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Influence of survival, promotion, 
and growth on pattern formation 
in zebrafish skin
Christopher Konow1, Ziyao Li1, Samantha Shepherd1,2, Domenico Bullara1 & 
Irving R. Epstein1*

The coloring of zebrafish skin is often used as a model system to study biological pattern formation. 
However, the small number and lack of movement of chromatophores defies traditional Turing-type 
pattern generating mechanisms. Recent models invoke discrete short-range competition and long-
range promotion between different pigment cells as an alternative to a reaction-diffusion scheme. 
In this work, we propose a lattice-based “Survival model,” which is inspired by recent experimental 
findings on the nature of long-range chromatophore interactions. The Survival model produces 
stationary patterns with diffuse stripes and undergoes a Turing instability. We also examine the 
effect that domain growth, ubiquitous in biological systems, has on the patterns in both the Survival 
model and an earlier “Promotion” model. In both cases, domain growth alone is capable of orienting 
Turing patterns above a threshold wavelength and can reorient the stripes in ablated cells, though 
the wavelength for which the patterns orient is much larger for the Survival model. While the Survival 
model is a simplified representation of the multifaceted interactions between pigment cells, it reveals 
complex organizational behavior and may help to guide future studies.

Morphogenesis, the symmetry-breaking phenomenon in which a uniform mass (such as an embryo) spontane-
ously develops complex yet organized heterogeneities in a reproducible  manner1,2, has fascinated biologists and 
mathematicians for decades. One influential theory of morphogenesis, developed by Alan  Turing1, explains how 
a simple two-morphogen reaction-diffusion system can spontaneously develop spatially periodic, temporally 
stationary structures. Gierer and Meinhardt later rederived and expanded on this idea, emphasizing the concept 
of short-range activation and long-range inhibition (SRALRI), whereby an activator is able to locally increase 
its concentration (usually in an autocatalytic manner), and an inhibitor is able to diffuse faster (over a longer 
range) and inhibit the  activator3–5. However, many biologists shied away from Turing’s theory due to the lack of 
concrete experimental  evidence6,7, Turing’s original physically unrealistic  models1,5, and extreme sensitivity to 
reaction  parameters2,7–9. Even when chemists in the early 1990s (almost 40 years after Turing’s original work was 
published) provided experimental evidence of Turing-type patterns in an inorganic reaction-diffusion  system6,10, 
few biologists took note.

This situation began to change when researchers noticed that the skin patterning on various types of fish bore 
striking resemblance to patterns simulated with Turing’s mechanism (commonly called Turing patterns)11, both 
in their morphology and in the manner in which the patterns develop as the fish matures. This led to a boom 
in Turing pattern-related research, and many examples of biological patterning were modeled with Turing-type 
 interactions12–15. Zebrafish (Danio rerio) quickly emerged as a model system for biological patterning studies, 
as the fish grow quickly and their genome has been fully  sequenced16,17. In addition, their semi-translucent skin 
allows for imaging of the chromatophores, the colored cells that make up the skin patterns, with basic low-pow-
ered  microscopes14,15,17. These studies have shown that there are three major types of chromatophores that play 
a role in pattern formation: black melanophores, yellow xanthophores, and light blue/silvery  iridophores15,17–19. 
As the zebrafish develops past its larval stage, xanthophores form on the skin, guiding the differentiation of 
stem cells into iridophores, which are attracted to the xanthophores, and melanophores, which are repelled. This 
leads to the formation of an initial pre-pattern arrangement of periodic black melanophore stripes and yellow 
xanthophore interstripes along the body and fins of the zebrafish, which guides the future orientation of the 
fully developed  pattern15,18,20.

Chromatophores are not traditional “morphogens”, at least in terms of Turing’s original  theory1. They do 
not “react” in a chemical manner, but rather interact with each other at different length  scales15,19–22. Empirical 
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studies indicate that adjacent melanophores and xanthophores inhibit each  other15,20, and that xanthophores may 
stimulate the production and survival of remote melanophores via a Delta-Notch signaling  pathway15,19,21,22. Mel-
anophores extend long projections towards xanthophores. These projections carry a signal from transmembrane 
deltaC and delta-like 4 proteins on the xanthophores to notch1a and notch2 receptors on the  melanophores22. The 
projections grow to a maximum length of half the distance between two adjacent stripes. This signaling is critical 
for melanophore survival and growth, as ablation of xanthophores in an interstripe (i.e., a xanthophore-dense 
stripe) leads to a decrease in the density of melanophores in neighboring  stripes15,23. Although these interactions 
are not “reactions” in a typical chemical sense, their combined effect produces dynamical effects in agreement 
with Gierer and Meinhardt’s SRALRI criterion for Turing  patterns3,17.

The lack of significant cell movement in zebrafish is difficult to reconcile with Turing’s theory, which is based 
on reaction and diffusion of an inhibitor. Some studies have considered mixtures of diffusing and non-diffusing 
morphogens, but only in some cases does this lead to robust Turing-type  patterns8,9,24. While the zebrafish cells 
do move around  somewhat18–20,25,26, only iridophores regularly show large amounts of movement along the skin. 
Even so, it is unclear if iridophores are essential to pattern formation, as they are not present on the fins of the 
zebrafish, which are patterned in a similar form to the body  (see18,25,27 for an active debate on this topic,  and19,28 
for more in-depth reviews of the two positions). Xanthophores and melanophores also move slightly in a “run and 
chase” mode, in which a small dendrite in the xanthophore causes it to follow the faster-moving  melanophore20,26. 
However, this amount of movement is not sufficient to serve as the sole driver of pattern formation, as the dif-
fusion length of the cellular motion does not correlate with the wavelength of the  pattern26. Thus, the origin of 
these patterns is not a diffusively-driven instability in the sense of a traditional Turing pattern-forming system. 
All of this behavior, both movement and cellular interactions, is captured and analyzed in silico in the agent-based 
model developed by Volkening and  Sandstede29,30.

While this agent-based formulation captures a significant amount of biological detail, Bullara and De Decker 
took a more conceptual modeling  approach31. They modeled the fish skin as a two-dimensional lattice, with 
each lattice site either empty or occupied by a melanophore or xanthophore. Melanophores and xanthophores 
inhibited each other when adjacent, and xanthophores promoted melanophore birth a distance h  away31. A 
schematic of these interactions can be seen outlined in red in Fig. 1. Since the long-range feedback responsible 
for the pattern generation in this model is xanthophores promoting the growth of new melanophores, we refer 
to this model as the “Promotion model”31.

Figure 1.  Schematic depicting the interactions of chromatophores in both the Promotion model and the 
Survival model of zebrafish skin pattern formation. The blue outline shows the Survival model, and the red 
outline shows the Promotion model.
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In the present work, we propose a lattice-based “Survival model” which is inspired by experimental evidence 
as to the nature of the long-range interactions between the  chromatophores21,22. In this model,we suggest that the 
xanthophores increase the survival rate of melanophores indirectly at a distance h, as shown in Fig. 1 (outlined 
in blue). We examine both analytically and numerically the ability of this new model to generate Turing pat-
terns without diffusion. Our studies indicate that the patterns that emerge from the Survival model arise from a 
Turing instability, and provide additional evidence that zebrafish patterning may be the result of a Turing-type 
mechanism.

We then examine the impact of domain growth on pattern formation in both the Survival and Promotion mod-
els. Domain growth has been an emergent area of interest in studies of morphogenesis from  mathematical32–35, 
 chemical36,37, and  biological11,23,30,38 standpoints. In particular, studying the effect of domain growth facilitates 
comparison to the results of other models, including continuous-field  approaches38 as well as agent-based 
 models29,30. We show that domain growth alone is sufficient to orient the simulated patterns along the growing 
axis for both the Survival and Promotion models. However, the patterns orient at significantly different long-
range interaction distances.

Results
The Survival model on a lattice. We first propose the Survival model, which includes a novel form of the 
long-range interaction between chromatophores, as seen outlined in blue in Fig. 1. The conceptual idea behind 
the Survival model is to separate the death of a melanophore into three separate processes, where a different 
species occupies one or more nodes a distance h away from the reference melanophore. When this species is a 
xanthophore, we assume that the melanophore death rate is significantly less than if another melanophore or 
no chromatophores occupies this space. This form of long-range interaction is inspired by recent research from 
Hamada et al., which indicates that remote xanthophores enhance the survival of  melanophores22.

To implement the above idea, we model the skin of a zebrafish as a lattice with discrete, non-diffusive interac-
tions between nodes (cells). Each node can be occupied by a yellow xanthophore (X), a black melanophore (M), 
or an empty site (S, depicted in white in all figures). This approach contrasts with most other studies of biological 
pattern formation, which rely on continuous variables that undergo diffusion-like motion and are modeled with 
partial differential equations (PDEs)11,14,17,38. We choose to use the discrete lattice-based modeling approach 
because most of the interactions between the chromatophores can be classified as either short-range15,39 or 
long-range  interactions19,21,22 that do not require significant cell movement. For a full discussion of the rationale 
for this approach to modeling, see Bullara and De  Decker31. The long-range interactions in the Survival model 
are represented as:

where i is the lattice node (explicitly shown on a one-dimensional lattice in the equations), and h is the distance 
of the long-range interaction (usually the width of one  stripe22). The melanophore dies at a rate dM . However, if 
a xanthophore occupies a node at a distance h away from the melanophore, we set the death rate to dMX ≪ dM in 
order to portray the enhancement of melanophore survival resulting from the presence of distant xanthophores. 
As shown in Fig. 1, these reactions take the place of the simple death of melanophores. There is no long-range 
promotion of melanophore birth in the Survival model.

In addition to the new long-range interactions, the Survival model includes short-range competition reactions 
between melanophores and xanthophores given by:

These reactions can be considered self-promoting (or activating), as each chromatophore selectively kills the 
chromatophore of the opposite type at close range, which then allows for more of itself to be born (and survive) 
at the resulting unoccupied node. The Survival model also includes simple birth of both melanophores and 
xanthophores,

and the simple death of xanthophores.

Note that - as mentioned above - simple death of melanophores is absent in this model, as it has been replaced 
by the long-range death processes. A schematic view of all of these reactions can be seen in Fig. 1, where the full 
Survival model is enclosed by the blue dotted line with the light blue interior.
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Deriving mean field and continuous mean field equations. To investigate the dynamics of the Sur-
vival model, we use both stochastic Monte Carlo simulations and deterministic evolution equations. For the 
evolution equations, we consider the ensemble averages of the Boolean variables Xi , Mi , and Si at each lattice 
node i, which are given by 〈Xi〉 , 〈Mi〉 , and 〈Si〉 respectively. Using mass-action laws to derive the master equation 
for this system, and assuming there is no statistical correlation across space (commonly called the mean field 
assumption, where �Ai ,Bj� ≃ �Ai��Bj� ), we obtain the following system of ordinary differential equations:

Note that we do not require a separate equation for 〈Si〉 because the three variables at site i are related by the 
balance �Si� = 1− �Xi� − �Mi�.

We transform Eqs. (1)–(2) into a system of partial differential equations (PDEs) by switching to a continuous 
spatial coordinate r = ia , where a is the average diameter of a cell, on which we define the continuous field vari-
ables x = x(r) = �Xi� and m = m(r) = �Mi� , which are assumed to change smoothly over r. Using a second-order 
Taylor series expansion in r, we obtain the following continuous mean field PDE system:

It is important to remember that the apparent cross-diffusion terms in Eqs. (3)–(4) do not represent true 
diffusion, but rather are a result of the continuous approximation of the short-range and long-range discrete 
interactions. While Eqs. (1)–(4) describe a one-dimensional lattice (Eqs. (1)–(2)) or one-dimensional coordi-
nate system (Eqs. (3)–(4)), the same derivation can be used to extend the system to higher dimensions. For the 
theoretical basis for the lattice approach to modeling and the equations, see the Methods section.

Spatial patterns arising from the Survival model are Turing-type patterns. We use a variety of 
methods to study the Survival model and show how it can generate Turing patterns. In the simulations presented 
here, we limit ourselves to an idealized case where we assume that the short-range mutual inhibition rate con-
stants are identical ( sX = sM = s ) and that the death of xanthophores is caused only by short-range and long-
range interactions, and not by simple decay ( dX = 0 ). In addition, we assume that the “survival” signal given 
to the melanophores by the xanthophores effectively prevents the melanophores from dying ( dMX = 0 ). While 
biologically unrealistic, these approximations allow us to qualitatively represent the dynamic behavior of the 
system, as well as allow a closer comparison to the previously published results of the Promotion  model31, which 
were obtained under similar assumptions.

To begin, we perform a linear stability analysis (LSA) on the continuous mean field PDE system (Eqs. (3)–(4)) 
under the conditions of our simulations ( dX = dMX = 0 , sX = sM = s ). A detailed description of the LSA is 
included in the the Methods section. The system admits two homogeneous steady states:

The LSA shows that when the parameter h is larger than a critical value hT (which is controlled by the values 
of the other parameters), the second steady state can undergo a Turing bifurcation, which is generally associ-
ated with spontaneous generation of stationary patterns like those observed in the MC simulations. The Turing 
bifurcation arises in response to a perturbation of wavenumber kT , and at the bifurcation point would generate a 
pattern with the critical wavelength �T = 2π/kT . For more details of these calculations, see the Methods section.

We then compare the results of the LSA to simulations of the one-dimensional mean field equations 
(Eqs. (1)–(2)) on a lattice of size n = 50 with periodic boundary conditions, as shown in Fig. 2. The simulations 
are extended vertically for ease of viewing and show the normalized concentration of xanthophores at each lat-
tice node ( 〈Xi〉 ). The blue curves in Fig. 2a,b show the bifurcation parameter hT , and the orange curve shows half 
the critical wavelength �T/2 . Based on the LSA, we would expect to see Turing patterns everywhere above the 
blue hT curve. However, when we examine the absolutely scaled (between 0 and 1) mean field simulations, we 
see that large amplitude patterns only form for part of the parameter space (Fig. 2a). It is only when we examine 
the relatively scaled (between the minimum and maximum 〈Xi〉 values for that simulation) simulations that 
Turing patterns can be distinctly seen for all the parameter values in the region past the Turing bifurcation point 
(Fig. 2b). So although the LSA correctly predicts the region of the parameter space where patterns emerge, it 
cannot account for the fact that some of these patterns have an extremely small amplitude.
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We also explore the relationship between multiple Survival model “reaction” parameters. In Fig. 2c, we show 
simulations of the mean field equations (Eqs. (1)–(2)) at a constant long-range interaction distance h = 15 as 
we vary the birth and death rates of melanophores ( bM and dM respectively). We observe that large-amplitude 
patterns form only when dM > bMs (we have marked the dM = bMs line in red in Fig. 2c). Below this (when 
bMs > dM ), the patterns have a much smaller amplitude and are not visible in the absolutely scaled images. 
Interestingly, this line, beyond which patterns can form, also corresponds to the curve hT = �T/2 when the 
surfaces of hT (cyan) and �T/2 are plotted for these bM and dM ranges (Fig. 2d). The correspondence between the 

Figure 2.  Numerical simulations and results of LSA of the Survival model in one dimension. For each 
numerical simulation, Eqs. (1) and (2) were simulated on a size n = 50 lattice with periodic boundaries. The 
xanthophore concentration ( 〈Xi〉 ) is shown. The results were extended vertically into a square shape for ease 
of viewing. The following conditions were held constant in all simulations and when performing the LSA: 
bX = s = 1 , dX = dMX = 0 . (a) and (b) Simulations of the Survival model for various long-range interaction 
distances h and melanophore birth rates bM . The death rate of melanophores was held constant at dM = 4 . The 
blue curve is a plot of the minimum long-range interaction distance hT that allows for Turing patterns, and the 
orange curve is one-half of the critical wavelength ( �T/2 ). The simulations in (a) and (b) are identical, but (a) is 
absolutely scaled between a normalized concentration of zero and one, while (b) is relatively scaled between the 
minimum and maximum values of 〈Xi〉 for that simulation. (c) Simulations of the Survival model for various bM 
and dM parameter combinations. For all simulations, the long-range interaction distance was held constant at 
h = 15 . The red line approximately indicates the onset of patterning at hT = �T/2 . (d) Analytical result of LSA 
of the continuous mean field Eqs. (3)–(4). The cyan surface is a plot of the bifurcation value hT , the critical long-
range interaction distance. The orange surface is a plot of half the critical wavelength, �T/2 . The red curve shows 
the intersection of the two surfaces, where hT = �T/2.
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sharp transition line from small-amplitude to large-amplitude patterns and the curve where hT = �T/2 persists 
when parameters bX and s are varied (in Fig. 2, they were fixed at 1). Currently, we are investigating the origin 
of this sharp increase in pattern amplitude - potentially as a spatial analog in our multiple length scale system 
of the temporal canard explosion found in some temporally oscillating systems with multiple time  scales40–42.

The Survival model produces Turing patterns with disperse melanophore stripes. The one-
dimensional mean field simulations and the LSA demonstrate that the patterns resulting from the Survival 
model are the result of a Turing-type instability. To show the patterns on a two-dimensional domain, we first use 
a stochastic Monte Carlo method on a static lattice (Fig. 3a). A full description of our simulation algorithm is 
located in the Methods section, and the code used is available in the Code Availability Section. Figure 3a shows 
that the relationship between the birth rate of melanophores bM and their long-range death rate dM determines 
whether a pattern is robust enough to be distinguished from the stochastic noise. When we compare these results 
to deterministic ODE simulations of the two-dimensional mean field equations, we see that the spotted patterns 
are the only ones that form with a large enough amplitude to be seen with absolute scaling (Fig. 3b) instead of 
relative scaling (Fig. 3c). However, Turing patterns still exist in the same region of parameter space predicted 
by the LSA of Eqs. (3)–(4), which is the area below and to the right of the hT asymptotes (Fig. 2d, cyan curve) 
marked by the red lines in Fig. 3. When patterns only have small amplitudes, they appear to be overwhelmed by 
noise in the stochastic simulations, as evidenced in the lower left region of Fig. 3a.

Simulations with different h values also show that the pattern wavelength - the distance between two stripes of 
the same color - is roughly given by 2h, as seen in Fig. 4. Similar qualitative relationships between stripe distance 
(pattern wavelength) and the long-range interaction distance found in simulations of the Survival model are also 
seen in the Promotion  model31 and agent-based  models29,30. However, the stochastic simulations of the Survival 
model show that the areas with melanophores (stripes and spots) are significantly less melanophore-dense than 
in the Promotion model, with large numbers of xanthophores located in the melanophore stripes (Figs. 3a, 4). 
In simulations of the Promotion  model31, melanophore and xanthophore stripes are almost entirely comprised 
of one chromatophore, with very little intermixing. One possible explanation of this difference is that the sur-
vival feedback constitutes a somewhat weaker form of positive feedback than the promotion of new cells. If so, 
the Survival model may be more strongly affected by the inherent stochastic noise than the Promotion model. 
We note that that the more “blurred” distribution of cells in the Survival model is closer to that in the actual 
zebrafish, as loosely-packed xanthophores are found in the stripes of melanophores and more densely-packed 
xanthophores are isolated in the  interstripes15,19,22,28.

Domain growth orients Turing patterns. We examined the impact of domain growth on Turing pat-
tern development in both the Promotion and Survival models (Fig. 5). For this study, we used stochastic Monte 
Carlo simulations implemented on a lattice, as this yielded morphological behavior similar to deterministic 
ODE simulations of the mean field equations (Eqs. (1)–(2)) at a fraction of the computing cost. Domain growth 
was implemented by adding a column of empty lattice sites to the existing lattice after a set number of iterations 
of the simulation algorithm. See the Methods section for a complete description of the algorithm and the Code 
Availability section for the code developed for the Survival model simulations. Animations of the the growing 
simulations for h = 10 and h = 16 in Fig. 5a (Promotion) and for h = 20 and h = 50 in Fig. 5b (Survival) are 
contained in the Supplementary Information. Note that for all simulations, we used rate parameters that forced 
stripe patterns, as it is difficult to distinguish how growth affects spotted patterns, as previously observed in 
reaction-diffusion  systems37.

Figure 5 shows that domain growth greatly influences the orientation of the Turing patterns in both the 
Promotion and Survival models (Fig. 5a,b, respectively). In the Promotion model, for h ≥ 12 , the Turing pat-
terns orient themselves perpendicular to the growing boundary, as shown in Fig. 5a. For larger values of h, the 
stripes become a bit wavy, but overall are still relatively perpendicular to the growing boundary. This is especially 
evident when compared to the lack of orientation of the static domain simulations under the same conditions 
(Fig. 5a, right side).

Simulations of the Survival model on a growing domain show results qualitatively similar to the Promotion 
model. Domain growth still orients the Turing patterns perpendicular to the growing boundary above a specific 
value of h (Fig. 5). However, for the Survival model, the stripes orient themselves in this manner only for h ≥ 30 , a 
much higher value than in the Promotion model. This is evident in the simulations shown in Fig. 5b, as the result-
ing Turing patterns for h = 10 and 20 show no orientation and look similar to their static domain counterparts.

The pattern orientation behavior for various h values occurs regardless of the domain size or shape, as long as 
the domain is large enough to allow for multiple wavelengths ( � ≈ 2h ). If the domain is unable to contain more 
than a few wavelengths and its length is not near an integer multiple of a stable wavelength, the stripes may orient 
obliquely relative to the growing boundary, as seen for the pattern with long-range interaction distance h = 70 
( � ≈ 140 ) for the Survival model in Fig. 5b. If the growth is not one-dimensional (for example, a trapezoid that 
grows from one side as a model of fin growth, as shown in Supplementary Figure S1) the patterns still orient 
themselves horizontally with the growing boundary. The stripes added during growth are not affected by any 
previously formed patterns, as shown in Supplementary Fig. S2. These results show that domain growth signifi-
cantly affects Turing pattern development and orientation, even in the absence of a pre-pattern. This suggests 
that growth may play a significant factor in zebrafish skin pattern orientation, especially in the tail and anal fins, 
which lack iridophores and the horizontal  myoseptum18,23,38,43.

Growth can reorient stripes in ablated cells. Laser ablation of zebrafish chromatophores has often 
been used to study the cellular mechanisms that form their skin  patterns14,15,21,22,28,29. To simulate this behavior, 
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we “ablated” the central lattice sites of growing pattern simulations at different percentages of growth (Fig. 6). 
To ablate the pattern, we replaced the middle 75% of the rows and columns in the simulation with empty cells 
(white) in the stochastic Monte Carlo simulations. The simulations then continued to grow until they reached 
their final size, and then the simulation was continued on a static domain to see if the resulting patterns were spa-
tially stable (Fig. 6, “After Growth” column). A simulation with no ablation is shown in the bottom row of Fig. 6a 
and b for comparison. Animations of the the simulations ablated at 50% and 100% for both the Promotion model 
(Fig. 6a) and the Survival model (Fig. 6b) are included in the Supplementary Information.

Figure 3.  Numerical simulations of the Survival model on a two-dimensional 50× 50 lattice with periodic 
boundary conditions. In all figures, bM and dM were varied from 0 to 10 (top to bottom and left to right, 
respectively). The following parameters were held constant: h = 15 , bX = s = 1 , dX = dMX = 0 . The red lines 
indicate the area where Turing patterns are predicted by the LSA. (a) Stochastic Monte Carlo simulations. 
Each simulation began on a uniform initial condition corresponding to an empty lattice. Yellow, black, and 
white lattice sites represent xanthophores, melanophores, and empty sites respectively. (b) and (c) Numerical 
integration of the two dimensional mean field equations describing the Survival model. Each simulation 
started from random initial conditions and ran for 1000 time steps. (b) shows the normalized concentration of 
xanthophores ( 〈Xi,j〉 ) scaled absolutely between zero and one. (c) shows the same simulations scaled relative to 
each simulation’s maximum and minimum.
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Simulations of the Promotion and Survival models (Fig. 6a and b, respectively) with ablation show very 
similar behavior. If ablation occurs once the growth is complete (top row in Fig. 6a,b), the patterns will reform 
in a random orientation where the ablation occurs (rightmost column in Fig. 6a,b). However, if ablation occurs 
early during growth (for example, 25% or 50% of growth completed), the pattern recovers to an orientation 
perpendicular to the growing boundary, as if the pattern had not been ablated at all (shown for comparison in 
bottom rows of Fig. 6a,b). These behaviors are qualitatively very similar to what occurs for both fully-developed 
 adult14,15 and  developing44 zebrafish when their patterns are ablated.

Discussion
We have proposed the “Survival model,” a simplified reaction scheme that can generate Turing patterns on a 
lattice in the absence of cellular movement. Instead, Gierer and Meinhardt’s SRALRI conditions are met via 
short-range competition between the two chromatophores (leading to self-activation) and having xanthophores 
enhance the survival of melanophores at longer distances (Fig. 1). This model is inspired by multiple experimen-
tal studies on zebrafish pattern  formation19,21,22,45. In particular, the “Survival” feedback corresponds to a Delta/
Notch signalling pathway found in adult zebrafish: melanophores extend a projection towards xanthophores, 
which then carries a signal essential to melanophore  survival15,22,23. These projections reach a maximum size of 
half the stripe width. The Survival model is particularly applicable to the patterns on the tail and anal fins of the 
zebrafish. Unlike the body, where iridophores are necessary for pattern  formation18,43, the patterns formed on the 
tail and anal fins are produced without other chromatophores  present44,45. In addition, melanophore movement 
is heavily restricted on the zebrafish fins, justifying the approximation of immobile  cells44,46.

The Survival model in this paper incorporates many of the same interactions as the previously-published 
Promotion  model31, as shown in Fig. 1. The only significant difference is the nature of the long-range interaction. 
When comparing the Monte Carlo simulations of the Survival lattice on a static domain (Figs. 3a, 4) to those 
of the Promotion model in  Reference31, one can see that the melanophore stripes/spots are much less dense in 
the Survival model. This may indicate that a “Survival” interaction constitutes a weaker form of feedback than 
a “Promotion” interaction. Yet, even this weaker long-range interaction is sufficient to induce Turing patterns 
over a wide variety of conditions (Figs. 2, 3). It is also worth noting that the more diffuse melanophore stripes 
resemble the melanophore stripes found on actual  zebrafish15 more closely than the more homogeneous stripes 
seen in the Promotion model simulations.

In addition to studying a new type of long-range interaction in the Survival model, we have also investigated 
the impact of domain growth, a process that has not previously been considered in either the Survival or the 
Promotion model. Our stochastic simulations of the two models on growing domains indicate that growth has 
a major impact on pattern development and orientation. The simulations in Figs. 5 and 6 show that growth can 
orient patterns perpendicular to the growing boundary. Even when a defect in the pattern occurs, such as abla-
tion, if the system is still growing, the pattern will spontaneously reorient itself. These are particularly interesting 
results as the lattice nodes themselves are not actually moving - only new nodes are added. Yet, similar behav-
ior is shown in other, more traditional reaction-diffusion systems on growing domains in  experimental36,37,47, 

Figure 4.  Stationary Turing patterns with varying h values in Monte Carlo simulations of the Survival model. 
Each simulation was performed on a 400× 400 static lattice with periodic boundary conditions. The following 
parameters were held constant: bM = 7 , dM = 9 , bX = s = 1 , dX = dMX = 0 . For each pattern shown, the first 
digit of the h value is given by the row label and the second digit is given by the column label. For example, the 
Turing pattern in the fifth row and third column has h = 54.
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agent-based  numerical29,30, and  analytical9,32,33,35 studies. These results may not demonstrate unequivocally that 
domain growth alone is responsible for the parallel stripe orientation on zebrafish tail and anal fins, but they 
do indicate that domain growth may play a significant role in ensuring that zebrafish patterns form along the 
growth axis in a reproducible  manner21,22,30,48.

While the Survival and Promotion models behave qualitatively similarly on a growing domain (Fig. 5), 
simulations of the Survival model require a much large h value (the long-range interaction distance) to orient 
perpendicular to the growing boundary. In most zebrafish, the stripes are approximately 10-20 cells wide. Yet, 
in the Survival model with growth, the perpendicular orientation only occurs with a stripe width of at least 30 
cells ( h ≥ 30 ) for the reaction parameters used here. This suggests that during zebrafish growth, other types of 
cellular interactions are likely to be involved in the initial pattern formation. One possible such interaction could 
be caused by the airinemes described in Eom et al.21. Airinemes are protrusions extending from xanthophores 
located inside melanophore stripes to nearby melanophores. They cause melanophores to consolidate into stripes 
during earlier stages of development, but then retract as zebrafish reach  maturity21.

Our studies of the Survival model, its behavior on a growing domain and during ablation have yielded several 
interesting results. We have shown that zebrafish pattern formation, particularly on the fins, may arise from a 
Turing bifurcation with a new form of the long-range interaction - which was inspired by experimental  studies22. 
The patterns that result from simulations of this model are consistent with the “Differential Growth” picture 
previously proposed by Bullara and De  Decker31 in that Turing-type patterns can arise without morphogen move-
ment, even when the Survival feedback is a weaker form of feedback than the Promotion feedback. In addition, 
we showed that domain growth can have a significant impact on the pattern orientation for both the Promotion 
and Survival models. The growing domain can orient the resulting patterns (albeit at different long-range interac-
tion distances depending on the model), just as it can for traditional reaction-diffusion systems with morphogen 

Figure 5.  Turing pattern development during domain growth. For each h value, two simulations are 
presented: one on a growing domain (light blue backing) and one on a static domain (right column). 
For each simulation on a growing domain, images are shown of the developing pattern at 10%, 32.5%, 
55%, 77.5%, and 100% of growth. The royal blue areas are the remaining area each simulation will grow 
into. All simulations are performed with periodic boundary conditions for the same simulation length. 
(a) Stochastic Monte Carlo simulations of the Promotion model on a growing domain. Each simulation 
begins as a 300× 1 lattice, and grows to a final size of 300× 300 . Each simulation is performed with 
bX = 1, s = 1, lX = 2.5, bM = dX = dM = 0 . (b) Stochastic Monte Carlo simulations of the Survival model 
on a growing domain. Each simulation begins as a 400× 1 lattice, and grows to a final size of 400× 400 . Each 
simulation is performed with bX = 1, s = 1, bM = 7, dM = 9, dX = dMX = 0.
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 diffusion35–37,49,50. In the future, it should be possible to update our model to account for additional intercellular 
interactions in order to provide a more complete understanding of the morphogenesis occurring on the skin 
of the zebrafish. It may also be of interest to examine pattern-forming behavior in other natural systems, such 
as the positional information-guiding cytonemes in drosophila51 or the reaction-diffusion-advection models of 
synaptogenesis in C. elegans52, using the modeling techniques employed in this work.

Methods
Theoretical approach for the lattice-based model. To model the zebrafish skin, we use a lattice of 
size N where each node i = 1, 2, ...,N can be occupied by either a a xanthophore ( Xi ) or a melanophore ( Mi ) 
or remain empty ( Si ). We define the “state” of the system by specifying the occupancy of each node (X, M, or 
S). Thus, there are 3N possible states of the system. Transitions between states are determined in a probabilistic 
manner based on the rate constants of the various interactions.

We use two approaches to simulate the system and show that patterns can develop. The first method is stochas-
tic simulation using a Monte Carlo algorithm which is described in detail in a later subsection of the Methods. 
Each simulation is one realization of the system evolving in time via a Markovian process - where at most one 
event can occur per unit time. Examples of non-growing simulations of this type are shown in Figs. 3a and 4. 
The second method of simulation is deterministic mean-field simulation, whose results are shown in Figs. 2 and 
3b,c in the main text. Instead of simulating one instance of the system’s time evolution, the mean field equations 
(Eqs. (1)–(2) in the main text) describe the average behavior of an ensemble of realizations of the system. A full 
description of the equations and methods used for the deterministic mean-field simulations is given later in the 
Methods. In addition, a set of continuous mean-field equations (Eqs. (3)–(4) in the main text) can be derived 
from the mean field equations using a second-order Taylor series expansion. These are used to show that a 
Turing-type mechanism guides the pattern formation in the Survival model.

Turing analysis. To determine whether the continuous mean field equation system is capable of undergo-
ing a Turing-type bifurcation, we perform a linear stability analysis on a simplified version of Eqs. (3) and (4). 
Specifically, we are looking for a homogeneous steady state that is stable without the spatially dependent terms, 

Figure 6.  Ablation of Turing patterns at different percentages of growth. Simulations with the same conditions 
(one per row) were ablated at 25%, 50%, 75%, 100% of their total growth. The middle 75% of the domain was 
ablated (right side of each dual image—left side is simulation directly before ablation). Once the growth was 
complete, the simulations continued to run for ≈ 17% of the time of growth to observe the stability of the 
final pattern (far right of each simulation). (a) Growth simulations of the Promotion model with ablation. The 
domain grows from a 300× 1 cell lattice to a 300× 300 cell lattice. The conditions of each simulation (rows) 
are: h = 14, bX = 1, s = 1, lX = 2.5, bM = dM = dX = 0 . (b) Growth simulations of the Survival model 
with ablation. The domain grows from a 400× 1 cell lattice to a 400× 400 cell lattice. The conditions of each 
simulation (rows) are: h = 30, bX = 1, s = 1, bM = 7, dM = 9, dX = dMX = 0.
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but becomes unstable when the cross diffusion-like terms are added. We define a general reaction-diffusion 
system as

where c is a vector of morphogen concentrations, R (c) are the reaction terms, and D is a matrix of the diffusion 
coefficients. We calculate the steady states (in the absence of diffusion) by solving

and denote the Jacobian J of the reaction vector function R at the point c0 as

A Turing instability occurs when the system is in a stable steady state at c0 , and then is destabilized by a 
spatial perturbation of nonzero wavenumber k. The steady state c0 is stable with respect to spatially homogene-
ous perturbations when the real parts of the eigenvalues of the Jacobian matrix J are all negative, which in a 
two-variable systems occurs when

To examine the spatial instability at wavenumber k, we calculate the linearized matrix of the system (Eq. 7), 
L , in the form

If L has a positive eigenvalue (indicating an instability) for a finite, positive wavenumber k, then a Turing 
bifurcation has occurred, which produces spatially periodic patterns which are stationary in time. To show this, 
we calculate the characteristic equation of the eigenvalue ω , which in a two-variable system takes the form:

For the system to be unstable and stationary in time, the eigenvalue ω must be greater than zero and have no 
imaginary component ( ω > 0 and Im(ω) = 0 ). For the system to be periodic in space, the wavenumber k  = 0 . 
Thus, if we can show that the eigenvalue ω is positive for a positive finite value of k, then a Turing instability 
exists for the system.

We can also analytically solve for the Turing bifurcation point; that is, the value at which a perturbation with 
critical wavenumber kT becomes unstable. To solve for the bifurcation point, we solve the systems of equations:

for the critical wavenumber kT and the critical value of a bifurcation parameter (for the Survival model, we will 
solve for the critical long-range interaction distance, hT ). In the following subsections, we show that this analysis 
holds for a simplified version of the Survival model.

Linear stability analysis of nonuniform steady state. The continuous mean field equations (Eqs. (3)–(4)) are sim-
plified using the assumptions given in the main text. In addition, we assume a = 1 , which establishes the space 
scale. The resulting simplified PDE system is:

The steady states of the system (Eqs. (12) and (13)) in the absence of the cross-diffusion terms are given by 
Eqs. (5) and (6) in the main text. No Turing bifurcation can occur at the homogeneous steady state (Eq. (5)), 
and thus it will not be analyzed further.

To determine the stability of the second steady state (Eq. (6)), we first calculate the Jacobian matrix of the 
reaction functions to determine how the functions react to small perturbations. The Jacobian is:

The Jacobian yields a trace of

(7)
∂c

∂t
= R (c)+D ∇2

c

R (c0) = 0

J =
dR (c)

dc

∣

∣

∣

c=c0

(8)Tr(J ) < 0 and Det(J ) > 0

(9)L = J − k2D

(10)ω2 − Tr(L )ω + Det(L ) = 0

(11)Det(L ) = 0 and
∂Det(L )

∂k2
= 0

(12)
∂x

∂t
= bX(1− x −m)− smx −

1

2
sx∇2m

(13)
∂m

∂t
= bM(1− x −m)− smx − dMm(1− x)−

(

1

2
sm−

h2

2
dMm

)

∇2x

(14)J =

(

−bX − sm − bX − sx
−bM + dMm− sm − bM − dM + dMx − sx

)

(15)Tr(J ) = −bM − bX − dM(1− x)− s(m+ x)
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Since by definition x ≤ 1 and all rate constants, x, and m are greater than zero, every term in the trace is 
negative. When the determinant of the Jacobian is calculated ( Det(J ) ) and the steady state values of x = x2 and 
m = m2 are substituted, the resulting equation is:

This meets the stability requirements shown in Eq. (8) when bM > bX . Thus, in the absence of the diffusion-
like terms, the steady state (x2,m2) is stable per the conditions in Eq. (8).

Notice that if we substitute the values of x and m for the first steady states (5) into the condition for the trace 
(15) and the determinant (16) of the Jacobian we obtain

which predicts that the uniform steady state becomes a saddle point (and therefore unstable) as bM > bX . In 
other words, for bM = bX we have a transcritical bifurcation through which the two steady states of the systems 
exchange stability.

Turing bifurcation. To determine whether steady state (x2, m2) is stable with regard to spatial perturbations, we 
first construct the “diffusion” matrix D as

From here, we can construct the linearized matrix L as per Eq. (9):

We can then solve for the bifurcation parameter hT and critical wavenumber kT using the conditions in 
Eq. (11). A plot of twice the critical long-range interaction distance ( hT ) is shown in cyan in Fig. 2. The critical 
wavenumber can also be converted into the critical wavelength �T using the relationship

The blue curve plotted in Fig. 2 is �T/2 . Thus, for every value of h > hT the second steady state is unstable to 
linear spatial perturbations. It will form spatial patterns; however, the patterns can sometimes have very small 
amplitudes and thus are only visible under certain parameters (see Figs. 2a,b and 3b,c).

Deterministic mean field simulations. We simulate the deterministic behaviors of the system for a static 
domain by numerically solving Eqs. (1) and (2) on a n = 50 one-dimensional lattice in Fig. 2. We perform the 
numerical simulations in MATLAB using the solver ode23s. The state of each node is given by the relative occu-
pancy (ranging from 0 to 1) of each chromatophore. Normalized concentrations of xanthophores are shown in 
Fig. 2a,c. Simulations where the normalized concentrations were scaled between their maximum and minimum 
values are shown in 2b. The same methods were used to simulate the corresponding two-dimensional mean field 
equations on a 50 x 50 lattice in Fig. 3b,c.

Stochastic Monte Carlo simulations. The actual simulations (described below) were performed using a 
custom-developed C++ package. Then, the .csv files that were exported during the simulations were converted 
to image files using the Python package zebrafish_plot. This package also produces the animations of grow-
ing simulations, examples of which are found in the Supplementary Information. Descriptions of the C++ and 
Python package algorithms are below, and a link to the code is given in Code Availability section.

Base algorithm with survival model. The simulation algorithm for the Survival model on a static domain is 
similar to the algorithm used in Bullara et al. for the Promotion  model31. A brief description of the algorithm on 
a static (non-growing) domain is: 

1. A rectangular lattice with periodic boundary conditions is generated with a predefined number of rows and 
columns. Each lattice node has four first neighbors and can be occupied by either an empty space (S, 0 in the 
exported .csv files), a xanthophore (X, 1 in the exported .csv files), or a melanophore (M, 2 in the exported 
.csv files). The lattice can be initialized as empty (all nodes are S), a random distribution of chromatophores 
and empty sites (random assortment of X, M, and S), or with all xanthophores or melanophores. In all of the 
simulations shown in this article, the lattice starts as empty.

2. Probabilities for each reaction shown in Fig. 1 for the Survival model are calculated as the rate constant 
divided by the sum of all of the rate constants.

3. A predefined number of iterations of the Monte Carlo algorithm is chosen to ensure that a stable pattern 
will form. For the static simulations in Figs. 3a and 4 in the main text, the number of iterations is set to 109 . 
For each iteration, one lattice node (say position k) is selected at random, and one of the reaction process 
shown in Fig. 1 in the main text is selected at random with the appropriate probability. If the process selected 

(16)Det(J ) = (bM − bX)s

(17)Tr(J ) = −bM − bX − s < 0 and Det(J ) = −(bM − bX)s

D =

(

0 − s
2
x

h2

2
dMm− s

2
m 0

)

(18)L =

(

−bX − sm − bX − sx + k2 s
2
x

−bM + dMm− sm− k2
(

h2

2
dMm− s

2
m
)

− bM − dM + dMx − sx

)

�T =
2π

kT
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involves another lattice node (short-range or long-range interactions), a nearest neighbor (short-range inter-
action) or node a distance h away (long-range interaction) is chosen at random to determine whether the 
process condition is met. If the conditions for the process are met, the lattice is updated.

4. Comma-separated values files (.csv) of the two-dimensional lattice state are exported after a specific number 
of iterations, as defined in the code.

5. After all iterations are complete, the final lattice is exported along with a .csv file containing all of the relevant 
parameters used in the simulation.

Implementing domain growth and ablation. The above algorithm was modified to include domain growth. 
Instead of defining the size of the domain and the number of iterations of the Monte Carlo algorithm steps, we 
choose the initial size of the domain, the number of iterations before growth, and the number of growth events. 
When the simulation reaches the desired number of iterations, new lattice nodes are added to one side, and 
the nearest neighbors are updated with the new nodes. The added nodes can either be identical to an adjacent 
column or all empty. For all of the growth shown in Figs. 5 and 6 in the main text, an empty column was added 
at each growth event, which occurred every 107 iterations. There are functions in the Code Availability section 
that allow for trapezoidal growth, where both rows and columns are added. In addition, the user can specify the 
number of iterations before growth starts or after it is complete.

In a similar manner, ablation is performed by setting a code variable to specify when the user wants to ablate 
the system. When the simulation reaches the point of ablation, it converts a percentage of the middle rows and 
middle columns to empty sites (S). For the simulations shown in Fig. 6, the middle 75% of rows and the middle 
75% of columns were ablated.

Converting output to image files and animations. Once a simulation is complete, the exported .csv files were 
converted to the individual .png files shown in Figs. 3a, 4, 5, and 6 as well as Supplemental Figs. S1 and S2 in 
Python. For each imported .csv file, an array of the largest array size was created and was colored according to 
the numeric value in the .csv file. For xanthophores (value of 1 in the .csv file), the image array was colored yel-
low, and for melanophores (value of 2 in the .csv file), the image array was colored black. Empty sites were left as 
white, and if the image array was larger than the current .csv file array (because growth had not been completed 
yet) the remainder of the image array was colored blue. Each of the resulting image arrays was exported to a 
subfolder within the folder containing the original .csv files. Then, the image files were knitted together into an 
animation, which was saved into the same subfolder.

Code Availability
The code developed for this study is available in the EpsteinLab Github. The Survival-MC and Zebrafish-Plot 
repositories specifically are used. Link: https:// github. com/ Epste inLab.
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