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Implementation of a deep learning 
model for automated classification 
of Aedes aegypti (Linnaeus) 
and Aedes albopictus (Skuse) in real 
time
Song‑Quan Ong1,2*, Hamdan Ahmad3*, Gomesh Nair1, Pradeep Isawasan4 & 
Abdul Hafiz Ab Majid3

Classification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains 
challenging. We proposed a highly accessible method to develop a deep learning (DL) model and 
implement the model for mosquito image classification by using hardware that could regulate the 
development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes 
that were older than 12 days old and had common morphological features that disappeared, 
and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with 
hyperparameter adjustment. The model application was first conducted by deploying the model 
externally in real time on three different generations of mosquitoes, and the accuracy was compared 
with human expert performance. Our results showed that both the learning rate and epochs 
significantly affected the accuracy, and the best‑performing hyperparameters achieved an accuracy of 
more than 98% at classifying mosquitoes, which showed no significant difference from human‑level 
performance. We demonstrated the feasibility of the method to construct a model with the DCNN 
when deployed externally on mosquitoes in real time.

Dengue fever threatens over one-third of the world’s population and causes 100 million dengue infections world-
wide every  year1. With no licensed vaccines or specific treatment, the control of the disease depends greatly on 
the control of the vectors: Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse). Previous  studies2 showed that 
the insecticide susceptibility patterns of Ae. aegypti and Ae. albopictus were not homogeneous across geographic 
regions, and the control strategy, such as the selection of an insecticide’s active ingredient, depends on the result 
of mosquito monitoring since Ae. aegypti and Ae. albopictus have different distributions, breeding habitats, etc. 
To monitor mosquitoes, field sampling of larvae or adult mosquitoes is commonly conducted, and later, the 
species are classified in a  laboratory3. However, sorting mosquitoes relies mainly on the manual examination of 
the morphological keys and taxonomic characteristics of mosquitoes, which is challenging, especially for Ae. 
aegypti and Ae albopictus, which share many similarities. Human expert recognition usually focuses on conspicu-
ous patterns on the dorsal thorax formed by white scales. Ae. aegypti typically has white, lyre-shaped markings, 
whereas Ae. albopictus has a median-longitudinal white  stripe4, but the task becomes more demanding when 
the features disappear, especially on mosquitoes collected from the field.

The development of a computational model using artificial intelligence (A.I.), especially machine learning 
(ML) algorithms, provide an excellent alternative for mosquito recognition and classification. Numerous studies 
have used different properties of mosquitoes as labeled data to train and construct ML models. For example, Silva 
et al.5 applied audio analysis techniques and different ML algorithms to recognize Ae. aegypti, Anopheles gambiae 
Say, Culex quinquefasciatus Say and Culex tarsalis Coquillett and obtained an accuracy of 50.91% to 87.33%. De 
Los  Reyes6 proposed the recognition of Aedes mosquitoes by using digital image processing techniques with a 
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handcrafted feature-based method and achieved a maximum accuracy of 87.41%. Mulchandani et al.7 used wing-
beats as the spectrogram input and compared different pretrained computational models for the identification 
of Ae. aegypti, Ae. albopictus, An. arabiensis, An. gambiae, Cu. pipiens L. and Cu. Quinquefasciatus. They reached 
a maximum accuracy of 86%. However, the data acquisition steps of these previous works involved consider-
able manual feature extraction and large quantities of data/images, making the approaches laborious and time 
consuming and unable to be performed in real time. Deep convolutional neural networks (DCNNs) of deep 
learning (DL) are state-of-the-art methods for object recognition and classification, including for agricultural 
pests and mosquito  larva8,9. With feature extraction in the neural network layers, DL has a high potential to make 
the development of a model easier and more  accurate10.

Another major bottleneck in the classification of mosquitoes is the condition of the samples. In reality, 
especially for mosquitoes collected from the field, the markings on the dorsal thorax commonly have some level 
of  disappearance11, which increases the difficulties of recognizing and distinguishing closely related interspe-
cies, such as Ae. aegypti and Ae. albopictus, that share significant morphological similarities. The issue was not 
focused on by the previous studies that came from the perspective of computer science, in which a dataset was 
mostly constructed by taking data from the internet (via data mining)6,12 or images of the mosquito species that 
were in good  condition10,13,14, which may make the model impractical when deployed on actual samples. Motta 
et al.15 approached this issue by constructing a dataset with field-collected Ae. aegypti, Ae. albopictus and Cu. 
quinquefasciatus mosquitoes but only achieved an accuracy of 83.9% for Ae. aegypti and Ae. albopictus. Park 
et al.16 applied a more systematic approach by training the model with mosquitoes with different deformations 
and managed to obtain a higher accuracy of 97% in the classification of three genera of mosquitoes.

In this study, we built a piece of hardware—the Aedes Detector—that can regulate the process of image 
acquisition, training, validation and testing for a DL model. Our proposed model utilized a web-based tool that 
uses transfer learning with a DCNN, which allows the model to be externally executed in real time, and the 
web tool and transfer learning make it possible, to work in real time. The objectives of this study are as follows.

Convenient approach to developing a model. Image-based classification usually requires consider-
able domain expertise to design the feature extractor for the images, and common learning algorithms require 
large datasets and excessive amounts of central processing unit (CPU)  power17–19. Therefore, we demonstrated 
the capability of a web-based tool from Google Creative Lab—Teachable Machine 2.0—that conducts image 
acquisition and trains a computational model with no coding required.

Datasets of Ae. aegypti and Ae. Albopictus. Although the issue of imperfect mosquito samples was 
addressed by some previous  works10,13,15, the datasets consisted of relatively fewer images of Ae. aegypti and Ae. 
albopictus that were older than 12 days, especially the white scales on the thorax that were disappeared. There-
fore, one of our goals for this study was to build a dataset with a total of 4,120 images that consisted of mosqui-
toes of older age and different levels of head and thorax scale disappearance.

Transfer learning and hyperparameter analysis. Training a state-of-the-art DCNN such as MobileNet 
and AlexNet requires a large quantity of  data19, and 4,120 images from our experiment were not enough to build 
the DCNN. We applied the transfer learning technique in which the weights of the layers from the DCNN were 
transferred to recognize the mosquitoes. Teachable Machine 2.0 allows the pretrained DCNN models to be opti-
mized with two major hyperparameters—the number of epochs and the learning rate (LR).

Hardware implementation of the model and human‑level performance. Despite numerous 
studies demonstrating the ability of a DCNN to provide 80 to 97% accuracy to classify medically important 
 mosquitoes7–11,15,16, these results that use a large pretrained model might not be practical when deployed in hard-
ware/devices. We deployed the proposed model in a platform called p5.js visual coding tool written in JavaScript 
by using the microcomputer of the Aedes Detector to verify the proficiency of the model at classifying a mixture 
of three different generations of mosquitoes in real time. By using the same dataset, the accuracy of deployment 
ability was compared with the human experts’ performance.

Methods
Acquisition and splitting of data. Previous  works5–11 reported limited information, such as the focal 
length, background, and illumination (wavelength and intensity), when acquiring data. To address the problem, 
we built a piece of hardware called the Aedes Detector to improve the image acquisition, training and testing 
processes of the model. The construction of the Aedes Detector is detailed in Fig. 1. The device was equipped 
with a microcomputer (Raspberry Pi 4 Model B, Quad-core Cortex-A72, and 2 GB LPDDR4-3200 SDRAM) with 
a black cylindrical compartment (diameter of 12 cm and height of 4 cm), which provided a short focal length 
(2.5 cm), illumination (15 white-colored LEDs—RGB visible light) and background (white color). The approach 
we used in this study aimed to serve as a framework that can be conveniently applied by other experts, especially 
entomologists. To investigate and be able to fine-tune the computational model for insects, we constructed the 
proposed model by using Teachable Machine 2.0 (Google Creative Lab) that worked on the MobileNet  DCNN20, 
which consisted of a feature extractor for the mosquito images from the ImageNet dataset. The mosquito images 
were acquired by a camera module (Pi NoIR v2, 8 megapixels, Sony IMX219 image sensor) on the Aedes Detec-
tor. To avoid overfitting this model, data augmentation was performed on the training dataset. All images of the 
dataset (training, validation and testing) were rotated by 0, 90, 180, and 270 degrees; thus, eventually, the number 
of samples was increased by four times. The data splitting/partitioning used for training, validating and testing 
the model is illustrated in Fig. 2, which summarizes how the data partitioning was carried out by leveraging the 
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platform of Teachable Machine 2.0—Training (phase 1—70%), validating (phase 2—15%)21, and evaluating the 
testing dataset (phase 3—15%). The base images (0 degree, without rotation) and all the rotated images (90, 180, 
and 270 degrees) used for training were not used for validation and testing set. The model was developed to clas-
sify the mosquitoes into three different classes according to Ae. aegypti, Ae. albopictus and background (with no 
sample), and a total of 4,120 images (2,040 per species and 40 for background) were used in this study. Synthetic 
minority oversampling technique (SMOTE) was used to tackle the imbalance of the class of background, in 
which random oversampling was conducted to duplicate the images of background in training set.

Deep convolutional neural network (DCNN). DCNN architecture. The proposed model was based 
on the Teachable Machine 2.0—DCNN architecture of MobileNet that transfers the learning weights to reduce 
the training time, mathematical calculations and the consumption of the available hardware  resources22. The 
workflow of the classification of Teachable Machine 2.0 is shown in Fig. 3. The first 29 convolutional layers of 
MobileNet were  adopted23, which were used to extract the features. More convolutional layers can reduce the 
resolution of the feature map and extract more abstract high-level  features24. The softmax layer of MobileNet 
was truncated, and the output of the model was set as the last tensor representation of the image. Therefore, the 

Figure 1.  Aedes Detector: (a) actual device demo; (b) 3-dimensional isometric projection of the device with 
the components and dimensions; (c) bottom plan-view and the position of the Pi camera; (d) operation of the 
device with a sample at the center of the Petri dish.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9908  | https://doi.org/10.1038/s41598-021-89365-3

www.nature.com/scientificreports/

web-based platform allowed us to create two layers—the first dense layer and the final softmax layer—with three 
classes (images of Ae. aegypti, Ae. albopictus and background). The first dense layer must take the same input as 
the output of MobileNet, and the transformation of the data to their tensor was performed by MobileNet.

Training DCNN with hyperparameter analysis. In earlier studies, most of the attempts involving the classifica-
tion of Ae. aegypti and Ae. albopictus using dynamic hyperparameters demonstrated a maximum accuracy of 
84–87%10,13,15. Since deep learning neural networks are trained using the stochastic gradient descent algorithm, 
hyperparameters such as the learning rate (small positive value ranging from 0.0 to 1.0) that controls the rate of 
the change to the model during each step of the optimization process have to be determined based on the par-
ticular  dataset25. Instead of training the model from scratch, and since the number of epochs and learning rate 
are available in the platform—Teachable Machine 2.0—we aimed to obtain a best-performing model by analyz-
ing the effects of the number of epochs and the learning rate (LR) and their interactions. We standardized the 
batch size to 16, and two-level factorial analysis (two-way ANOVA) was performed by using SPSS 17.0. The LR 
was started from 0.001 on a logarithmic scale. The independent factors were set, namely, seven different numbers 
of epochs (20, 30, 40, 50, 60, 70, and 80) and four different LRs (0.01, 0.001, 0.0001, and 0.00001), in response to 

Figure 2.  Data splitting and process to be used for training, validating and testing the model. The dataset of 
4,120images is split into 70% training (2,884 images), 15% validation (618 images) and 15% testing 618 images).

Figure 3.  The workflow of MobileNet DCNN architectures and transfer learning model of the present study.
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the test accuracy and loss. A post hoc test was carried out on the dependent factors using Tukey’s test at p < 0.05 
in SPSS 17.0, where there were significant differences in those factors.

Hardware implementation and human‑level performance. The proposed model was exported as 
JavaScript, and the model was uploaded through a link and deployed on the p5.js platform. The p5.js was con-
figured to provide the prediction on a canvas (600 × 600). To infer the performance of the deployed model in 
real time, although Raspberry Pi camera module was reportedly to obtain 90 fps for video recording, but to 
prevent screen tearing, we set the frame rate as 60 fps by calling framerate (60) syntax in p5.js. To avoid the bias 
of overlapping data, the model deployment ability was conducted on three different batches of mosquitoes (n = 3, 
each batch consisted of 100 mosquitoes) that were independent of the images of the dataset used in the process 
of model development. The sample (randomly on a mixture of Ae. aegypti and Ae. albopitus with the number of 
samples = 50:50) was placed in a Petri dish in the Aedes Detector (Fig. 1), and the outputs from the p5.js canvas 
were recorded as the result of inference on a computer monitor in real time. The experiment was repeated by an 
evaluation of human-level performance, in which we invited 30 senior entomologists (12 females and 18 males, 
age 32–60, mean age of 46 years, consisting of more than three years of experience with insect taxonomy) to 
identify the images of Ae. aegypti and Ae. albopictus from the testing subset, in which the images were randomly 
mixed and selected from the pool of the testing subset. The images were presented to the senior entomologist via 
online quiz (https:// forms. gle/ s28ck NBtfk joanF BA), and the accuracy was based on the percentage of the answer 
that correctly identified the mosquitoes. Independent-sample t-tests were performed to evaluate the accuracy 
between DL model deployment and human performance at p < 0.05 in SPSS 17.0. Senior entomologists voluntar-
ily participated in the experiments, and informed consent was obtained prior to participation. All experimental 
methodologies were approved by the ethical committee of UOW Malaysia KDU Penang University College. All 
experiments were carried out in accordance with the guidelines of the ethical committee of UOW Malaysia KDU 
Penang University College.

Results
Classification performance of the DCNN. Figure 4 shows examples of 10- and 16-day-old Ae aegypti, 
respectively, in which the lyre shapes of the white scales on the thorax were barely observed; therefore, to allow 
the dataset to practically reflect samples of various ages, we constructed the dataset by using female mosqui-
toes that were older than 12 days old. The overall test accuracy was reported in Table 1. Our results showed 
that both the number of epochs and the learning rate (LR) exhibited significant effects on the testing accuracy 
(p < 0.05), and when the number of epochs was 30 and the LR was 0.001, the model achieved an accuracy of 
98.06 ± 1.02%. The number of epochs was the number of times that the entire training dataset was used for the 
algorithm learning process, and each epoch consisted of one or more batches that were used to tune the internal 
model  parameter26. Theoretically, more epochs should result in higher  accuracy27, although a longer runtime 
was required. However, from our results, more epochs did not necessarily guarantee better accuracy. This was 
demonstrated at an LR of 0.001, and there was a significantly lower testing accuracy from 50 to 80 epochs 
(Table 1). Figure 5 shows the confusion matrix for the precision and recall of the proposed DL model with dif-
ferent hyperparameters fine-tuned. Loss is a number representing how unfit a model’s prediction is on a single 
 example28, and the impacts of the number of epochs and the LR on the loss are shown in Fig. 6. As shown in 
Fig. 6, the learning curve experienced greater fluctuation/noise when we used a larger learning rate (LR), and 
having a similar trend as the testing accuracy, the learning rate (LR) significantly impacted the loss (p < 0.05), but 
there was no significant difference as the number of epochs changed.

Figure 4.  Sample of 10-day-old (a) and 16-day-old (b) Aedes aegypti, respectively.

https://forms.gle/s28ckNBtfkjoanFBA
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Deployment model and human‑level performance. For the proposed DCNN model that was imple-
mented in a hardware tool and tested externally on different generations of mosquitoes, other factors, such as the 
compatibility of the model with the hardware and the portability of the model, affected the performance. Com-
pared with previous  studies10,16,29 that used transfer learning from other DCNNs such as VGGNet and AlexNet, 
MobileNet is a pretrained model with a smaller  size22,23 that allowed our proposed model to be deployed directly 
in the p5.js platform using JavaScript, and the inferences were obtained in real time—60 fps (by calling the 
function frameRate (60) in p5.js). To the best of our knowledge, this was the first time that a DCNN model was 
implemented in an application platform on a hardware tool and tested externally on different generations of 
mosquitoes. The results of the model’s deployment and human-level performance are presented in Fig. 7. When 
the DL model was deployed in p5.js on the Aedes Detector for the randomized mixture of Ae. aegypti and Ae. 
albopictus, the DL model obtained an accuracy of 98.33 ± 0.69%. When the experiment was repeated with human 
performance, the senior entomologists achieved an accuracy of 98.00 ± 0.88%. Although the performance of the 
DL model slightly surpassed the human performance, the independent-samples t-tests showed that there was 
no significant difference between the accuracy of hardware and human-level performance t (df = 58) = 0.297, 
p = 0.768, indicating that the DL model performance resembled that of human experts.

Discussion
The feature presentation of the images is crucial since MobileNet uses the k-nearest neighbor (kNN) algorithm 
that uses the semantic information represented in the logits to compare the images in the dataset and unknown 
samples as the  classifier23. To emphasize the morphology of mosquito’s features on the mosquito images, we 
standardized the environment for model development (training, validating and testing) to minimize errors 
such as uneven and inconsistent light distributions in the sample and focal distances that make the sizes of the 
samples in the images different. To prevent possible overfitting of the model due to the standardized images/
samples throughout the development process, the mosquito images in the dataset were manually checked to 
confirm no overlap among the subsets.

We applied computer vision to the sample mosquitoes to better understand the details of automatic mosquito 
classification by the DCNNs since most of the previous studies seldom analyzed which parts of mosquitoes were 
“viewed” and “recognized” by the machine and used to perform classification. Park et al. assessed the feature 
activation of the convolution layers of VGG-16 and showed that most of the recognition maps focused on the 
body of mosquitoes. We expanded the idea by designing our labeled image acquisition process to focus mainly 
on the lateral view of the thorax and head of the mosquitoes since the thorax and head occupied as much as 35% 
of an image (Figs. 4 and 8), although dorsal and ventral views of the thorax were also contained in the dataset but 
not as a good morphology of mosquitodue to the disappearance of the white scales. Figure 8 shows a comparison 
between the key morphology that was used to discriminate the mosquitoes by human experts and the feature 
activation images of the convolution layers. From the visualization of the convolution layers of our proposed 
DCNN model, the recognition map focused on the mesepimeron and clypeus-pedicel parts of the Ae. aegypti and 
Ae. albopictus images. This result suggested that the distinctive white scales on the pedicel and clypeus (Fig. 8b 
with red arrow) and the mesepimeron on the Ae. aegypti, which are the three types of white scales (Fig. 8b with 
red circles), are essential to classifying the mosquitoes. When the mosquitoes were 12 to 16 days old, the lyre-
shaped markings on Ae. aegypti and the white stripe marking on the thorax almost completely disappeared 
(Fig. 4); however, the scales on the clypeus, pedicel and mesepimeron remained despite the damage to the dorsal 
or thorax, and these remaining morphologies played crucial roles in differentiating female Ae. aegypti from Ae. 
albopictus30–32. The improved imageacquisition was attributed to the Aedes Detector, which allowed for a close 
distance (2.5 cm) and well-illuminated environment, especially regarding the light intensity and distribution. 
The high accuracy also confirmed the capability of the Pi camera module to acquire the sample images at the 
necessary resolution, although its resolution was only 8 megapixels.

To obtain the best-performing model, our hyperparameter analysis was in good agreement with previous 
 arguments25–27 in which the learning rate (LR) was the key hyperparameter for fine tuning (LR, p < 0.00001), 
which indicated that the improvement of the model accuracy was more affected by the LR. The LR should not be 
too small, as mentioned by  Goodfellow33, and we demonstrated a similar result when the LR of 0.00001 generally 
produced significantly lower accuracy, with the test accuracy ranging from 93 to 94%. However, higher epochs 

Table 1.  Hyperparameter analysis of testing accuracy (%, means ± S.E.) of the proposed model. Means ± S.E 
followed by same letter indicates not significantly different at P = 0.05 within row, post hoc test, Turkey. 
Epochs*Learning rate (F = 2.525, df = 18). SE Standard Error.

Epoch (F = 7.049, df = 3,6)

Learning rate (F = 16.716, df = 3,6)

0.00001 0.0001 0.001 0.01

20 93.30 ± 0.59a 92.68 ± 1.64a 92.73 ± 1.41a 93.75 ± 1.36a

30 92.61 ± 1.64a 96.17 ± 0.47b 98.06 ± 0.32c 93.78 ± 0.40a

40 94.15 ± 0.48a 95.04 ± 0.62a 97.14 ± 0.70b 95.14 ± 0.22a

50 93.92 ± 0.29a 96.17 ± 0.66b 96.93 ± 0.37b 95.85 ± 0.46c

60 94.26 ± 0.48a 96.55 ± 0.30b 96.39 ± 0.19b 94.22 ± 0.47a

70 94.66 ± 0.59a 95.75 ± 0.54a 96.28 ± 0.49a 95.17 ± 0.38a

80 94.64 ± 0.42a 95.27 ± 0.57a 95.80 ± 0.36a 94.91 ± 0.29a
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did not perform significantly higher than lower epochs (Table 1), which may be due to the possibility of higher 
epochs that led to model overfitting. This was supported by the study of Ladds et al.34, which investigated the 
classification of animal behavior using a super machine learning model and showed that fewer epochs performed 
better than more epochs in classifying animal behavior. Furthermore, Fabre et al.’s35 study tested more epochs, 
but this decreased the moderately vigorous physical activity and increased the percentage error of the acceler-
ometer measurement. More epoch decreasing the performance of a model could be explained by the possibility 
of overfitting the model. Nevertheless, our result that shows the lower epochs provided higher accuracy can be 

Figure 5.  Confusion matrix of the proposed model with different epochs (vertical) and learning rate 
(horizontal): For the individual confusion matrix, the y-axis "actual class" refers to the ground-truth labels in the 
dataset, and the x-axis "prediction" refers to the model’s predictions.
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Figure 6.  Accuracy and loss curve for epoch 30 that provides the highest accuracy. As seen in the figure, the 
learning curve experienced greater fluctuation/noise when we used a larger learning rate (LR).
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Figure 7.  Model deployment and human-level performance accuracy as a percentage (%) of total mosquitoes 
used for prediction; there was no significant difference between the accuracy of hardware and human-level 
performance t (58) = 0.297, p = 0.768, by the independent-samples t-tests in SPSS 17.0.

Figure 8.  Feature activation on mosquito images. (a) Feature activation maps show most of the recognition 
maps focused on the head and thorax of mosquitoes. (b) We suggest that the morphological features used by the 
DCNN to distinguish between Aedes aegypti and Aedes albopictus are the mesepimeron, which shows two well-
separated white-scale patches (red circles), and the pedicel, which shows white-scale patches (red arrows).
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explained by the requirement of early stopping of model training at certain epochs, as suggested by  Ying36, who 
stated that early stopping at a certain number of epochs can prevent the overfitting of a model.

For an end-to-end process of a model for image classification, Teachable Machine 2.0 by Google Creative Lab 
is highly convenient in developing a DL model, especially for noncomputer science expertise. The web-based 
tool assists mostly in the construction of CNN architectures and allowed us to focus on feature engineering 
and the implementation of the proposed model. To the best of our knowledge, the method is the first reported 
end-to-end process model for the classification of closely related species of mosquitoes—Ae. aegypti and Ae. 
albopictus. To assess the performance of the proposed model, we compared it with human-level performance, in 
particular, to estimate the optimum or Bayesian error. Human experts classified Ae. aegypti and Ae. albopictus 
with an error of ~ 2%, and compared to the error of the proposed model, the model achieved a minimum bias 
(Bayes error + avoidable error)37. A machine learning model with a deep network wants to resemble/surpass 
human-level performance, and the key aspect of DCNNs is the number of internal  layers38. We leveraged Teach-
able Machine 2.0 using transfer learning with DCNNs that adopt the first 29 convolutional layers of MobileNet 
and reached human expert accuracy. We suggest that the proposed model can surpass human-level performance 
for non or junior insect taxonomists. Our results extended previous studies that  implemented38,39 fewer layers of 
deep convolutional networks (11, 13, 16, and 19 layers) for object recognition but still resembled human-level 
performance. The implementation accuracy slightly surpassed the human experts’ accuracy, although there was 
no significant difference (independent-samples t-tests, t (58) = 0.297, p = 0.768). As described by Andrew  Ng37, 
when an ML model achieves human-level performance, the progress of reducing the desirable error rate will 
decrease. The automated classification of mosquitoes is mainly attributed to a computer vision system—both 
the algorithm and the hardware implementation in the present study. Nevertheless, hardware deployment issues 
such as model drift (when the production data are not representative of the training data), model maintenance 
and management still posed challenges, especially when the model was applied in a real-time trap or surveil-
lance system, in which regular monitoring and calibration of the model were still required to ensure the validity 
of the prediction.

Conclusions
An image classification model for medically important mosquitoes is critical for practical applications in real 
and actual situations. This study constructed a dataset of 12- to 16-day-old Ae. aegypti and Ae. albopictus with 
disappearances of the head and thorax morphologies. The model was successfully developed using Aedes Detec-
tor hardware, and the results indicated the importance of the environment to obtain images for computer vision 
and therefore constructed a dataset and model that was used to infer unseen samples. We demonstrated the 
capacity of the proposed model with a DCNN to classify aged mosquitoes with more than 98% testing accuracy, 
with both the learning rate and epochs significantly influencing the model performance. Most strikingly, when 
the model was deployed externally on three different generations of mosquitoes, the accuracy resembled that 
of human experts. Our study provides a framework for future studies that can utilize the proposed method to 
assess the quality of data and training conditions, statistically study hyperparameters, and implement hardware 
on an external sample.

Data availability
The images, dataset and source codes for this work are publicly available through the co-author (PI)’s kaggle: 
https:// www. kaggle. com/ prade episa wasan/ aedes- mosqu itos.
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