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Analysing nystagmus waveforms: 
a computational framework
Richard V. Abadi1*, Ozgur E. Akman2*, Gemma E. Arblaster3,4 & Richard A. Clement2

We present a new computational approach to analyse nystagmus waveforms. Our framework is 
designed to fully characterise the state of the nystagmus, aid clinical diagnosis and to quantify 
the dynamical changes in the oscillations over time. Both linear and nonlinear analyses of time 
series were used to determine the regularity and complexity of a specific homogenous phenotype 
of nystagmus. Two-dimensional binocular eye movement recordings were carried out on 5 adult 
subjects who exhibited a unilateral, uniplanar, vertical nystagmus secondary to a monocular late-
onset severe visual loss in the oscillating eye (the Heimann-Bielschowsky Phenomenon). The non-
affected eye held a central gaze in both horizontal and vertical planes (± 10 min. of arc). All affected 
eyes exhibited vertical oscillations, with mean amplitudes and frequencies ranging from 2.0°–4.0° to 
0.25–1.5 Hz, respectively. Unstable periodic orbit analysis revealed only 1 subject exhibited a periodic 
oscillation. The remaining subjects were found to display quasiperiodic (n = 1) and nonperiodic (n = 3) 
oscillations. Phase space reconstruction allowed attractor identification and the computation of a 
time series complexity measure—the permutation entropy. The entropy measure was found to be able 
to distinguish between a periodic oscillation associated with a limit cycle attractor, a quasiperiodic 
oscillation associated with a torus attractor and nonperiodic oscillations associated with higher-
dimensional attractors. Importantly, the permutation entropy was able to rank the oscillations, 
thereby providing an objective index of nystagmus complexity (range 0.15–0.21) that could not 
be obtained via unstable periodic orbit analysis or attractor identification alone. These results 
suggest that our framework provides a comprehensive methodology for characterising nystagmus, 
aiding differential diagnosis and also permitting investigation of the waveforms over time, thereby 
facilitating the quantification of future therapeutic managements. In addition, permutation entropy 
could provide an additional tool for future oculomotor modelling.

Visual perception is strongly dependent on the stability of the two  eyes1. An unsteady involuntary ocular oscil-
lation is called a nystagmus. A nystagmus may be present at birth or develop within the first months of life 
(congenital/infantile: early-onset)2–4 or be acquired (late-onset)4. A diverse number of nystagmus waveform 
types have been described in the clinical literature, with studies exploring how the nystagmus intensity (ampli-
tude × frequency)5–7, nystagmus  waveform8, 9 and the foveation dwell  time5, 10–14 can influence visual acuity. Stand-
ard clinical assessments of nystagmus involve recording the laterality, conjugacy, plane of oscillation, amplitude, 
frequency, waveform shape and the foveation dwell time.

Outside the traditional clinic setting, additional techniques have been used. A linear systems analysis has been 
used to determine the periodic nature of the waveforms by means of both  Fourier8, 15–17 and wavelet  analysis18, 19. 
Results of a principal components analysis of early-onset nystagmus supported the hypothesis that nystagmus 
waveforms form a continuum, rather than falling into discrete waveform  classes20.

More recently, nonlinear dynamical systems theory has provided additional important computational 
 advances20–31. The basis of this dynamical approach is to geometrically represent the states of a nystagmus time 
series by computing the trajectories (or attractors) in phase  space32, 33. A stable system is then represented by a sta-
ble fixed point (a point attractor) whilst a range of other attractors define the different nystagmus waveform types. 
Significant developments have included the mapping of nystagmus waveform  attractors20, 22, 23, 25–30, descriptions 
of the transitions from one attractor type to another (bifurcations)26, 27, 29, 34, the quantification of  foveation28, 35 
and the measurement of the dimensionality underlying the  waveforms22, 25, 27. The application of nonlinear analy-
sis has also aided the modelling of the underlying neural behaviour responsible for the  oscillations22, 23, 26–29, 36.

OPEN

1Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK. 2College of 
Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK. 3Orthoptics Department, 
NHS Foundation Trust, Sheffield Teaching Hospitals, Sheffield, UK. 4Division of Ophthalmology and Orthoptics, 
Health Sciences School, University of Sheffield, Sheffield, UK. *email: r.abadi@manchester.ac.uk; o.e.akman@
exeter.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-89094-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9761  | https://doi.org/10.1038/s41598-021-89094-7

www.nature.com/scientificreports/

With these background studies in mind, we believe it is now timely to present a new computational framework 
for analysing nystagmus oscillations. Specifically, we intend to incorporate within the framework a quantitative 
measure of the complexity of the nystagmus waveform—the permutation entropy  index37–39.

Our analytical framework is presented in Fig. 1. It has 3 components: a standard clinical assessment, a linear 
systems component (Fourier analysis) and a nonlinear systems component (unstable periodic orbit and permuta-
tion entropy analyses). The deterministic behaviour of the nystagmus is characterised by the unstable periodic 
orbits (UPOs) of the  oscillations24, whilst the permutation entropy provides a measure of the complexity of the 
 waveforms37. In the past, the clinical assessment of the waveform complexity has been subjectively approximated 
by viewing the shape of the nystagmus waveform and/or noting the regularity of the low-velocity foveation peri-
ods within the waveform traces. Here we propose that a permutation entropy analysis will provide a substantial 
additional numerical scaling of the waveform complexity, thereby providing clinicians with a new means to not 
only assist in the selection of patients for therapy, but also indicate whether the therapy has been successful.

Methods
The study cohort: inclusion and exclusion criteria. We chose to study a specific late onset acquired 
oculomotor gaze disorder secondary to the loss of vision in one eye only—the Heimann-Bielschowsky 
 phenomenon40–43. The pertinent and consistent clinical features of individuals presenting with a HBP are a uni-
ocular, uniplanar, vertical nystagmus in the eye with visual loss. We selected this particular nystagmus syndrome 
since it is exclusively associated with a static late-onset severe visual loss in subjects without any history of a pre-
vious nystagmus. Most importantly, there are no detectable pathologies, apart from the single event that caused 
the initial and sustained visual loss. In this way, our cohort belongs to a discrete homogeneous category. In addi-
tion, we intentionally set ourselves the challenge of using our framework to investigate low frequency vertical 
oscillations, which often introduce difficulties with the recording and analysis of the nystagmus.

All subjects had a sustained late-onset monocular visual loss that was classed as severe or worse (visual 
acuity ≤ 20/20044) and which was solely confined to the affected eye. Exclusion criteria included accompanying 
neurological disorders, multiple causes of the visual loss, conditions often associated with an early-onset visual 
loss (e.g. strabismic amblyopia, spasmus nutans, infantile nystagmus and infantile cataract), significant head 
postures, and the presence of non-physiological ocular oscillations prior to the onset of the visual loss.

Informed consent was obtained from all subjects after the nature of the study had been explained. Ethical 
approval was granted by the Ethics Committee of the University of Manchester. Experimental and clinical pro-
tocols adhered to the tenets of the Declaration of Helsinki.

Figure 1.  A computational framework for analysing a nystagmus time series that combines linear and 
nonlinear investigative methods to supplement the standard clinical assessment. The linear and nonlinear 
systems analyses are based on spectral decomposition and attractor reconstruction respectively.
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Subjects and the clinical evaluation. Five adults (1 male and 4 female: age range 33–46 years) took part 
in the study. A comprehensive visual examination was carried out, including a full general, ocular and neurologi-
cal history. Refractive state, visual acuity, binocular status, ocular motility and ocular alignment were measured. 
The magnitude (spatial resolution), the onset time and the duration of the visual losses were recorded.

Eye movement recording. Horizontal and vertical eye movements were monitored using 2 separate 
recording systems for each of the 5 subjects whilst they binoculary viewed the targets.

1. A head mounted infrared IRIS 6500 limbal tracker system (Skalar Medical, Delft, The 1 Netherlands). The 
analogue output was filtered through a 100 Hz low pass filter, digitised to 12-bit resolution and then sampled 
at intervals of 5-ms (200 Hz). The system was linear over a range of ± 20°, with a resolution of 0.1°.

2. A 3-dimensional head-mounted video-based infra-red pupil tracking eye tracker running at 400 Hz with a 
resolution of 0.1° or better. (Chronos: Skalar Medical, Delft, The Netherlands).

Both recording methods were chosen to avoid the methodological limitations associated with more invasive 
techniques (such as the search coil) which would invariably rule out protracted and multiple recording sessions 
with our subjects, some of whom had also experienced anterior eye trauma.

Subjects sat in a dimly lit room equivalent to a mesopic level of illumination. Eye movements were calibrated 
by using either (1) a projected 2° circular stimulus that moved at 0.3 Hz horizontally or vertically over a range 
of ± 10°, and/or (2) a 10° × 10° stationary projected grid. Subjects were instructed to either follow the stimulus 
motion or to saccade between specific locations on the stationary grid as accurately as possible.

Fixation stability in primary gaze was assessed during attempted binocular fixation of a stationary 5.5° bull’s 
eye target, which had a large cross passing through its centre. Ocular alignment was assessed using the cover 
test with the bull’s eye target and/or a laser light source target. Throughout all recording sessions, a chin rest 
and supplementary cheek supports were used to stabilise the head. Eye movement data was stored and analysed 
off-line using custom-written MATLAB software. Fixation recording runs lasted between 40 and 60 s and were 
repeated on at least two occasions during each visit.

Separate from the laboratory-based fixation and eye alignment studies, eye movements were also externally 
filmed (JVC DV-j70 camcorder) to gather additional real time information.

Data analysis. The standard clinical assessment. The means and standard deviations of the horizontal and 
vertical eye position traces were computed for both the visually affected eye and its fellow. In addition, chart 
recordings were subjectively examined to determine the nystagmus intensity, baseline drift and waveform regu-
larity throughout individual recording sessions. Here, the amplitude of a nystagmus is defined as the magnitude 
of the change in eye position with each oscillation. Frequency is defined as the time between the peak-to-peak 
excursions of the oscillation. Our initial analysis was to subjectively establish whether the oscillations appeared 
periodic or nonperiodic. This differentiation proved very challenging, particularly as the oscillation frequency 
often fell below 0.5 Hz. Here, we define a periodic oscillation as a change of eye position that is cyclic, with a fixed 
period, whereas a nonperiodic oscillation is acyclic (e.g. quasiperiodic or nonperiodic).

The Fourier analysis. Fourier amplitude spectra were computed on successive segments of the eye movement 
recording as previously  described24. We used a window length of 4000 data points, corresponding to a recording 
length of 20 s, which were weighted by a triangular function of position for waveform smoothing, and padded 
at either end by 1000 zero values to minimize aliasing. These operations provided a frequency resolution of 
0.033 Hz. It should be noted that since the oscillations exhibited were of a low frequency, we adopted a longer 
window length than we had used in previous studies with early-onset/infantile nystagmus, where the oscillations 
were horizontal and of a far higher intensity.

The unstable periodic orbit (UPO) analysis. Unstable periodic orbits (UPOs) were identified in the data by a 
fixed-point technique introduced and developed by So and his  colleagues45, 46. In this technique, the period of 
each cycle of an oscillation is obtained from the interval between threshold crossings (i.e. the times at which the 
waveform passes through a fixed (threshold) value). A linear model of successive interval lengths was used to 
transform the lengths into estimates of the period of the underlying orbit. The period was identified by a peak 
in the histogram of the transformed data and its significance was tested by comparison with surrogate data 
obtained by shuffling the interval data. The widths of the histogram bins were set at 0.05 s. Representative exam-
ples of periodic behaviour were found by establishing which sequences of intervals approached the identified 
period most closely, before subsequently deviating from  it24, 35.

Attractor reconstruction. The behaviour of a dynamical system can be described by a set of differential equa-
tions governing the temporal dynamics of the  system32, 33, 47. The dynamical evolution of the system corresponds 
to a series of consecutive points in phase (or state) space, referred to as the trajectory of the system, and the 
corresponding graphical depiction is referred to as the phase portrait. The region of state space to which the 
trajectories of a dynamical system converge is known as an attractor. Transitions from one attractor to another 
occur when the control parameter of the system passes through a critical value. This qualitative change is called 
a  bifurcation33, 48.

The simplest stable solution of a dynamical system is a stable fixed point, and with increasing time, all trajec-
tories terminate at this point (Fig. 2a). Stable fixed points are thus static point attractors and describe the normal 
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behaviour of the oculomotor control system during steady  gaze22, 27. The system is accordingly deemed to be in 
a single permanent state and in equilibrium. On the other hand, unstable dynamical systems yield trajectories 
in state space that do not converge to a point attractor. Possible attractors include one-dimensional closed loops 
(a limit cycle) (Fig. 2b-top), two-dimensional doughnut-shaped surfaces (a torus) (Fig. 2b-bottom) and, three 
or more dimensional topologies (e.g. strange or chaotic attractors) (Fig. 2c)22, 25, 27, 34, 49.

The UPOs identified in “The unstable periodic orbit (UPO) analysis” section were used to reconstruct the 
corresponding attractors from each subject’s  waveform29. Attractor reconstruction was implemented using the 
delay embedding procedure, in which a window of length d (referred to as the embedding dimension) is slid 
across the time series {x(i), i = 1,2,…}, yielding delay vectors {Xi = [x(i), x(i + 1),…, x(i + (d−1))], i = 1,2,…}. The 

Figure 2.  A comparison between stable (first row (a)) and unstable fixation (second row (b) and third row (c)). 
Columns 2, 3 and 4 show the corresponding time series, attractor type and frequency spectra, respectively. Note 
that all phase trajectories converge to the attractor over time: (a) A system in a state of stable equilibrium (e.g. 
steady fixation) is represented by a fixed point. Unstable systems (giving rise to unsteady fixation) are illustrated 
by ((b)-top) a one-dimensional limit cycle (periodic oscillation), ((b)-bottom) a two-dimensional torus 
(quasiperiodic oscillation) and (c) a higher-dimensional chaotic attractor (nonperiodic oscillation).
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delay vectors reconstruct the trajectory of the underlying dynamical system from which the time series was 
measured in a d-dimensional space (provided that d is sufficiently large), and thus provide a means of classify-
ing the corresponding attractor (e.g. as a limit cycle, torus etc.—see Fig. 2)30, 50–52. Previous studies have shown 
that an embedding dimension d of 7 is sufficient to capture the variance in oculomotor tremor time  series22, 26, 

29. Accordingly, the same embedding dimension was applied to the segments of each subject’s time series that 
most closely followed the UPO. The delay vectors generated in this way were then projected onto their first three 
principal components in order to visualise the reconstructed  attractor22, 26, 29, 52.

Permutation entropy analysis. Permutation entropy analysis determines the level of predictability within a time 
series to yield a scalar measure of waveform  complexity37–39. Permutation entropy is simple and fast to compute 
and is also fairly robust to dynamical and observational noise. As such, it is well-suited to the analysis of physi-
ological time  series39, and the low intensity, uniocular, vertical oscillations displayed by our subjects. This tech-
nique yields similar information to the Lyaponov exponent on the stability of a dynamical system, whilst being 
more readily applicable to real-world  data37.

The permutation entropy is calculated from the delay vectors {Xi = [x(i), x(i + 1), …, x(i + (d−1))], i = 1,2,…} 
generated from the time series {x(i), i = 1,2,…}with an embedding dimension d as  follows37, 38. Each delay vec-
tor Xi is uniquely mapped to the symbol sequence of length d, [j1, j2, …, jd], that encodes its arrangement into 
increasing order, i.e. such that: x(i + j1−1) ≤ x(i + j2−1) ≤ … ≤ x(i + jd−1) (for example, in a 3-dimensional delay 
space, the delay vector [0.1, 3, 10.5] would be mapped to the symbol sequence [1, 2, 3] and the delay vector [1.2, 
−4, 3] would be mapped to the sequence [2, 1, 3]). Then if K ≤ d! is the number of distinct symbol sequences 
obtained from the delay vectors and the probabilities of these symbol sequences are P1, P2, …, PK, the permuta-
tion entropy of the time series is defined as.

Hp attains its minimum value of 0 when there is only one symbol sequence (K = 1 with P1 = 1) and its maxi-
mum value of ln(d!) when all sequences occur with equal probability (K = d! with Pj = 1/d!) Thus, it is standard to 
normalise Hp by ln(d!), giving a measure hp = Hp/ln(d!) for which 0 ≤ hp ≤ 1. The quantity hp then gives a measure 
of the complexity of the time series, with a larger value of hp indicating a more irregular time  series37, 38. Here, 
prior to the calculation of hp, the moving average of the signal was subtracted to eliminate baseline  drift51. The 
resulting waveforms are shown in Fig. 3. Following the approach used for EEG analysis  in38, for each time series 
the permutation entropy hp was then calculated for all overlapping windows of a fixed length, Tw. The value of the 
embedding dimension d was set to 7 (the same value used for attractor reconstruction) and Tw was set to 25.2 s 
to ensure that all symbol sequences possible with this d value could potentially be observed in a single window.

Results
The standard clinical assessment. A summary of the clinical details of the subjects are shown in Tables 1 
and 2. All subjects presented with a late onset acquired uniocular, uniplanar (vertical) nystagmus that substan-
tially reduced form perception. LogMAR visual acuity losses fell into one of three categories: severe (≤ 20/200; 
subject 2), profound (≤ 20/1000; subject1) and no light perception (NLP) (subjects 3, 4 and 5). The age at which 
vision loss occurred ranged between 6 to 46 years, with the lowest onset age beyond the critical period for form 
 perception53. The duration of the visual loss prior to the onset of the nystagmus ranged between 1–24 years, with 
a median value of 2 years. Ocular alignment was compromised in 4 of the 5 subjects. The visually non-affected 
eye of each of the 5 subjects held a central gaze within ± 10 min of arc in both horizontal and vertical planes. 
Fixation was therefore deemed stable and not significantly different from normal.

Mean amplitudes and frequencies of the uniplanar oscillations in the affected eyes of the 5 subjects ranged 
from 2.0°–4.0° to 0.25–1.5 Hz, respectively. Subjectively, the time series appeared asymmetrically pendular with 
downward phases tending to be slower than upward ones. Eye position traces for the horizontal and vertical 
planes for subjects 1 and 2 are illustrated in Fig. 4a,b, respectively. Representative sections of the time series of 
the affected eyes in the vertical plane for each of the 5 subjects are shown in Figs. 5 (left-hand column (a)) and 
6 (left-hand column).

All subjects also exhibited small-amplitude monophasic conjugate horizontal saccadic intrusions in both the 
oscillating and non-oscillating eyes (see Fig. 4a,b). Amplitudes of the saccadic intrusions ranged between 0.3° 
and 1.0° and were composed of regular back-to-back saccadic movements. The occurrence and metrics of the 
monophasic saccadic intrusions in the horizontal plane of the affected eye did not significantly differ from those 
recorded in the fellow stable eye, or those commonly recorded in the general  population54.

The Fourier analysis. The time series and relative amplitudes of the Fourier spectra for each of the 5 sub-
jects are shown in Fig. 5 (first and middle columns, (a) and (b) respectively). Only subject 2 (Fig. 5, second row) 
displayed a clear periodic behaviour (Table 2). The dominant low frequency components seen in the spectra 
of the other 4 subjects made it difficult to conclude whether the waveforms were quasiperiodic or nonperiodic 
solely from the Fourier analysis.

UPO analysis. The relative frequency of the transformed interval data for all subjects is illustrated in Fig. 5 
(right-hand column (c)). The presence of an unstable periodic orbit was determined by comparing the actual 

Hp = −

K∑

j=1

Pj ln Pj .
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Figure 3.  Time series used for the permutation entropy calculations (see text for further details).

Table 1.  Summary of the clinical findings from the 5 subjects. VA = visual acuity. M = male. F = female. 
R = right eye. L = left eye. NLP = no light perception. Age = age at the time of the final eye movement recording 
session in years. Residual tropia = a smaller deviation (in the same direction) following extra-ocular muscle 
surgery; secondary tropia = a strabismus secondary to a visual loss. ET = esotropia. XT = exotropia. ° = degrees. 
Hz = Hertz. ● = stable fixation. ↕ = vertical oscillation. Note: The fixation pictograms indicate fixation 
behaviour. Frequencies and amplitudes in the rightmost column were approximated directly from chart 
recordings by experienced oculomotor clinicians. All 5 subjects exhibited their oscillations for a minimum 
period of 4 years prior to the commencement of the study.

Patient Sensory status Ocular motor status

Subject Age:Sex Affected eye: VA
Age at time of 
visual loss

Duration of 
monocular visual 
loss prior to 
onset of fixation 
instability

Cause of 
monocular visual 
loss Ocular alignment

Age at time of 
fixation instability

Binocular fixation behaviour

R L

Mean amplitude 
and frequency of 
affected eye

1 34Y:M R:20/1000 26 2 Ocular trauma Residual XT 28 ↕ ● 4.0° 0.5 Hz

2 33Y:F L:20/200 6 2 Ocular trauma Residual XT 8 ● ↕ 2.6° 1.5 Hz

3 54Y:F L:NLP 46 1 Optic nerve 
tumour No deviation 47 ● ↕ 2.5° 0.5 Hz

4 46Y:F R:NLP 18 24 Venous thrombosis Residual ET 42 ↕ ● 2.0° 0.25 Hz

5 41Y:F R:NLP 26 6 Uveitis Secondary XT 32 ↕ ● 3.5° 1.2 Hz
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function (thin line) with the surrogate function (bold line) of the transformed data. The UPO frequencies com-
puted in this manner are listed in Table 2. Results for each subject will be considered separately:

Subject 1—Two periodic orbits were identified (0.67 Hz and 2.86 Hz), with the lower of the two frequencies 
showing significance at the 5% level. This lower frequency value was consistent with the findings from the 
spectral analysis.
Subject 2—Displayed clear periodic behaviour with an isolated peak in the transformed interval data. A single 
identifiable periodic orbit was computed at 1.30 Hz (p < 0.01).
Subject 3—Although the time series was very noisy, a periodic orbit peak was identified at 0.47 Hz (p < 0.05).
Subject 4—The time series was very noisy, but a periodic orbit peak could be identified at 0.34 Hz (p < 0.05).
Subject 5—A clear periodic orbit peak was found at 1.53 Hz (p < 0.01).

Attractor reconstruction and permutation entropy calculations. The UPOs and corresponding 
reconstructed attractors of each time series are shown in the left and right columns of Fig. 6, respectively. It can 
be observed that subject 2 appears to have a limit cycle attractor, corresponding to a periodic oscillation (Fig. 6b; 
cf. Fig. 2b-top), that subject 5 appears to have a torus attractor, corresponding to a quasiperiodic oscillation 
(Fig. 6e; cf. Fig. 2b-bottom) and that the remaining subjects have more complex, higher-dimensional attractors, 
corresponding to nonperiodic oscillations (Fig. 6a,c,d; cf. Fig. 2c). The classification of subject 2′s attractor as a 
limit cycle was consistent with both the Fourier and UPO analyses.

The corresponding permutation entropy distributions are shown as box plots in Fig. 7, with medians and 
median absolute deviations reported in Table 2. The subjects’ median entropy values were statistically distinct 
(paired Wilcoxon rank sum tests with Bonferroni correction, p < 0.01) and gave the following ranking of subjects 
in terms of increasing waveform complexity (i.e. increasing waveform irregularity): 2 → 5 → 4 → 3 → 1. This 
ranking was consistent with the attractor reconstructions, in that the lowest entropy (subject 2) corresponded to 
the simplest attractor (limit cycle), the next lowest entropy (subject 5) corresponded to a more complex attractor 
(torus) and the higher entropies corresponded to attractors with higher dimensionality than the limit cycle and 
torus. Interestingly, the entropy-based ranking of the subjects’ waveforms with respect to irregularity matched 
that of an experienced clinician, indicating the potential utility of the measure as a diagnostic index.

Discussion
Computational analysis of nystagmus waveforms. This study has presented a computational frame-
work to characterise and quantify ocular oscillations (nystagmus). In this case, the nystagmus was an acquired, 
late-onset oculomotor instability secondary to a severe monocular visual loss. The monocular vertical ocular 
oscillations were solely manifest in eyes that had experienced the visual loss. Specifically, we sought to establish 
the periodicity, attractor type and complexity of the nystagmus time series for each of the subjects. The good 
agreement between the periodicities found by Fourier analysis and an unstable periodic orbit analysis implies 
that these periodicities can be determined most simply by readily available spectral analysis software.

Phase space reconstruction allowed attractor identification and the computation of a time series complexity 
measure, the permutation entropy. The permutation entropy index was able to differentiate between a periodic 
oscillation associated with a limit cycle attractor, a quasiperiodic oscillation associated with a torus attractor and 
nonperiodic oscillations associated with higher-dimensional attractors. Importantly, the permutation entropy was 
able to rank the oscillations in order of complexity, thereby providing an objective index of nystagmus oscillation 
complexity that could not be obtained via UPO analysis or attractor identification alone.

Classifying nystagmus waveforms. Many attempts have been made to classify nystagmus time series. 
In the case of an early onset (infantile) nystagmus, waveforms have been closely associated with their fast and 
slow  phases8, 9, 11, 17, 20. More recently the application of principal component analysis revealed that 97% of the 
variance of the waveforms can be described by a linear sum of 2 component waveforms (i.e. sawtooth and pseu-

Table 2.  Summary of the linear and nonlinear analyses of the nystagmus waveforms from each subject. 
Frequencies in Hz were calculated in three ways: (i) through approximation from chart recordings by 
experienced clinicians; (ii) through Fourier analysis (the reported frequency corresponds to the peak in 
the corresponding Fourier spectrum); (iii) from the dominant unstable periodic orbit (UPO). Periodicity 
categories were based on the attractor reconstructions shown in Fig. 6. Median permutation entropy values are 
given, with median absolute deviations in brackets.

Subject

Oscillation frequency (Hz) Periodicity category Permutation 
entropyClinical assessment Fourier analysis UPO analysis Periodic Quasi-periodic Non-periodic

1 0.50 0.49 0.67 ✓ 0.2571 (0.0184)

2 1.50 1.41 1.30 ✓ 0.1477 (0.0014)

3 0.50 0.40 0.47 ✓ 0.2133 (0.0131)

4 0.25 0.57 0.34 ✓ 0.2089 (0.0040)

5 1.20 – 1.53 ✓ 0.1789 (0.0030)
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docycloid)35. In addition, other groups have proposed that a waveform classification should also take account of 
the metrics of the low-velocity foveation periods that are often a constituent of the  waveforms5, 7–9, 11–14, 55.

In the case of a non-HBP late-onset (acquired) nystagmus, the task is somewhat more complex due to the 
underlying pathologies. Waveforms show marked spatial and temporal variation and, on occasion, display behav-
iours pathognomonic of the site of the neural  disorder4. Notwithstanding, we suggest that our computational 
framework will provide the analytical basis to classify both early- and late-onset nystagmus waveforms.

It is important to note that in parallel with previous investigations of nystagmus waveforms, there have been 
numerous studies exploring the perceptual consequences of early-onset and late-onset nystagmus. In nystag-
mus, the moving retinal image reduces many aspects of visual  performance4, 6, 7, 56. Specifically, both early- and 

Figure 4.  Eye position recordings during binocular viewing of a stationary target located in primary gaze. 
(a) Unilateral vertical nystagmus in the right eye of subject 1. (b) Unilateral vertical nystagmus in the left eye 
of subject 2.  RH = right horizontal,  RV = right vertical,  LH = left horizontal and  LV = left vertical. Arrows indicate 
saccadic intrusions (see text for further details).
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late-onset subjects not only experience losses in visual acuity, but the latter group also experience the disturbing 
movement of their visual environment (oscillopsia). It is these visual consequences which have driven us to 
understand the underlying mechanisms of nystagmus to seek specific dedicated therapeutic management (see 
“Concluding remarks” section).

Mechanisms underlying the waveform complexity. In previous studies we investigated whether 
early-onset (congenital/infantile) nystagmus is generated by a deterministic  mechanism26–28, finding evidence 
for periodic behaviour contaminated by  noise24. This finding, supported by a Fourier analysis, indicated a single 
distinct peak in the UPO spectrum of each  subject16, 24. Although nonlinear deterministic systems that do not 
settle into steady state behaviour, can show periodic, quasiperiodic or chaotic behaviour, this would be associ-
ated with a skeleton of one or more commensurate periodic orbits, at least two non-commensurate periodic 
orbits or a multiplicity of periodic orbits respectively. In our present cohort of a late-onset nystagmus, we com-
monly found cases showing multiple unstable periodic orbits, although only one orbit was statistically significant 
in each case. This suggests that the data noise prevented the UPO analysis from directly distinguishing between 
these different oscillation categories, requiring the attractor reconstruction to do so.

Concluding remarks. In the past, the standard clinical assessment of the basic metrics of a nystagmus has 
proved valuable, but somewhat  limited57. Here we show how the application of a nonlinear dynamical systems 
approach can substantially improve our understanding of the characteristics of the nystagmus (irrespective of 
its onset-time). Specifically, permutation entropy analysis has been demonstrated as a potentially valuable tool 
for monitoring a nystagmus system’s dynamics over time, with scope for assisting differential diagnosis. As such, 
application of the index to the infantile nystagmus waveforms we have considered in our previous studies would 
be a natural extension of the work presented here. However, a decision-support system of this type would require 
the analysis of a much larger cohort of nystagmus subjects, in order for classification boundaries between dif-
ferent oscillation types (and their mapping to visual loss severity) to be robustly derived. In this regard, the per-
mutation entropy index could prove particularly useful in assessing the maturation and adaptation of nystagmus 
waveforms in early and late onset nystagmus, the quantifying of changes following therapeutic management (e.g. 

Figure 5.  Periodicity analysis. (a) 5 s samples of the time series from each subject. See Fig. 3 for the full time 
courses. (b) Frequency spectra. (c) Unstable periodic orbits (UPOs). UPOs were determined by comparing 
the relative frequency of the transformed interval data (thin lines) with surrogate data (bold lines). See text for 
further details.
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drug and gene  therapy58, 59, extraocular  surgery17, 25, 59,  biofeedback60, external periodic  forcing61), whilst also 
providing an additional tool for future oculomotor systems modelling.

It is also important to stress that any investigation of a nystagmus time series is greatly dependent on the 
manner of its recording, storage, analysis and interpretation. Presently, these tasks are more easily achievable in a 

Figure 6.  Phase space reconstructions. Left column: Time series segments for each subject showing the 
unstable periodic orbits (UPO) extracted in each case (red lines). Right column: The attractors reconstructed 
from the UPOs using delay embedding (see text for further details).
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laboratory environment. We are therefore greatly encouraged by the improved availability of clinic-friendly 2- and 
3-dimensional eye movement recording  systems62, 63. Their high resolution, greater linearity, improved sampling 
rates and noise reduction properties are particularly important for examining nystagmus waveforms, which can 
vary from cycle to cycle. Advances in signal calibration of a moving  eye64, 65, together with new techniques for 
noise reduction of the  data66, will no doubt assist in the analysis of a nystagmus time series. Moreover, targeted 
studies on nystagmus feature  extraction9, 20, 35, 67 and modelling of nystagmus waveforms (see “Mechanisms under-
lying the waveform complexity” section) will improve our understanding of the mechanisms underpinning the 
oscillations. We believe that, with nonlinear time series analysis methods becoming more  established68 and the 
integration of automated techniques for data mining and decision support (machine learning)69, 70, the clinical 
assessment, management and modelling of nystagmus is entering a new and rewarding phase.
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