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Texture analysis of muscle 
MRI: machine learning‑based 
classifications in idiopathic 
inflammatory myopathies
Keita Nagawa1*, Masashi Suzuki1, Yuuya Yamamoto1, Kaiji Inoue1, Eito Kozawa1, 
Toshihide Mimura2, Koichiro Nakamura3, Makoto Nagata4 & Mamoru Niitsu1

To develop a machine learning (ML) model that predicts disease groups or autoantibodies in 
patients with idiopathic inflammatory myopathies (IIMs) using muscle MRI radiomics features. 
Twenty‑two patients with dermatomyositis (DM), 14 with amyopathic dermatomyositis (ADM), 
19 with polymyositis (PM) and 19 with non‑IIM were enrolled. Using 2D manual segmentation, 93 
original features as well as 93 local binary pattern (LBP) features were extracted from MRI (short‑tau 
inversion recovery [STIR] imaging) of proximal limb muscles. To construct and compare ML models 
that predict disease groups using each set of features, dimensional reductions were performed 
using a reproducibility analysis by inter‑reader and intra‑reader correlation coefficients, collinearity 
analysis, and the sequential feature selection (SFS) algorithm. Models were created using the linear 
discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machine (SVM), 
k‑nearest neighbors (k‑NN), random forest (RF) and multi‑layer perceptron (MLP) classifiers, and 
validated using tenfold cross‑validation repeated 100 times. We also investigated whether it was 
possible to construct models predicting autoantibody status. Our ML‑based MRI radiomics models 
showed the potential to distinguish between PM, DM, and ADM. Models using LBP features provided 
better results, with macro‑average AUC values of 0.767 and 0.714, accuracy of 61.2 and 61.4%, and 
macro‑average recall of 61.9 and 59.8%, in the LDA and k‑NN classifiers, respectively. In contrast, the 
accuracies of radiomics models distinguishing between non‑IIM and IIM disease groups were low. A 
subgroup analysis showed that classification models for anti‑Jo‑1 and anti‑ARS antibodies provided 
AUC values of 0.646–0.853 and 0.692–0.792, with accuracy of 71.5–81.0 and 65.8–78.3%, respectively. 
ML‑based TA of muscle MRI may be used to predict disease groups or the autoantibody status in 
patients with IIM and is useful in non‑invasive assessments of disease mechanisms.

Abbreviations
ADM  Amyopathic dermatomyositis
ASS  Anti-synthetase syndrome
AUC   Area under the curve
DM  Dermatomyositis
GLCM  Gray-level co-occurrence matrix
GLDM  Gray-level dependence matrix
GLRLM  Gray-level run-length matrix
GLZLM  Gray-level zone length matrix
HSI  High signal intensity
IBM  Inclusion body myositis
ICC  Intraclass correlation coefficient
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IIM  Idiopathic inflammatory myopathy
k-NN  K-nearest neighbors
LBP  Local binary pattern
LDA  Linear discriminant analysis
QDA  Quadratic discriminant analysis
MAA  Myositis-associated autoantibody
ML  Machine learning
MLP  Multi-layer perceptron
MRI  Magnetic resonance imaging
MSA  Myositis-specific autoantibody
NGTDM  Neighboring gray-tone difference matrix
PM  Polymyositis
RF  Random forest
ROI  Region of interest
STIR  Short-tau inversion recovery
SVM  Support vector machine
TA  Texture analysis

Idiopathic inflammatory myopathies (IIMs) are a heterogeneous family of systemic disorders characterized 
by muscle weakness, muscle enzyme elevations, inflammatory changes on muscle biopsy, and extra-muscular 
 manifestations1,2. The common disease groups of IIMs in adults are polymyositis (PM), dermatomyositis (DM), 
amyopathic dermatomyositis (ADM), and inclusion body myositis (IBM). These inflammatory myopathies show 
different clinical presentation patterns and responses to  treatment3–6. Patients with PM and DM have similar 
therapeutic strategies involving the empirical use of corticosteroids and immunosuppressive  agents5, whereas 
patients with ADM require earlier and more intensive therapy because of its poor prognosis with severe pul-
monary involvement and early  death6. Therefore, the early identification of IIM disease groups is essential 
for predicting clinical courses and selecting treatment plans. With the new discoveries of myositis-specific 
autoantibodies (MSAs) and myositis-associated autoantibodies (MAAs)7–9, more clinical characteristics have 
been obtained for IIMs. These autoantibodies are associated with distinct clinical phenotypes and may define a 
prognosis for a subset of patients.

In IIMs, MRI of skeletal muscles is a feasible method for assessing disease activity and identifying useful 
biopsy sites. Due to uniform fat suppression and no administration of contrast media, STIR MR sequences are 
 preferred10,11. The proximal legs are preferentially examined because thigh muscles are mostly affected in IIM 
 patients12. Although previous studies reported characteristic muscle MRI findings in IIM  patients11–16, quantita-
tive or semi-quantitative assessments with MRI have been  limited12.

A texture analysis (TA) is an image analysis technique that allows for the quantification of image character-
istics based on the distribution of pixels and their surface intensity or  patterns17,18. These image characteristics 
are based on the microstructures of a background tissue and are sometimes imperceptible to the human visual 
 system17. TA has been applied to a number of medical image assessments, including oncologic  imaging19,20, 
 neuroimaging21,22, and musculoskeletal  imaging23,24. Recent US-based radiomics studies reported differentia-
tion between neurogenic and myogenic diseases using musculature  imaging25. To the best of our knowledge, an 
analysis of IIMs with texture features derived from muscle MRI has not yet been conducted.

The present study was performed to evaluate the diagnostic performance of ML-based MRI radiomics models 
for predicting disease groups in patients with IIMs. We also investigated the feasibility of classifications based 
on autoantibodies (e.g., anti-Jo1 and anti-ARS antibodies).

Methods
The present study was approved by the Research Ethics Committee of Saitama Medical University Hospital as 
a retrospective medical imaging data analysis using TA and a deep-learning technique. The requirement for 
informed consent was waived by the Committee (approval number 20041.01). All experiments were performed 
in accordance with the relevant guidelines and regulations.

Patients. Figure 1 shows inclusion and exclusion criteria. In total, 243 patients who underwent muscle MRI 
of the thighs with suspicion of myositis between January 2012 and December 2019 were identified and reviewed. 
Exclusion criteria were as follows: 134 patients diagnosed with diseases other than myositis or an unknown 
cause; 4 who were not followed up nor treated after MRI in our hospital; 11 with high-grade muscle atrophy 
(difficulty in segmentation); 8 with severe artifacts on MRI; 7 with insufficient clinical data, and 3 who under-
went MRI at other institutions. Using the 2017 European League Against Rheumatism/American College of 
Rheumatology (EULAR/ACR) classification criteria, the latest and most widely used criteria because of their 
high sensitivity and  specificity26, the remaining 76 patients were classified into 57 with IIM (23 definite and 34 
probable IIM) and 19 with non-IIM (2 possible IIM and 17 non-IIM). Fifty-seven patients with IIM were sub-
classified into 19 with PM, 22 with DM, 14 with ADM, and 2 with IBM. By excluding IBM (insufficient number 
of patients for a statistical analysis), 74 patients (19 PM, 22 DM, 14 ADM, and 19 non-IIM) were finally enrolled 
for the disease group classification analysis.

Patients characteristics were determined by the medical record description of their chief physician/dermatolo-
gists. We calculated aggregate scores by the definition of the 2017 EULAR/ACR. Although we classified all the 
patients according to the new criteria in principle, we selected patients for the IIM disease groups, particularly 
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the ADM group, based on their clinical diagnosis because disagreement in the diagnosis of IIM disease groups 
has been reported in several cohort  studies27,28.

Data analysis procedures. A multi-class classification analysis of PM vs DM vs ADM and non-IIM vs PM 
vs DM vs ADM was conducted.

In a subgroup study, we investigated whether it was possible to predict the status of some representative MSAs.
The data analysis workflow is shown in Fig. 2. After segmentation, image processing, texture feature extrac-

tion, a reproducibility analysis, and collinearity analysis of all datasets together were conducted, followed by 
texture feature selection and ML-based model construction in separate classification attempts.

MRI. MRI was performed using the 1.5-T system (MAGNETOM Symphony; Siemens Healthcare, Erlangen, 
Germany). STIR of thigh muscles in the axial plane was conducted using the following parameters: repetition 
time: 6500 ms; echo time: 65 ms; inversion time: 190 ms; slice thickness: 8.0 mm; flip angle: 180°; field of view: 
450 × 513 mm; matrix: 307 × 384; acquisition time: 153 s.

Segmentation. Muscle segmentation was performed using open-source software (ITK-SNAP version 
3.8.0). A two-dimensional region of interest (ROI) that covered the whole area of one slice of a muscle MR image 
of the proximal thighs and excluded the epimysium was selected for each subject (see Fig. 3). Two radiologists 
with 20 and 4 years of experience performed the ROI delineation in an independent manner. A senior radiolo-
gist performed tumor segmentation again with a minimum interval of 2 months. Segmentation was performed 
on the same image slice assessed by another radiologist with 5 years of experience. All three radiologists were 
blinded to clinical information.

Figure 1.  Flow chart of inclusion and exclusion criteria.
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Texture feature extraction. To avoid data heterogeneity bias, all MRI data were subjected to imaging nor-
malization (the intensity of the image was scaled to 0–100) and resampled to the same resolution (3 × 3 × 3 mm) 
before feature extraction.

The calculation of texture features was performed using an open-source software package capable of extract-
ing a large panel of engineered features from medical images (PyRadiomics version 2.1.0). Texture features were 
calculated based on six feature classes (first-order statistics, the gray-level co-occurrence matrix (GLCM), gray-
level dependence matrix (GLDM), gray-level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM), 
and neighboring gray-tone difference matrix (NGTDM)). Other than the 93 original features (18 first-order, 
24 GLCM, 14 GLDM, 16 GLRLM, 16 GLSZM, and 5 NGTDM features), 93 filtered images using local binary 
pattern (LBP) were obtained and the results were compared with each other.

Figure 2.  Flow chart showing the technical study pipeline. After segmentation, image processing, texture 
feature extraction, reproducibility analysis, and collinearity analysis were conducted in all datasets together, 
followed by texture feature selection and ML-based model construction in separate classification attempts. CV 
cross-validation.
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Dimensional reduction of texture features. After numeric values had been normalized as z-scores, 
the dimensional reduction was performed in two consecutive steps: a reproducibility analysis and collinearity 
analysis.

To evaluate intra-observer and inter-observer reproducibilities, intraclass correlation coefficient (ICC) values 
were calculated for each texture feature. Features with excellent reproducibility (ICC ≥ 0.8) in intra-observer and 
inter-observer analyses were included in further analyses.

A collinearity analysis was conducted using Pearson’s correlation coefficient (r). The threshold for collinearity 
was r = 0.7. Features with high collinearity were excluded from the analysis. In the case of a feature pair having 
high collinearity, the one with the lowest collinearity with the other features remained in the analysis.

Feature selection and ML–based classification. The sequential feature selection (SFS) algorithm, a 
wrapper-based greedy search algorithm, was used for feature  selection29. A radiomics model was created based 
on a limited number of selected features (3–4 features according to the number of patients) with the lowest col-
linearity  socores30. A linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector 
machine (SVM), k-nearest neighbors (k-NN), random forest (RF), and multi-layer perceptron (MLP) classifiers 
were used for model development, with all using default parameter settings. Ten-fold cross-validation repeated 
100 times was performed for classification models. The performance of classifiers was evaluated by the area 
under the curve (AUC). Accuracy, sensitivity, specificity, precision, and the F-measure were calculated based on 
the confusion matrix of classification results.

Statistical analysis. Statistical analyses were performed using an opensource software package (Python 
scikit-learn 0.22.1). Differences in patient characteristics were assessed using 2-sample t-tests and chi-squared 
tests. Values of p < 0.05 were considered to be significant.

Results
Clinical characteristics. The study included 74 patients (19 PM, 22 DM, 14 ADM, and 19 non-IIM). Mean 
age was lower in the ADM group than in the other groups. Muscle weakness was rarer and CK levels were lower 
in the ADM group than in the other groups. Patient characteristics are shown in Supplementary Table S1 online. 
Regarding the 19 non-IIM patients in the present study, 4 were clinically diagnosed with anti-ARS antibody-pos-
itive myositis, 3 with anti-SRP antibody-positive myositis, 3 with anti-mitochondrial antibody-positive myositis, 
1 with systemic lupus erythematosus, 3 with systemic sclerosis, 1 with probable PM, and 4 with possible PM/
DM by the Bohan and Peter criteria. Among the 19 patients with PM, 22 with DM, 14 with ADM, and 19 with 
non-IIM, 18, 19, 11 and 18 patients were not taking any medications, respectively. All the remaining patients, 
1 with PM, 3 with DM, 3 with ADM and 1 with non-IIM, were under the maintenance dose (3–6 mg/day) of 
prednisolone, and they underwent MRI because of disease relapse.

Figure 3.  Representative segmentation style in a 67-year-old woman with PM. (a) An unenhanced STIR image 
of thigh muscles in the axial plane was examined. (b) The whole area of the muscles in the proximal thighs was 
segmented as a ROI (red shaded area), excluding the epimysium.
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Segmentation. The ROI delineation was performed by two radiologists with 20 and 4 years of experience 
in an independent manner. The mean sizes of the ROIs placed by the radiologists were 484.4 (SD = 113.2) and 
492.0 (SD = 123.9)  cm2, respectively. All segmentation was performed on the 1/3 to 1/4 proximal level of the 
thighs.

Dimensional reduction with the reproducibility test and collinearity analysis. Among the 93 
original features, the mean ICC value was 0.926 (SD = 0.101) in the inter-observer reproducibility test and 0.975 
(SD = 0.029) in the intra-observer reproducibility test. Eighty and 93 features had excellent inter-reader and 
intra-reader reproducibilities (ICC ≥ 0.8), respectively. The number of features with excellent reproducibility in 
both analyses was 80. By excluding features with high collinearity (r ≥ 0.7), the number of features was further 
reduced to 11. Eleven representative features and their respective ICCs are shown in Table 1, and their distribu-
tion and collinearity status are shown in Supplementary Figs. S1 and S2 online, respectively.

On the other hand, among 93 LBP features, the mean ICC value was 0.776 (SD = 0.207) in the inter-observer 
reproducibility test, and 0.859 (SD = 0.100) in the intra-observer reproducibility test. Fifty-four and 60 features 
had excellent inter-reader and intra-reader reproducibilities (ICC ≥ 0.8), respectively. The number of features 
with excellent reproducibility in both analyses was 54. By excluding features with high collinearity (r ≥ 0.7), the 
number of features was further reduced to 9. Nine representative features and their respective ICCs are shown 
in Table 2, with their distribution and collinearity status in Supplementary Figs. S3 and S4 online, respectively.

Feature selection and ML–based multi‑class classification of IIM disease groups. The SFS algo-
rithm associated with a univariate analysis (p < 0.05) provided 3 to 4 features for each classifier (i.e. LDA, QDA, 
SVM, k-NN, RF, and MLP classifiers). We constructed multi-class classification models based on the selected 
features, and evaluated their performance via the tenfold cross-validation repeated 100 times.

Table 1.  Selected original texture features for machine learning–based classifications of IIM and non-IIM 
disease groups. GLCM gray-level co-occurrence matrix, GLDM gray-level dependence matrix, NGTDM 
neighboring gray-tone difference matrix.

Code

Selected original texture features
Intraclass correlation coefficient 
(ICC)

Feature class Feature name code Intra-observer Inter-observer

TexF1 First-order Kurtosis 0.962 0.872

TexF2 First-order Interquartile range 0.988 0.986

TexF3 First-order Total energy 0.986 0.971

TexF4 GLCM Cluster prominence 0.984 0.956

TexF5 GLCM Correlation 0.983 0.953

TexF6 GLCM Difference average 0.988 0.977

TexF7 GLCM Imc2 0.988 0.986

TexF8 GLCM Maximum probability 0.983 0.981

TexF9 GLDM Large dependence high gray-level emphasis 0.980 0.909

TexF10 GLDM Dependence non-uniformity 0.931 0.924

TexF11 NGTDM Coarseness 0.939 0.935

Table 2.  Selected LBP texture features for machine learning–based classifications of IIM and non-IIM disease 
groups. LBP local binary pattern, GLCM gray-level co-occurrence matrix, GLRLM gray-level run length 
matrix, GLSZM gray-level size zone matrix, NGTDM neighboring gray-tone difference matrix.

Code

Selected LBP texture features
Intraclass correlation coefficient 
(ICC)

Feature class Feature name code Intra-observer Inter-observer

TexFL1 First-order Total energy 0.978 0.968

TexFL2 First-order Variance 0.974 0.942

TexFL3 GLCM Cluster shade 0.937 0.897

TexFL4 GLCM Contrast 0.881 0.824

TexFL5 GLCM Difference entropy 0.941 0.930

TexFL6 GLRLM Long run emphasis 0.822 0.801

TexFL7 GLRLM Long run low gray-level emphasis 0.890 0.803

TexFL8 GLSZM Gray-level nonuniformity 0.919 0.896

TexFL9 NGTDM Busyness 0.911 0.892
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The top classification score for original features was obtained in the LDA classifier: the macro-average AUC 
was 0.683 (SD = 0.012), with an accuracy of 58.6% (SD = 2.0%), macro-average precision of 59.1% (SD = 2.9%), 
and macro-average recall of 56.7% (SD = 2.1%). Equivalent classification scores were also observed in the QDA 
and SVM classifiers.

The best classification scores for LBP features were obtained in the LDA classifier: the macro-average AUC was 
0.767 (SD = 0.011), with an accuracy of 61.2% (SD = 2.5%), macro-average precision of 61.6% (SD = 2.4%), and 
macro-average recall of 61.9% (SD = 2.3%). In k-NN classifiers, the macro-average AUC was 0.714 (SD = 0.015), 
with an accuracy of 61.4% (SD = 2.7%), macro-average precision of 67.4% (SD = 3.4%), and macro-average recall 
of 59.8% (SD = 2.7%).

All classification attempts for original and LBP features are summarized in Tables 3 and 4, with confusion 
matrices in Supplementary Figs. S5 and S6 and roc curves in Figs. S7 and S8 online, respectively.

ML‑based multi‑class classification attempts for non‑IIM and IIM disease groups. In the multi-
class classification analysis of non-IIM vs PM vs DM vs ADM, we selected representative features using the SFS 
algorithm associated with a univariate analysis, and evaluated their performance via the tenfold cross-validation 
repeated 100 times.

The classification scores for the original and LBP features were low in all representative classifiers.
The highest classification scores for original features were obtained in the LDA classifier: the macro-aver-

age AUC was 0.627 (SD = 0.013), with an accuracy of 42.7% (SD = 2.6%), macro-average precision of 40.3% 
(SD = 3.5%), and macro-average recall of 41.2% (SD = 2.6%). In the MLP classifier, the macro-average AUC was 

Table 3.  Performance of multi-class classifications of IIM groups (original features). Data are 
means ± standard deviations. Feature name codes are as follows: TexF1 = kurtosis, TexF2 = interquartile range, 
TexF3 = total energy, TexF4 = cluster prominence, TexF5 = correlation, TexF6 = difference average, TexF7 = imc2, 
TexF8 = maximum probability, TexF9 = large dependence high gray-level emphasis, TexF10 = dependence non-
uniformity, TexF11 = coarseness. LDA linear discriminant analysis, QDA quadratic discriminant analysis, SVM 
support vector machine, k-NN k-nearest neighbors classifier, RF random forest classifier, MLP multi-layer 
perceptron.

Accuracy Recall Precision

AUC (%) (%) (%)

LDA (TexF1 + TexF3 + TexF4 + TexF6)

Macro-average 58.6 ± 2.0 56.7 ± 2.1 59.1 ± 2.9 0.683 ± 0.012

PM 52.1 ± 4.8 52.1 ± 2.9 0.605 ± 0.021

DM 72.5 ± 1.1 61.5 ± 1.8 0.684 ± 0.013

ADM 45.6 ± 4.0 63.7 ± 6.9 0.721 ± 0.018

QDA (TexF1 + TexF8 + TexF10)

Macro-average 57.4 ± 3.0 56.2 ± 2.3 59.7 ± 2.3 0.668 ± 0.016

PM 62.2 ± 3.7 50.4 ± 3.0 0.626 ± 0.021

DM 61.0 ± 4.6 60.5 ± 3.7 0.648 ± 0.028

ADM 45.4 ± 3.4 68.0 ± 3.8 0.688 ± 0.027

SVM (TexF1 + TexF3 + TexF4)

Macro-average 58.1 ± 2.0 56.2 ± 2.5 56.9 ± 2.5 0.629 ± 0.030

PM 45.8 ± 6.0 52.2 ± 3.6 0.505 ± 0.053

DM 71.9 ± 2.0 65.6 ± 2.8 0.656 ± 0.035

ADM 44.1 ± 7.3 52.7 ± 6.1 0.688 ± 0.041

k-NN (TexF1 + TexF3 + TexF10)

Macro-average 55.5 ± 2.5 53.5 ± 2.6 66.5 ± 3.5 0.649 ± 0.019

PM 66.4 ± 4.6 45.1 ± 2.8 0.575 ± 0.028

DM 58.9 ± 3.9 59.6 ± 3.5 0.662 ± 0.023

ADM 35.4 ± 4.9 94.8 ± 9.1 0.705 ± 0.027

RF (TexF1 + TexF2 + TexF7 + TexF11)

Macro-average 47.2 ± 3.2 45.4 ± 3.1 47.3 ± 3.8 0.642 ± 0.022

PM 49.1 ± 7.2 41.1 ± 4.3 0.612 ± 0.035

DM 55.8 ± 5.5 53.6 ± 3.4 0.648 ± 0.031

ADM 31.2 ± 4.7 47.2 ± 8.4 0.651 ± 0.035

MLP (TexF1 + TexF3 + TexF6)

Macro-average 54.6 ± 2.1 53.5 ± 2.0 56.6 ± 2.4 0.647 ± 0.016

PM 43.5 ± 3.5 43.5 ± 3.3 0.517 ± 0.035

DM 67.2 ± 4.1 57.6 ± 3.3 0.657 ± 0.020

ADM 49.9 ± 4.3 68.6 ± 6.5 0.726 ± 0.020
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0.628 (SD = 0.012), with an accuracy of 42.6% (SD = 2.7%), macro-average precision of 42.8% (SD = 3.2%), and 
macro-average recall of 40.9% (SD = 2.6%). On the other hand, the highest classification scores for LBP features 
were obtained in the RF classifier: the macro-average AUC was 0.657 (SD = 0.016), with an accuracy of 43.2% 
(SD = 3.3%), macro-average precision of 45.6% (SD = 4.1%), and macro-average recall of 42.5% (SD = 3.3%). 
In the LDA classifier, the macro-average AUC was 0.618 (SD = 0.013), with an accuracy of 41.3% (SD = 2.5%), 
macro-average precision of 41.5% (SD = 2.8%), and macro-average recall of 40.2% (SD = 2.4%).

All of the classification attempts for original and LBP features are summarized in Supplementary Tables S2 
and S3, with confusion matrices in Supplementary Figs. S9 and S10 and roc curves in Figs. S11 and S12 online, 
respectively.

Subgroup analysis of ML‑based classification of representative autoantibodies. We searched 
our patients for the anti-Jo-1 and anti-ARS antibodies, and selected 45 patients with sufficient data for these two 
autoantibodies. Although we also investigated other MSA/MAAs, few patients had sufficient data (the informa-
tion on representative MSA/MAAs in all patients for this analysis is shown in Supplementary Table S4 online). 
Therefore, in this subgroup analysis, we focused on the anti-Jo-1 and anti-ARS antibodies, and attempted to 
construct binary classification models for each antibody. We only applied original features because of the limited 
number of subjects. We selected 3 representative features using the SFS algorithm associated with a univariate 
analysis, and evaluated their performance by tenfold cross-validation repeated 100 times.

The classification scores for two autoantibodies were moderate to good. AUC values were 0.646–0.853 and 
0.692–0.792, with accuracies of 71.5–81.0 and 65.8–78.3%, sensitivities of 25.8–62.2 and 68.3–75.6%, and spe-
cificities of 87.1–96.5 and 62.0–81.5% for the anti-Jo-1 and anti-ARS antibodies, respectively. All classification 

Table 4.  Performance of multi-class classifications of IIM groups (LBP features). Note Data are 
means ± standard deviations. Feature name codes are as follows: TexFL1 = total energy, TexFL2 = variance, 
TexFL3 = cluster shade, TexFL4 = contrast, TexFL5 = difference entropy, TexFL6 = long run emphasis, 
TexFL7 = long run low gray-level emphasis, TexFL8 = gray-level non-uniformity, TexFL9 = busyness. LDA linear 
discriminant analysis, QDA quadratic discriminant analysis, SVM support vector machine, k-NN k-nearest 
neighbors classifier, RF random forest classifier, MLP multi-layer perceptron.

Accuracy Recall Precision

AUC (%) (%) (%)

LDA (TexFL2 + TexFL5 + TexFL7 + TexFL8)

Macro-average 61.2 ± 2.5 61.9 ± 2.3 61.6 ± 2.4 0.767 ± 0.011

PM 55.0 ± 5.6 56.4 ± 3.5 0.693 ± 0.016

DM 61.8 ± 3.6 62.2 ± 3.3 0.756 ± 0.015

ADM 68.8 ± 4.0 66.1 ± 3.3 0.815 ± 0.014

QDA (TexFL1 + TexFL2 + TexFL3)

Macro-average 55.1 ± 3.1 55.8 ± 5.5 54.9 ± 5.6 0.724 ± 0.016

PM 43.7 ± 6.3 52.7 ± 4.7 0.695 ± 0.030

DM 58.2 ± 4.2 64.8 ± 4.7 0.685 ± 0.018

ADM 65.5 ± 6.7 47.3 ± 3.4 0.755 ± 0.022

SVM (TexFL1 + TexFL2 + TexFL7)

Macro-average 54.7 ± 3.9 54.9 ± 3.9 55.6 ± 4.0 0.717 ± 0.020

PM 45.8 ± 6.0 46.0 ± 5.4 0.621 ± 0.033

DM 59.5 ± 5.7 57.3 ± 4.5 0.692 ± 0.030

ADM 59.5 ± 6.8 63.6 ± 6.4 0.801 ± 0.016

k-NN (TexFL1 + TexFL6 + TexFL7)

Macro-average 61.4 ± 2.7 59.8 ± 2.7 67.4 ± 3.4 0.714 ± 0.015

PM 68.9 ± 6.1 57.3 ± 4.0 0.718 ± 0.027

DM 65.2 ± 4.3 58.0 ± 3.1 0.685 ± 0.024

ADM 45.1 ± 4.4 86.9 ± 8.7 0.740 ± 0.013

RF (TexFL2 + TexFL3 + TexFL6 + TexFL8)

Macro-average 52.6 ± 4.0 52.3 ± 3.9 54.4 ± 4.6 0.735 ± 0.022

PM 51.4 ± 6.9 54.0 ± 5.7 0.668 ± 0.036

DM 55.2 ± 6.2 48.3 ± 3.9 0.649 ± 0.032

ADM 50.2 ± 6.3 61.0 ± 9.1 0.853 ± 0.023

MLP (TexFL1 + TexFL2 + TexFL7)

Macro-average 51.1 ± 3.2 51.9 ± 3.0 52.0 ± 3.2 0.740 ± 0.012

PM 47.3 ± 5.6 44.0 ± 4.0 0.668 ± 0.021

DM 49.4 ± 4.9 52.9 ± 4.2 0.700 ± 0.018

ADM 59.2 ± 3.7 59.1 ± 4.2 0.818 ± 0.014
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attempts for these two antibodies are summarized in Tables 5 and 6, with confusion matrices in Supplementary 
Figs. S13 and S14 and roc curves in Figs. S15 and S16 online, respectively.

Discussion
In the present study, we found that ML-based TA of muscle MRI has the potential to distinguish between PM, 
DM, and ADM. In contrast, ML models distinguishing between non-IIM and IIM disease groups had low clas-
sification accuracy. We also showed that our ML models have the potential to predict the status of anti-Jo-1 and 
anti-ARS antibodies. Since IIMs are rare disorders, we were unable to collect a large number of IIM patients. 
Therefore, this analysis is a small-scale proof-of-concept study that demonstrates the potential of MR-based TA 
to predict disease groups or the autoantibody status.

To the best of our knowledge, the potential value of MR-based TA for discriminating IIM disease groups has 
not yet been assessed. Apart from TA, attempts have been made to differentiate between IIM disease subtypes 
using conventional MRI findings. Previous studies demonstrated that a subcutaneous high signal intensity (HSI), 
fascial HSI, and the patchy or diffuse distribution of HSI in muscle are useful MRI findings for differentiating 
between PM and  DM11–16. Ukichi et al. assessed the likelihood of DM using a scoring system with several char-
acteristic MRI  findings16. Although classification performance in the present study was lower, several points 
need to be considered that emphasize the advantages of our models. We built a multi-class classification model 
for PM, DM and ADM, which is more practical for clinical applications. Furthermore, instead of using con-
ventional morphological parameters that are subject to individual interpretation and inter-observer variability, 
we introduced radiomics imaging analyses that extract various quantitative features from medical images and 
overcome these issues. In addition, we further developed classification models for autoantibodies, which are 
useful for clinical practice in recent antibody-oriented medicine.

IIMs are now diagnosed based on the findings of clinical and histopathological examinations. Although 
muscle and skin biopsies are widely accepted methods for defining the diagnosis of IIMs, they are invasive and 
susceptible to significant sampling bias. In previous studies, false-negative results were reported in 10–20% of 
all IIM muscle biopsies due to sampling errors caused by the scattered distribution of focal disease  activity31–34. 

Table 5.  Performance of machine learning–based classifications of anti-Jo-1 antibodies. Note Data are 
means ± standard deviations. Feature name codes are as follows: TexF1 = kurtosis, TexF2 = interquartile range, 
TexF3 = total energy, TexF4 = cluster prominence, TexF5 = correlation, TexF6 = difference average, TexF7 = imc2, 
TexF8 = maximum probability, TexF9 = large dependence high gray-level emphasis, TexF10 = dependence non-
uniformity, TexF11 = coarseness. LDA linear discriminant analysis, QDA quadratic discriminant analysis, SVM 
support vector machine, k-NN k-nearest neighbors classifier, RF random forest classifier, MLP multi-layer 
perceptron.

Accuracy Sensitivity Specificity

F-measure AUC (%) (%) (%)

LDA (TexF2 + TexF9 + TexF11) 71.5 ± 2.8 25.8 ± 5.5 90.1 ± 2.8 0.343 ± 0.066 0.646 ± 0.019

QDA (TexF2 + TexF7 + TexF11) 78.4 ± 1.7 33.9 ± 5.0 96.5 ± 1.0 0.474 ± 0.055 0.824 ± 0.027

SVM (TexF3 + TexF6 + TexF11) 79.6 ± 1.2 45.5 ± 2.8 93.5 ± 1.3 0.563 ± 0.029 0.672 ± 0.048

k-NN (TexF2 + TexF9 + TexF11) 79.9 ± 1.6 62.2 ± 4.8 87.1 ± 1.4 0.640 ± 0.034 0.845 ± 0.015

RF (TexF2 + TexF5 + TexF10) 81.0 ± 2.7 51.4 ± 7.4 93.0 ± 2.5 0.608 ± 0.065 0.853 ± 0.027

MLP (TexF4 + TexF10 + TexF11) 77.2 ± 2.5 45.2 ± 5.5 90.2 ± 2.6 0.533 ± 0.053 0.807 ± 0.023

Table 6.  Performance of machine learning–based classifications of anti-ARS-antibodies. Note Data are 
means ± standard deviations. Feature name codes are as follows: TexF1 = kurtosis, TexF2 = interquartile range, 
TexF3 = total energy, TexF4 = cluster prominence, TexF5 = correlation, TexF6 = difference average, TexF7 = imc2, 
TexF8 = maximum probability, TexF9 = large dependence high gray-level emphasis, TexF10 = dependence non-
uniformity, TexF11 = coarseness. LDA linear discriminant analysis, QDA quadratic discriminant analysis, SVM 
support vector machine, k-NN k-nearest neighbors classifier, RF random forest classifier, MLP multi-layer 
perceptron.

Accuracy Sensitivity Specificity

F-measure AUC (%) (%) (%)

LDA (TexF3 + TexF6 + TexF10) 78.3 ± 2.2 75.5 ± 3.3 81.5 ± 2.5 0.815 ± 0.025 0.792 ± 0.018

QDA (TexF3 + TexF5 + TexF10) 71.1 ± 2.9 68.3 ± 4.7 74.3 ± 3.2 0.715 ± 0.033 0.731 ± 0.030

SVM (TexF4 + TexF7 + TexF10) 76.4 ± 2.2 74.5 ± 4.0 78.7 ± 2.6 0.771 ± 0.025 0.752 ± 0.015

k-NN (TexF4 + TexF8 + TexF10) 73.2 ± 2.6 75.6 ± 2.6 70.5 ± 5.1 0.751 ± 0.022 0.742 ± 0.019

RF (TexF3 + TexF4 + TexF10) 65.8 ± 3.5 69.1 ± 5.2 62.0 ± 4.2 0.682 ± 0.037 0.692 ± 0.022

MLP (TexF4 + TexF9 + TexF10) 68.9 ± 3.9 72.6 ± 5.1 64.7 ± 6.4 0.713 ± 0.037 0.693 ± 0.029



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9821  | https://doi.org/10.1038/s41598-021-89311-3

www.nature.com/scientificreports/

The 2017 EULAR/ACR criteria were recently introduced, which permit diagnoses using a two-version scoring 
system with and without muscle  biopsy26. Although the new criteria have the advantages of high diagnostic 
performance and flexibility, disagreements in the diagnosis of IIM disease groups have been reported in several 
cohort  studies27,28. MRI, which is not incorporated into the new criteria, is not invasive and has the potential to 
characterize IIM disease subtypes. A quantitative radiomics assessment of muscle MRI, as shown in our approach, 
may be a more objective and feasible method for IIM diagnoses and disease subtype classifications.

In the present study, several complex TA features were valuable for differentiating between IIM disease groups; 
GLCM features describes the second-order statistical information of gray levels between neighboring pixels in 
an  image35; the LBP-2D filtered-feature represents a comparison of center pixels and their surrounding pixels. 
Since these complex TA features have been suggested to reflect underlying pathomorphological texture patterns 
in various fields of medical  imaging36–38, the explanation of TA features provided in the present study needs to 
be complemented by further evidence, including histopathology.

Conventional ML classifiers, such as LDA, SVM, k-NN, and RF, were mainly examined in the present study 
instead of using a deep-learning or convolutional neural network (CNN) approach. Since deep-learning is now 
widely used for image classification to facilitate the diagnosis of various diseases, it would add values and expect 
improvement in classification rates to introduce the deep-learning or CNN method. Multi-task deep CNN models 
were recently applied to the diagnosis of neurodiseases and achieved high classification  performance39. These 
models are suited to our theme because complex multi-omics data are particularly important in IIM or other 
collagen diseases, and a deep CNN approach will assist in the construction of favorable classification models for 
these diseases. As a preliminary study on CNN-based classification models, we implemented the MLP classifier, 
which is the simplest form of an artificial neural network. In the present study, the MLP classifier provided similar 
or slightly lower results than the other conventional classifiers. Since MLP is considered be a favorable estimator 
in non-linear models, our models may be approximated to linear models rather than complex non-linear models. 
However, since this is a small-scale study, different results may have been obtained if we employed large samples 
as well as independent training and test cohorts.

Overall, our radiomics models distinguished between IIM disease groups with moderate diagnostic accuracy, 
but with poor accuracy between non-IIM and IIM disease groups. It is important to note that even patients with 
non-IIM decided by the 2017 ACR/EULAR criteria may have IIM to some degree because the criteria are in 
themselves a prediction model using an aggregate scoring system derived from several variables. According to 
its definitions, “possible IIM” and “non-IIM”, which were combined as non-IIM in the present study, correspond 
to a possibility of ≥ 50% and < 55%, and < 50%,  respectively26.

In a recent study, among 111 patients who were diagnosed with IIM clinically, 89 (80.2%) were classified 
as having probable/definite IIM using the 2017 ACR/EULAR criteria, while the other 22 (19.8%) were in the 
false-negative possible IIM/non-IIM  group28. In the present study, all 19 patients with non-IIM were clinically 
diagnosed with IIM. Except for two patients with ADM (confirmed by skin biopsy), the other 17 were treated 
as PM; however, it was not clear whether at least 4 patients had PM or DM. Moreover, 12 out of the 19 non-IIM 
patients showed HSI on muscle STIR MRI.

Sampling errors may occur with biopsies, which is consistent with previous findings, and this reduced the 
likelihood of a diagnosis of IIM within the classification criteria because of increases in aggregate score cut points 
with the addition of biopsy information. Other reported diagnostic factors that may lead to false classification 
results in the IIM/non-IIM group included the autoantibody status and skin  manifestations27,28. Due to the 
uncertainty and heterogeneity of the non-IIM group decided by the 2017 EULAR/ACR criteria, it appears to 
be more important to include appropriate control groups, such as normal or other disease groups, rather than 
a non-IIM group or to construct autoantibody-oriented classification models if the goal is to construct useful 
classification models for clinical practice. Since it is not currently possible to include new samples, this is a 
subject for future analyses.

The present results also provide a promising perspective on the classification of autoantibodies. We achieved 
good diagnostic performance using radiomics models for the anti-Jo1 and anti-ARS antibodies. Anti-Jo1 anti-
bodies are the most common autoantibodies among IIM (up to 20% of IIM)40. They are included as anti-ARS 
antibodies, which define the clinical phenotype called anti-synthetase syndrome (ASS), including myositis, 
interstitial lung disease, arthritis, Raynaud’s phenomenon, and mechanics  hands41. Previous studies reported 
that characteristic histopathological features and muscle MRI patterns in active  ASS42,43. In the present study, we 
speculate that a high magnitude of voxel values and inhomogeneity in an image, which corresponded to the fea-
tures such as total energy, cluster prominence, dependence non-uniformity and coarseness, may be character-
istics of ASS; however, this needs to be evaluated in future studies that include histopathology. Regarding other 
autoantibodies, Pinal-Fernandez et al. showed that anti-SRP-positive immune-mediated necrotizing myopathy 
(IMNM) had more severe atrophy and fatty replacement than anti-HMGCR-positive  IMNM44. Due to our small 
sample size, we were unable to construct classification models for several other autoantibodies. However, based 
on the importance of autoantibodies in IIMs, we need to evaluate multi-class classification models of several 
important autoantibodies in future studies.

The present study had limitations. The number of patients examined was not sufficient to construct a ML-
based classification model. The rarity of these disorders prevented the collection of a large sample size. To avoid 
overfitting, we performed several feature reduction steps, including a collinearity analysis and SFS algorithms, 
and constructed a model with a limited number of features and multiple classifiers. We also performed a cross-
validation of the calculated models to avoid overestimation. Nevertheless, future studies with a large sample 
size and independent training and test cohorts will provide supportive evidence for the diagnostic value of 
our radiomics models. Another limitation is that the present study lacked appropriate control groups, such as 
normal or other disease groups, as described above. Moreover, it is of greater clinical importance to construct 
a comprehensive classification model in consideration of clinical, serological, and pathological data. We had to 
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correlate between histopathology and MRI TA values, and also we had to compare our radiomics models with 
human readers. The further development of our models will be achieved by addressing these issues in the future. 
In addition, our analysis only considered the intra-muscular area. Based on previous findings, the inclusion of 
the extra-muscular area, particularly the subcutaneous area, may provide more accurate results. Similarly, we 
only used STIR images in our radiomics analysis. We did not include additional TA on contrast-enhanced images 
because contrast-enhanced sequences were not available in all patients. A recent study on characteristic MRI 
findings of IIM stated that contrast-enhanced sequences were useful for the differentiation of disease groups, 
whereas STIR images provided similar results and were beneficial considering the risk and cost of contrast media.

In conclusion, ML-based TA of muscle MRI has potential as a method for predicting disease groups or 
autoantibody status in patients with IIM. With further studies to verify its reproducibility and viability, TA may 
become a clinically feasible technique that will be of assistance in non-invasive assessments of underlying disease 
mechanisms and help guide therapeutic decisions.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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