
η
ωs−2

ωs−1
c

(1− cosωt)e−
ω
ωc

[
coth

(
�ω

2kBT

)
− 1

]
dω.
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where ζ(s, q) = ∑∞
n=0(q+ n)−s is the Hurwitz zeta function. Then Eq. (21) is given by �s(t) = �

(vac)
s (t)+�

(th)
s (t)

.

Biased spin‑boson model. We proceed to the biased spin-boson model with interaction Hamiltonian 
given by Eqs. (22) and (23). In the interaction picture with respect to ĤS + ĤE , it is written as

where

Note that the interaction Hamiltonian do not commute to each other at different time:

Then the time-ordering T  in the unitary evolution operator Û I(t) = T

{
exp

[
(−i/�)

∫ t
0 ĤI(τ )dτ

]}
 will play a 

significant  role1:

where D̂[gj,�kα�k(t)] = exp[g
j,�kα�k(t)b̂

†
�k − g∗

j,�kα
∗
�k (t)b̂�k] is the displacement operator and α�k(t) = (1− eiω�kt)/ω�k.

Now we assume that the initial state ρT(0) = ρS(0)⊗ ρE(0) with ρE(0) = exp[−ĤE/kBT]/Z being an equi-
librium state at temperature T. Along with the two prescriptions D̂[α]D̂[β] = exp[(αβ∗ − α∗β)/2]D̂[α + β] 
and �D̂[α]� = exp[− coth(�ω/2kBT)|α|2/2] , the qubit pure dephasing is characterized by the dephasing factor

In the main text, we have assumed the balanced condition with finite relative phase, g↓,�k = g↑,�ke
iϕ . Then 

the expression of φ(B)(t) can be significantly simplified. Along with the definition of spectral density, 
J (ω) = ∑

�k |g�k|2δ(ω − ω�k) , we arrive the desired result:

where ϑ(B)(t) = 2sign(t) sin ϕ
∫∞
0 [J (ω)/ω2](1− cosωt)dω and �(B)(t) = 2(1− cosϕ)

∫∞
0 [J (ω)/ω2] coth(�ω/2kBT) 

(1− cosωt)dω.

The unitary operator in the adjoint representation. The adjoint representation of the unitary opera-
tor in Eq. (29) is a 4× 4 matrix. However, as we consider qubit unital dynamics, it is of block-diagonalized form 
with a nontrivial 3× 3 block Ũt . Note that Ũt is a orthogonal matrix generated by σ̃j . Below we explicitly show 

(40)

�(th)
s (t) =4η

∞�

n=1

� ∞

0

ωs−2

ωs−1
c

(2− e−iωt − eiωt)e
−
�

1
ωc

+ n�
kBT

�
ω
dω

=4η

∞�

n=1

Ŵ(s − 1)




2
�
1+ n�ωc

kBT

�s−1
− 1

�
1+ n�ωc

kBT
+ iωct

�s−1
− 1

�
1+ n�ωc

kBT
− iωct

�s−1




=− 4ηŴ(s − 1)

�
2− (1+ iωct)

s−1 + (1− iωct)
s−1

�
1+ ω2

c t
2
�s−1

�

+ 4ηŴ(s − 1)

�
kBT

�ωc

�s−1�
2ζ

�
s − 1,

kBT

�ωc

�
− ζ

�
s − 1,

kBT

�ωc
(1+ iωct)

�
− ζ

�
s − 1,

kBT

�ωc
(1− iωct)

��
,

(41)ĤI(t) =
∑

j=↑,↓
|j��j| ⊗ B̂Ij (t),

(42)B̂Ij (t) =
∑

�k
�(g

j,�kb̂
†
�ke

iω�kt + g∗
j,�kb̂�ke

−iω�kt).

(43)

[
ĤI(τ ), ĤI(τ

′)
]
=

∑

j=↑,↓
|j��j| ⊗

∑

�k
−i2�2|g

j,�k|2 sinω�k
(
τ − τ ′

)
.

(44)

Û I(t) = exp

[
− 1

2�2

∫ t

0

∫ τ

0
[ĤI(τ ), ĤI(τ

′)]dτ ′dτ
]
exp

[
− i

�

∫ t

0
ĤI(τ )dτ

]

=
∑

j=↑,↓
|j��j| ⊗

∏

�k
exp

[
i|g

j,�k|2
ω�kt − sinω�kt

ω2
�k

]
D̂[g

j,�kα�k(t)],

(45)

φ(B)(t) =
〈
∏

�k
exp

[
−i|g↓,�k|2

ω�kt − sinω�kt

ω2
�k

]
D̂[−g↓,�kα�k(t)]

∏

�k
exp

[
i|g↑,�k|2

ω�kt − sinω�kt

ω2
�k

]
D̂[g↑,�kα�k(t)]

〉

=
〈
∏

�k
exp

[
−i|g↓,�k|2

ω�kt − sinω�kt

ω2
�k

]
exp

[
i|g↑,�k|2

ω�kt − sinω�kt

ω2
�k

]

× exp

[
−(g↓,�kg

∗
↑,�k − g∗↓,�kg↑,�k)

1− cosω�kt

ω2
�k

]
D̂[(g↑,�k − g↓,�k)α�k(t)]

〉
.

(46)φ(B)(t) = exp
[
−iϑ(B)(t)−�(B)(t)

]
,
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the matrix elements with the change of parameters to spherical coordinate. Furthermore, each of them can be 
expanded in terms of spherical harmonics Yl,m(θ ,ψ) in real form with l ≤ 2.

and
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Ũt

]
11

= sin2 θ cos2 ψ +
(
sin2 θ sin2 ψ + cos2 θ

)
cosωt

=
√
4π

3
Y0,0 −

√
4π

45
Y2,0 +

√
4π

15
Y2,2 +

(√
16π

3
Y0,0 +

√
4π

45
Y2,0 −

√
4π

15
Y2,2

)
cosωt,

(48)

[
Ũt
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