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Exact statistical solution 
for the hopping transport 
of trapped charge via finite Markov 
jump processes
Andrey A. Pil’nik1,2,3*, Andrey A. Chernov1,2,3 & Damir R. Islamov1,2,3

In this study, we developed a discrete theory of the charge transport in thin dielectric films by trapped 
electrons or holes, that is applicable both for the case of countable and a large number of traps. It was 
shown that Shockley–Read–Hall-like transport equations, which describe the 1D transport through 
dielectric layers, might incorrectly describe the charge flow through ultra-thin layers with a countable 
number of traps, taking into account the injection from and extraction to electrodes (contacts). A 
comparison with other theoretical models shows a good agreement. The developed model can be 
applied to one-, two- and three-dimensional systems. The model, formulated in a system of linear 
algebraic equations, can be implemented in the computational code using different optimized 
libraries. We demonstrated that analytical solutions can be found for stationary cases for any trap 
distribution and for the dynamics of system evolution for special cases. These solutions can be used to 
test the code and for studying the charge transport properties of thin dielectric films.

New dielectrics, like high-κ HfO2 , Ta2O5 , ZrO2
1–5 and low-κ  ones6–9, are extremely perspective materials for using 

them in modern and future electronic devices, including memory and digital ones. That is why the knowledge 
about the charge transport processes and mechanisms in dielectrics is critical for modern microelectronics. 
High-κ dielectrics are promising materials for resistive random access memory (RRAM), ferroelectric random 
access memory (FRAM) and memristor devices, while low-κ dielectrics are the insulating dielectrics that separate 
wire interconnects and transistors from each other in high-speed integrated  circuits6. High-κ-based MOSFETs, 
FRAM and flash memories, and low-κ interconnect separators need dielectrics with low leakage currents, while 
RRAM devices exhibit a better performance when the used dielectric layers are mostly nonstoichiometric, i.e. 
include a lot of defects and  traps10–12. That is why producing high-quality electronic devices requires a strict 
control of deposited dielectric film quality to monitor leakage currents.

The charge currents in metal-insulator-semiconductor (MIS) and metal-insulator-metal structures (MIM) 
might be limited by a contact metal-insulator or insulator-semiconductor (contact-limited currents) or by the 
traps in the insulator bulk (bulk- or trap-limited currents). Contact-limited current models describe the elec-
tron and hole emission from semiconductor or metal electrodes to traps (localized states in the bandgap) or to 
the conduction band in dielectrics. The quantum field emission, first proposed by R. Fowler and L. Nordheim, 
describes the charge-carriers tunnelling through a triangle energy barrier to the dielectric conduction band and 
does not depend on  temperature13. At high temperatures, a significant contribution to the transport might be 
given by the thermally assisted  tunnelling14,15 and field-enhanced thermionic emission of hot carriers (Schottky 
effect)16. The direct tunnelling from one electrode to another through a trapeze barrier takes place in the struc-
tures based on ultra-thin ( < 5 nm) dielectric  films17.

Bulk-limited charge transport models can be divided into two large subgroups: isolated trap ionisation (Fren-
kel  model18,19, multiphonon single trap ionization proposed by Makram-Ebeid and  Lannoo20) and hops between 
neighbouring traps (thermally assisted traps between overlapped Coulomb  centres21,22, phonon-assisted tunnel-
ling of electrons (holes) between neighbouring  traps23).

In essence, all these models give the probabilities of a hop between two traps and between a trap and an 
electrode. Usually, a set of approaches was used to describe the charge transport between traps in dielectric lay-
ers using these probabilities. One on them is the time-dependent direct or Monte-Carlo simulations with hops 
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between traps, and it requires carrying out many simulations to obtain sufficient statistics for data averaging in 
order to identify general patterns. Another approach is discrete Shockley–Read–Hall-like (SRH) 1D transport 
equations with the boundary  conditions23,24:

where n̄α is the average filling of the α th trap, t is time, Hα,β is the probability rate of a hop from the α th trap 
to the β th one, Gα is the trapped carrier generation rate (due to free carriers localization) and Rα is the trapped 
carrier recombination rate (due to the trap ionization to a conduction/valence band, recombination with free 
carriers with an opposite sign) and N is the trap number. In case of low free charge carriers density nt ≫ n (here 
nt is the trapped carrier density, n if the free carriers density), the terms Gα and Rα may be omitted due to their 
smallness. Recently, discrete equation (1) has been extended to a continuous  model25:

where a is the distance between traps, x is the coordinate, H± = H(±F) are the hop rates between traps along 
and against electric field F. This approach is approximate, but it works fine for a relatively large number of traps 
in a dielectric medium. Modern electronic devices based on thin films are produced with the feature size of 
several nanometers. In this case, the number of traps in dielectric bulk N is countable, and the filling averaging 
over them might give quite large deviations due to the 

√
N/N = 1/

√
N  law.

All these methods are approximate due to different reasons. Monte-Carlo simulations are approximate by the 
virtue of them being a numerical calculation method. Both discrete and continuous SRH strongly rely on the 
fact that fillings of neighboring traps are statistically independent. In fact, they are obviously not independent. 
That is why the SRH approach is an approximate one. Furthermore, time-dependent SRH equations should be 
integrated numerically, and it adds an error to the result. The approximate nature of all these methods require 
using a validation by, for example, some exact analytical solutions as a reference. To obtain such solutions a 
new model needs to be developed. The aim of the present work is the development of an exact universal model 
of trapped charge transport via a hopping between traps in strong electric fields applicable both for the case of 
countable and a large number of traps.

Results
Markov-jump-like (MJ) model formulation. Let us consider the volume of a dielectric containing N 
traps. From the classical standpoint (considering electrons to be strongly localized inside traps) there is a finite 
set of 2N different variants of charge localization inside traps (states): n1, n2, . . . , n2N . Each state nα has a certain 
probability of transition to state nβ during a short period of time δt , which we will indicate as Pα,β . Obviously, 
the probability Pα,α of not changing state nα can be obtained from the probabilities of all transitions from nα : 
Pα,α = 1−

∑

β �=α Pα,β . Thus, the transition probability matrix P̂ sized 2N × 2N can be compiled.
At each moment in time, the system can be characterized by the column vector p = [p1; p2; . . . ; p2N ] of 

probabilities, where pα is the probability of finding the system in state nα . The average state evolution of the 
system during one time step δt can now be described by the expression p(t + δt) = P̂Tp(t) , which can be 
transformed to the form p(t + δt)− p(t) = (P̂T − Î)p(t) , where Î is the identity matrix. The differential form 
of describing the evolution of p can be achieved by considering the limit δt → 0:

This equation is known as a Kolmogorov backward equation (KBE). The element Qα,β of matrix Q̂ can be treated 
as the rate of transition from state nβ to state nα (so, Qα,βδt is the probability of such a transition in short time δt ). 
Diagonal elements can again be found from all of the rates of transition from the state nα : Qα,α = −

∑

β �=α Qβ ,α . 
The resulting differential equation (3) can be solved analytically:

If we represent the state nγ as a column vector nγ = [nγ1 ; n
γ
2 ; ...; n

γ
N ] , where nγα is the filling of the α th trap in 

state γ (takes the value 0 if the trap is empty and the value 1 if a charge carrier is captured in the trap), then the 
average ensemble filling of traps n̄ = [n̄1; n̄2; ...; n̄N ] can be expressed as an average for all states according to 
their individual probability values:

(1)

dn̄α

dt
= n̄α−1(1− n̄α)Hα−1,α − n̄α(1− n̄α−1)Hα−1,α + n̄α+1(1− n̄α)Hα+1,α − n̄α(1− n̄α+1)Hα,α+1 + Gα − Rα;

dn̄1

dt
= (1− n̄1)I1 − n̄1E1 + n̄2(1− n̄1)H2,1 − n̄1(1− n̄2)H1,2 + G1 − R1;

dn̄N

dt
= (1− n̄N )IN − n̄NEN + n̄N−1(1− n̄N )HN−1,N − n̄N (1− n̄N−1)HN ,N−1 + GN − RN ,

(2)
∂n̄

∂t
= −a

∂

∂x
{[H+ −H−]n̄(1− n̄)} + a2

2

∂

∂x

{

[H+ +H−]∂ n̄
∂x

}

,

(3)dp

dt
= Q̂p, where Q̂ = lim

δt→0

P̂T − Î

δt
.

(4)p(t) = exp(Q̂t)p(0).

n̄(t) =
2N
∑

γ=1

nγ pγ (t) = N̂p(t) = N̂ exp(Q̂t)p(0),
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where N̂ is the matrix of states such that Nα,β is the occupancy of the α th trap in the β th state.
Each option of filling traps nγ is characterized by the matrix of currents îγ , where iγα,β is the current between 

the α th and β th traps in state γ . Obviously, the matrix is skew-symmetric: iγα,β = −i
γ
β ,α . So, the matrix of currents 

can be expressed as an average for all states according to their individual probability values:

The current between electrodes and traps can also be introduced in this matrix by adding the corresponding 
rows and columns to the matrix. Indeed, we can treat each electrode as an additional trap with the corresponding 
currents towards/from all of the other traps. For example, one can treat the left and right electrode as (N + 1) th 
and (N + 2) th traps, correspondingly, so that iγN+1,β and iγβ ,N+1 are the currents from the left electrode to the 
β th trap and the current from the β th trap towards the left electrode; iγN+2,β and iγβ ,N+2 are similar currents for 
the right electrode.

Stationary state. In many cases, the desired characteristic of a system is the stationary state achieved with 
time and not the dynamics of its development. In a stationary state, the column vector p stops changing. There-
fore, from (3) it follows that Q̂pst = 0 . Also, by virtue of its definition, the probability vector p must always satisfy 
the additional constraint that the sum of its elements is equal to 1. This means that to find a stationary vector of 
probabilities, it is necessary to solve a system of 2N + 1 linear equations:

It can be solved as is or can be converted to a more standard form. Obviously, the system is overdetermined 
(the number of equations is larger than the number of the ‘unknown’). However, the conventional square non-
homogeneous system can also be produced from it in a number of ways. One way is to use the result of adding 
the first equation to the rest 2N equations:

The system of equations can be expressed in the matrix form:

where Ĵ is the matrix of ones, j is the vector of ones. Now, using the matrix notation, the stationary state char-
acteristics can be expressed explicitly:

It is important to note that, despite the mathematical elegance, this way of expressing the solution may not be the 
most optimal one. Depending on the numerical methods in use, it might be wise to keep the sparsity of matrices. 
The sparse square non-homogeneous form can be achieved, for example, by simply removing the second equation 
from the system (5). Indeed, as far as 

∑2N

β=1 Qβ ,α = 0 , one could see that the sum of the last 2N − 1 equations 
in (5) is equivalent to the second equation. So, the second equation can be discarded as linearly dependent on 
other equations. It should be noted that the same is true for any equation in (5) except for the first one. Now the 
matrix form of this system of equations is:

where Q̂1 is the matrix Q̂ with the elements of the first row substituted with ones, j1 is the vector, such that the 
first element is equal to 1 and the rest of the elements are equal to 0. The explicit form of the stationary charac-
teristics in this case is:

It can also be seen that column vector pst can be found as the first column of matrix Q̂−1
1  , and column vector 

n̄st can be found as the first column of matrix N̂Q̂−1
1  (due to the associative property of matrix multiplication).

î(t) =
2N
∑

γ=1

îγ pγ (t).

(5)

pst1 + pst2 + . . . + pst
2N

= 1

Q1,1p
st
1 + Q1,2p

st
2 + . . . + Q1,2N p

st
2N

= 0

Q2,1p
st
1 + Q2,2p

st
2 + . . . + Q2,2N p

st
2N

= 0
...

...
...

...

[2pt]Q2N ,1p
st
1 + Q2N ,2p

st
2 + . . . + Q2N ,2N p

st
2N

= 0.

(1+ Q1,1)p
st
1 + (1+ Q1,2)p

st
2 + . . . + (1+ Q1,2N )p

st
2N

= 1

(1+ Q2,1)p
st
1 + (1+ Q2,2)p

st
2 + . . . + (1+ Q2,2N )p

st
2N

= 1
...

...
...

...

(1+ Q2N ,1)p
st
1 + (1+ Q2N ,2)p

st
2 + . . . + (1+ Q2N ,2N )p

st
2N

= 1.

(Ĵ+ Q̂)pst = j,

pst = (Ĵ+ Q̂)−1j, n̄st = N̂(Q̂+ Ĵ)−1j.

Q̂1p
st = j1,

pst = Q̂−1
1 j1, n̄st = N̂Q̂−1

1 j1.
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Hop current model. The elementary acts of hopping conduction in the model are:

• hopping of one charge carrier from an filled trap to an empty one. The rate of such event will be indicated as 
H;

• extraction (ionization and departure) of one carrier from a filled trap towards an electrode. The rate of such 
event will be indicated as E;

• injection of one carrier from an electrode into an empty trap. The rate of such event will be indicated as I.

The probability of observing an elementary act during the time δt is the product of δt and the rate of this act. Thus, 
the probability of observing the event consisting of L elementary acts during the time δt will be proportional to 
δtL . This means that an addition to matrix P̂ from all events consisting of more than one elementary act does 
not affect the matrix Q̂ according to its definition. Indeed, the limit in (3) gives 0 for any addition with L > 1 . So, 
considering the events taking place during the transition from one state to another, we can limit ourselves just to 
the events consisting of one elementary act. However, some transitions are not achievable by only one elementary 
act. For example, if the state nα differs from the state nβ in more than 2 places, the rate of such transition is zero 
( Qα,β = 0 ). The number of possible non-zero elements and their fraction in matrix Q̂ can be easily calculated:

Thus, even the most general form of matrix Q̂ can be considered sparse (contains mostly zeros) for a reasonably 
large number of traps, as shown in Fig. 1.

Many of the indicated possible non-zero elements can also be treated as zeros due to the fact that the prob-
ability of charge transitions is extremely dependent on the distance and the hopping of a trapped charge carrier 
into a trap not adjacent to it (far jump) is unlikely, compared to a jump into the neighboring one. The same applies 
to the carrier injection from the electrode into an empty trap and extraction from an occupied trap towards the 
electrode. So, for the simplicity of computations, one can limit oneself to considering only short-range events.

Examples
In this section we will apply the model to some simple cases of the hopping conduction to illustrate the general 
mathematical formulation.

(6)Nnz = 2N−2(N2 + 3N + 4), ρ = Nnz

22N
= N2 + 3N + 4

2N+2
.

Figure 1.  Illustration of sparsity of matrix Q̂ for N = 4 , 5 and 6. White corresponds to zero-valued elements 
(impossible transitions).

Figure 2.  Illustration of different states nα and electron transition probability values Pα,β for N = 2 under the 
strong right-to-left electric field.
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Two traps in a strong electric field. Consider a simple case of a 2-trap chain under the strong right-
to-left electric field, as illustrated in Fig. 2. Under such conditions, we can neglect the probability of electrons 
moving to the left. In this case, only 3 short-range events can happen: injection from the left electrode into the 
first trap, jumping of the electron trapped in the first trap towards the second trap and extraction of the electron 
trapped in the second trap towards the right electrode. In this case the considered matrices are as follows:

where q is the signed carrier charge (equal to the elementary charge modulo).
Solving equations (5) using (7) gives us the stationary probability values of different states:

The average stationary filling can be calculated using the trap filling in different states, and the found stationary 
probabilities of these states (9) are

The stationary current matrix can be calculated using the state currents (8), and the found stationary prob-
abilities (9) are

Herein, Shockley–Read–Hall-like transport equations (1) describing the dynamics of average occupancy are

The stationary state is given by the following nonlinear system of equations:

This nonlinear system of equations can be solved analytically:

According to the SRH model, the stationary current can be found using average filling:

Bulk-limited current ( ̄n
1
= 1 , n̄

N
= 0). Consider a simple case of a uniform linear N-trap chain under 

a strong right-to-left electric field. Also consider that the current is bulk-limited when Ileft ≫ H ≫ Eleft and 
Eright ≫ H ≫ Iright , i.e. the interfaces between electrodes and a dielectric layer are transparent for charge car-
riers. In this case, the first trap is filled, and the last one is empty. It is easy to see that this case is identical to the 
case of the uniform linear chain of N − 2 traps under a strong electric field when I = E = H (the always filled 
first trap can be treated as the left electrode with I = H and the always empty last trap can be treated as the right 
electrode with E = H).

(7)P̂ =







1− Iδt 0 Iδt 0
Eδt 1− Eδt − Iδt 0 Iδt
0 Hδt 1−Hδt 0
0 0 Eδt 1− Eδt






, Q̂ = lim

δt→0

P̂T − Î

δt
=







−I E 0 0
0 − E − I H 0
I 0 −H E
0 I 0 − E






,

(8)

î1 =







0 0 − qI 0
0 0 0 0
qI 0 0 0
0 0 0 0






, î2 =







0 0 − qI 0
0 0 0 qE
qI 0 0 0
0 − qE 0 0






, î3 =







0 qH 0 0
−qH 0 0 0
0 0 0 0
0 0 0 0






, î4 =







0 0 0 0
0 0 0 qE
0 0 0 0
0 − qE 0 0






,

(9)pst = 1

(E +H)(E + I)I + E2H
[E2H; EIH; EI(E + I); I2H].

n̄st =
4

∑

γ=1

nγ pstγ = [0; 0]pst1 + [0; 1]pst2 + [1; 0]pst3 + [1; 1]pst4 = 1

(E +H)(E + I)I + E2H

[(EI +HI + E2)I; (E + I)HI].

îst =
4

�

γ=1

îγ pstγ = (E + I)EIH

(E +H)(E + I)I + E2H







0 1 − 1 0
−1 0 0 1
1 0 0 0
0 − 1 0 0







dn̄1

dt
= (1− n̄1)I − n̄1(1− n̄2)H;

dn̄2

dt
= n̄1(1− n̄2)H − n̄2E.

I(1− n̄st1 )−Hn̄st1 (1− n̄st2 ) = 0;
Hn̄st1 (1− n̄st2 )− En̄st2 = 0.

n̄st1 = 1

2
+

√

(E +H)2I2 + 2EH(E −H)I + E2H2 − (I +H)E

2IH
;

n̄st2 = 1

2
−

√

(E +H)2I2 + 2EH(E −H)I + E2H2 − (E +H)I

2EH
.

ist = (1− n̄st1 )qI = n̄st1 (1− n̄st2 )qH = nst2 qE = q
EI +HI + EH −

√

(E +H)2I2 + 2EH(E −H)I + E2H2

2H
.
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Case of N = 4. This case is identical to the case of a two-trap chain (the two middle traps) with the corre-
sponding matrices:

To obtain the dynamic solution, the initial conditions should be given. Let us study the dynamic of filling the 
initially empty middle traps. In this case p(0) = [1; 0; 0; 0] and equation (4) gives the following evolution of 
state probability values:

The dynamic solution for the average trap filling can be found using the probability values:

The time dependence of currents between traps on time is as follows:

The evolution of currents between traps i12 , i23 and i34 is shown in Fig. 3. One can see that, at the beginning, 
the current between the left traps is quite large, while the currents between the right traps are small. In a time 
t ≈ 5/H , a stationary state is established, and the currents become the same i = 0.4qH . It should be noted that we 
do not take into account the quantum nature of an electron, because all processes under consideration take place 

P̂ =







1−Hδt 0 Hδt 0
Hδt 1−Hδt −Hδt 0 Hδt
0 Hδt 1−Hδt 0
0 0 Hδt 1−Hδt






, Q̂ = lim

δt→0

P̂T − Î

δt
= H







−1 1 0 0
0 − 2 1 0
1 0 − 1 1
0 1 0 − 1






,

î1 =qH







0 0 − 1 0
0 0 0 0
1 0 0 0
0 0 0 0






, î2 = qH







0 0 − 1 0
0 0 0 1
1 0 0 0
0 − 1 0 0






, î3 = qH







0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0






, î4 = qH







0 0 0 0
0 0 0 1
0 0 0 0
0 − 1 0 0






.

p1(t) =
1

5
+ 1

2
exp(−Ht)+ 3 cos(Ht)+ sin(Ht)

10
exp(−2Ht), (probability of state [1; 0; 0; 0])

p2(t) =
1

5
− cos(Ht)+ 2 sin(Ht)

5
exp(−2Ht), (probability of state [1; 0; 1; 0])

p3(t) =
2

5
− 2 cos(Ht)− sin(Ht)

5
exp(−2Ht), (probability of state [1; 1; 0; 0])

p4(t) =
1

5
− 1

2
exp(−Ht)+ 3 cos(Ht)+ sin(Ht)

10
exp(−2Ht), (probability of state [1; 1; 1; 0])

n̄1 = 1,

n̄2 =
3

5
− 1

2
exp(−Ht)− cos(Ht)− 3 sin(Ht)

10
exp(−2Ht),

n̄3 =
2

5
− 1

2
exp(−Ht)+ cos(Ht)− 3 sin(Ht)

10
exp(−2Ht),

n̄4 = 0.

i12 =
2

5
qH

(

1+ 5

4
exp(−Ht)+ cos(Ht)− 3 sin(Ht)

4
exp(−2Ht)

)

,

i23 =
2

5
qH

(

1− 2 cos(Ht)− sin(Ht)

2
exp{−2Ht}

)

,

i34 =
2

5
qH

(

1− 5

4
exp(−Ht)+ cos(Ht)− 3 sin(Ht)

4
exp(−2Ht)

)

.

Figure 3.  Evolution of currents between traps i12 , i23 and i34 for a uniform chain of four traps under strong 
electric field.
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at room temperature and above. Also, electron quantum states are destroyed during inelastic (de-)trapping acts 
and the transport is not ballistic. That is why we do not get the conductivity quantum in the obtained solutions.

It is important to note that matrices Q̂ and îγ , in the case of the linear 4-trap chain under the strong right-to-
left electric field with a bulk-limited current, are simply proportional to H . Obviously, this will be the case for 
the N-trap chain also. A couple of significant conclusions can be drawn from this fact:

• stationary average trap filling does not depend on the H value;
• stationary current will have the form CiqH;
• time of establishing a near-stationary solution will have the form Cτ /H.

Here Ci and Cτ are the coefficients that depend on the trap number N only. The values of Ci and Cτ are shown in 
Fig. 4. One can see that Ci tends to the value 0.25 as the number of traps increases for both SRH and MJ cases, 

Figure 4.  The Ci and Cτ coefficients values.

Table 1.  Comparison of analytically found stationary trap filling distributions and currents between traps for 
MJ and SRH models.

Markov jump-like Shockley–Read–Hall-like Error (%)

n̄
st
1

1 1 0

n̄
st
2

3

5
= 0.6

√
5− 1

2
≈ 0.618 ≈ 3

n̄
st
3

2

5
= 0.4

3−
√
5

2
≈ 0.382 ≈ −5

n̄
st
4

0 0 0

i
st 2

5
qH = 0.4qH qH

3−
√
5

2
≈ 0.382qH ≈ −5

Figure 5.  Trap filling distributions, calculated in terms of SRH and MJ approaches for N = 4 , 8 and 12.
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but the SRH model predicts a lower current than MJ model. Also, the Markov jump processes approach predicts 
longer transients (steady-state establishment) than the Shockley–Read–Hall-like approach.

The comparison of stationary trap fillings and the current in the case of 4-trap chain for the MJ and the SRH 
models is shown in Table 1. One can see that the Shockley–Read–Hall-like model gives deviations up to 5% from 
the exact values that are calculated in terms of the finite Markov jump processes approach. On the one hand, the 
obtained deviations of the current might be smaller than different noises in real experiments, but they might be 
too large for simulations of high-quality electronic devices.

The same procedure can be carried out for larger trap chains. The comparison of stationary trap filling dis-
tributions calculated within the SRH and the MJ models for trap chains with N = 4 , 8 and 12 is shown in Fig. 5. 
One can see that the shape of all curves is close and it tends, with the increase in N, to that shown in Figure 3 
 in25 for the continuum case.

Discussion
We have developed a discrete model of the charge transport in dielectrics in terms of finite Markov jump pro-
cesses, and it takes into account hops of localized charge carriers between traps in a dielectric medium in strong 
electric fields with the injection from and extraction to electrodes (contacts). The developed model is formulated 
as a matrix differential equation or a system of linear algebraic equations. The dynamic solutions describing the 
charge transport are found using a matrix exponential. The stationary solutions describing the charge transport 
are found by solving a system of linear equations. The major drawback of the presented method for the charge 
current description is the dramatic rise in the computational complexity with the increasing amount of trap. 
However, an electronic system, containing a dozen of traps, can be easily simulated using a laptop PC. Moreover, 
we demonstrated that the solutions can be acquired by manipulations with sparse matrices. This means that the 
numeric computation of transition processes can be solved quite quickly using optimized  algorithms26,27. The 
developed model is universal and can be applied to a relatively large number of traps distributed in 1D, 2D or 
3D systems. Also, the matrix sparsity can be increased by ignoring extremely long hops in a specific spatial trap 
distribution, thus, reducing the total difficulty of the task.

The analytical stationary solutions, that are close to experimentally achievable conditions, are found. The 
comparison with other theoretical  models25 shows a good agreement, which proves their good applicability, at 
least, for the stationary problems under examination. Also, the presented model allows one to get exact analytical 
solutions of the charge transport evolution in time, while Shockley–Read–Hall-like transport equations require 
their integration to get the same results. This procedure is more difficult: it requires more computational resources 
and time. So, the advantage of the presented solutions over others lies in the fact that it can be used as an exact 
reference to test other (approximate) solutions in both dynamic and stationary cases.

The developed model, formulated in linear algebraic equations, can be implemented in the computational 
code using different libraries, such as BLAS, LAPACK, MKL, SciPy/NumPy etc. Particularly, the proposed 
approach can enhance the current implementation of the leakage current simulations through dielectric layers 
in the Synopsys TCAD software  package28. It was shown that the stationary current-voltage characteristics of 
metal-insulator-semiconductor and metal-insulator-metal structures can be calculated analytically for any trap 
distribution. Also, the model implemented as a numeric code can be used in simulations of flash, FRAM, RRAM 
memories and memristor resistive switching with different spatial designs, including vertical and planar ones.
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