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The development of structural 
covariance networks 
during the transition 
from childhood to adolescence
Nandita Vijayakumar1*, Gareth Ball2,3, Marc L. Seal2,3, Lisa Mundy3,4, Sarah Whittle5,6 & 
Tim Silk1,2,3,6

Structural covariance conceptualizes how morphologic properties of brain regions are related to one 
another (across individuals). It can provide unique information to cortical structure (e.g., thickness) 
about the development of functionally meaningful networks. The current study investigated how 
structural covariance networks develop during the transition from childhood to adolescence, a period 
characterized by marked structural re-organization. Participants (N = 192; scans = 366) completed 
MRI assessments between 8.5 and 14.5 years of age. A sliding window approach was used to create 
“age-bins”, and structural covariance networks (based on cortical thickness) were created for each 
bin. Next, generalized additive models were used to characterize trajectories of age-related changes 
in network properties. Results revealed nonlinear trajectories with “peaks” in mean correlation and 
global density that are suggestive of a period of convergence in anatomical properties across the 
cortex during early adolescence, prior to regional specialization. “Hub” regions in sensorimotor 
cortices were present by late childhood, but the extent and strength of association cortices as “hubs” 
increased into mid-adolescence. Moreover, these regional changes were found to be related to rates 
of thinning across the cortex. In the context of neurocognitive networks, the frontoparietal, default 
mode, and attention systems exhibited age-related increases in within-network and between-network 
covariance. These regional and modular developmental patterns are consistent with continued 
refinement of socioemotional and other complex executive functions that are supported by higher-
order cognitive networks during early adolescence.

Converging evidence from longitudinal neuroimaging research highlights patterns of cortical thinning during 
childhood and  adolescence1, reflective of synaptic pruning, myelination and/or cortical  morphology2–4. These 
normative developmental trajectories do not, however, occur simultaneously across the cortex; i.e., there is 
regional variation in grey matter  changes5–7. Importantly, this variability suggests that structural cortical net-
works are also likely to mature during this  period8. Understanding the changing relationships between cortical 
regions may provide unique information beyond univariate studies of grey matter development, as covariance in 
structural properties is thought to arise from experience dependent plasticity and mutually trophic  processes9–11, 
such that regions that fire together, wire  together12. In particular, the transition between childhood and ado-
lescence, and associated pubertal processes, brings about a second wave of structural “re-organization” that is 
second only to  infancy13–15. However, targeted investigations of the development of structural cortical networks 
during this period are lacking.

Structural covariance is a multivariate analysis technique that conceptualizes how morphological properties 
of different brain regions relate to each other at the group-level. To do so, properties such as cortical thickness 
are measured for each brain region in a group of subjects, and correlations between these regional estimates are 
calculated for each pair of regions across the group. While most research has characterized topological properties 
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of structural covariance across one period of the lifespan (e.g.,  infancy16, childhood/adolescence17,  aging18), 
a smaller set of studies have shown that these properties also change over time. Studies of early childhood to 
late adolescence have found patterns of increasing integration (i.e., capacity to facilitate the combination of 
information from distributed brain regions) and decreasing segregation (i.e., capacity to facilitate specialized 
processing within groups of regions) of networks until late childhood, followed by inverse trajectories or pla-
teaus during  adolescence19–21. Those focusing on later adolescence and young adulthood have shown that the 
strength of overall cortical correlations decreases between 14 and 20 years of age before  plateauing8, which is 
hypothesized to reflect inter-individual variability in the timing of maturation of different brain regions. Taken 
together, these studies provide growing evidence that the transition between childhood and adolescence may 
be particularly characterised by evolving structural network properties, and that these global changes may be 
nonlinear in pattern.

There is also emerging evidence for regional variability in covariance patterns; for example, association corti-
ces have been found to exhibit continued increases in connectivity strength and efficiency from early childhood 
to young  adulthood1921, while paralimbic and sensorimotor cortices exhibit increases and decreases, respectively, 
that  plateau19. Others have shown that neurocognitive systems (i.e., regions within functional communities) 
have differential developmental patterns during later adolescence and young adulthood, with the frontoparietal 
network exhibiting the greatest decrease in  covariance8. Those using a lifespan approach have also found that 
higher-order cognitive systems exhibit structural covariance changes that differentiate young adulthood from 
both childhood/adolescence and older  adults22. Prior literature has thus identified regional variability in covari-
ance patterns when using used wide age ranges or a life-span approach. However, extending such analyses to 
specifically focus on the transition from childhood to adolescence may provide novel insight into prominent 
models of neurodevelopment that purport a mismatch between neurocognitive systems that begins during this 
transition period e.g. 23,24.

Early adolescence is also characterized by significant sex differences in biological development, which are 
often postulated to underlie prominent sex differences in the prevalence of psychopathology that emerge during 
this  period25,26. While research has largely failed to identify such differences in structural covariance patterns in 
 neonates16,  young8 and older  adults10, targeted investigations of the transition from childhood to adolescence 
may provide novel insight into sexual dimorphism. Pubertal hormone changes that support physical maturation 
also act on receptors in the  brain27. Based on earlier pubertal maturation in females, some have suggested they 
may undergo earlier  cortical28,29 and white  matter30 maturation relative to males. Although a number of studies 
have failed to identify sex differences in cortical thinning, some support comes from research using multivariate 
 approaches31. Thus, the examination of changes in network properties may provide novel insight into potentially 
differential patterns of cortical maturation in males and females during early adolescence.

The current study extends the literature on the network properties of brain structure during the transition 
from childhood to adolescence. As highlighted by Váša and  colleagues8, prior literature has typically provided 
coarse-grained resolution of structural network development by categorizing participants into discrete (and 
wide) age groups. Arbitrary definitions of age-defined groups may also be contributing to inconsistencies in the 
literature. As such, we utilize a sliding window approach (as employed in recent  studies8,21) to precisely charac-
terize changes in structural covariance networks during this transition period (i.e., how does the relationship 
between structural properties of regions change over time). Our age-defined structural covariance networks are 
based on sliding windows of larger participant numbers and narrower age ranges relative to prior literature e.g. 
19,20, thus increasing the robustness of our correlation  estimates32. This was achievable with an overall sample size 
that was considerable for the confined developmental period that was examined. We hypothesized an increase in 
global connection density during the transition from late childhood and early adolescence, followed by either a 
plateau or decrease by mid-adolescence. We also investigated regional variation in topological properties, and 
characterized these changes in the context of neurocognitive networks. We hypothesized that association cortices, 
and particularly frontoparietal networks, may exhibit the greatest changes in covariance patterns during this 
period. Next, we examined associations between cortical thinning and covariance, speculating that regions that 
exhibit the greatest thinning during early adolescence may also have the greatest covariance with the rest of the 
brain. Finally, we explored sex differences in global properties and neurocognitive networks.

Methods
Participants. Participants were from the community in Melbourne, Australia, and were recruited into one 
of two longitudinal projects: i) Neuroimaging of the Children’s Attention Project (NICAP), and ii) imaging brain 
development in the Childhood to Adolescence Transition Study (iCATS). NICAP participants were recruited as 
typically developing controls into a study of a community-based cohort of children with and without ADHD. 
Further details on the NICAP and iCATS samples is presented in Silk et al.33 and Simmons et al.34, respectively. 
Exclusion criteria for these analyses included MRI contraindications, developmental disability, history of a neu-
rological or serious medical disorder (e.g., diabetes, kidney disease), and psychotropic medications. For both 
cohorts, written informed consent was obtained from the parent/guardian of all participants. Ethics approval 
was granted by the Royal Children’s Hospital Human Research Ethics Committee, Melbourne (NICAP #34,071; 
iCATS #32,171). The iCATS protocol was additionally ratified by the University of Melbourne Human Research 
Ethics Office (#1238745), and the NICAP protocol was ratifiedby the Deakin University Human Research Ethics 
Office (#2016–394). Methods were performed in accordance with these approved protocols.

The NICAP sample underwent up to 3 repeated assessments between the ages of 9.5 and 14.5 years, with 
approximately 18-month intervals (M = 1.432, SD = 0.222, 1.021–2.330 years) between assessments. The 
iCATS sample underwent 2 repeated assessments between the ages of 8.5 and 13.5 years, with approximately 
36-month intervals (M = 2.763, SD = 0.243, 2.158–3.344 years) between assessments. The two samples did not 
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differ in sex (χ2 = 1.342, df = 1, p = 0.247), pubertal stage (based on parent-report Sexual Maturity  Scale35; Mean: 
iCATS = 1.282, NICAP = 1.316,  t(161) =  − 0.431, p = 0.666), or intelligence (based on Wechsler Abbreviated Scale of 
Intelligence—Matrix Reasoning T-score; Mean: iCATS = 54.096, NICAP = 52.607,  t(179) = 1.225, p = 0.222). How-
ever, the iCATS sample was significantly younger than the NICAP sample at baseline (Mean: iCATS = 9.556, 
NICAP = 10.425;  t(157) =  − 14.928, p < 0.001) and had higher socioeconomic status (based on Socio-Economic 
Indexes for Areas—Index of Relative Socio-economic Advantage and Disadvantage, based on Australian census 
data; Mean: iCATS = 1056.175, NICAP = 1018.326;  t(198) = 4.887, p < 0.001).

Following exclusions during quality-control (see below for further detail), the final sample comprised 366 
scans from 192 participants (96 females, 90 NICAP) aged 8.5–14.5 years, which was used to create cross-sectional 
windows (see “Statistical analyses” for further detail). Specifically, 59 participants (28 males) provided a single 
observation, 92 (46 males) provided two observations, and 41 (22 males) provided three observations. For fur-
ther breakdown of these numbers by cohort, and distributions of age and sex at each wave, refer to Vijayakumar 
et al.36).

MRI acquisition and processing. Neuroimaging data for both projects were acquired on a 3 T Siemens 
scanner (Siemens, Erlangen, Germany) at the Murdoch Children’s Research Institute in Melbourne, Australia. 
Participants completed a mock-scan prior to their actual scan at wave 1 (and was repeated at subsequent waves if 
the participant wished or researcher deemed it appropriate). They were also given information on MRI (includ-
ing a video) prior to participating in order to familiarize them with the procedure and minimize anxiety as much 
as possible. Both waves of iCATS, and waves 1 and 2 of NICAP, were collected on a TIM Trio scanner. The final 
wave of NICAP was collected after an upgrade to a MAGNETOM Prisma scanner, which has been accounted 
for in statistical modelling. Refer to the Vijayakumar et al.36 for further detail of an investigation into potential 
cortical differences related to scanner upgrade, which found that only one region (the right insula) exhibited 
significant differences when comparing pre- and post-upgrade estimates in a sample of age- and sex-matched 
participants (N = 22).

Participants lay supine in a 32-channel head coil during the MRI scan. Structural T1-weighted images were 
acquired as follows: iCATS. MPRAGE with repetition time = 1900 ms, echo time = 2.24 ms, flip angle = 9°, field of 
view = 230  mm2, resulting in 176 contiguous slices with voxel dimensions 0.9  mm3. NICAP. MEMPRAGE with 
repetition time = 2530 ms, echo time = 1.77, 3.51, 5.32, 7.2 ms, flip angle = 7°, field of view = 230  mm2, resulting 
in 176 contiguous slices with voxel dimensions 0.9  mm3.

T1-weighted images were processed through FreeSurfer 6.0, a freely available image analysis suite for cor-
tical reconstruction and volumetric segmentation (http:// surfer. nmr. mgh. harva rd. edu/). Specifically, images 
were processed with the submillimeter  reconstruction37 and the longitudinal stream that creates an unbiased 
within-subject template space from all available data using robust, inverse consistent registration. The template 
is used as an estimate to initialize segmentation processes for each time point, providing common information 
regarding anatomical structures, and has been found to significantly increase reliability and statistical  power38,39. 
The quality of i) raw images and ii) (longitudinal) cortical reconstructions was visually inspected and rated for 
all scans. Raw images were rated on a 4-point scale for “ringing” (1: no ringing; 2: slight ringing restricted to a 
small cortical area; 3: more ringing extending into white matter and/or covering more brain regions; 4: extensive 
ringing) and “blurriness” (1: sharply defined images; 2: slight blurriness; 3: or considerable blurriness; 4: blurring 
throughout). Ratings of “3” and “4” on either scale were excluded. Processed images were rated on a 3-point scale 
on the accuracy of the white and pial surfaces (1: near perfect reconstruction; 2: minor reconstruction issues 
limited to small areas of the brain; 3: poor reconstruction with consistent under-estimation of white matter or 
extensive areas of CSF included as grey matter). Ratings of “3” were excluded. Images were also processed through 
MRIQC (v0.14.2) to supplement the visual  inspection40. This resulted in the exclusion of a total of 37 scans from 
34 participants (i.e., 3 participants had 2 scans removed). No manual edits were made to the remaining (included) 
data (further details of the quality control procedure have been reported  previously36) . Mean cortical thickness 
estimates from 360 regions of the Human Connectome Pipeline’s multimodal parcellation atlas (HCP-MMP1)41 
were  extracted42 and used in subsequent analyses. Supplemental analyses examined mean cortical thickness of 
62 regions of the Desikan Killiany Tourville (DKT)  atlas43.

Statistical analyses. Structural covariance networks (SCN). The sliding window approach involves creat-
ing a series of overlapping “bins” of participants while incrementally sliding across the age range of this sample. 
Bins were defined by i) an equal sample size, and ii) an incremental step size. As this sliding window approach 
requires an arbitrary definition of sample and step sizes, we ran analyses across a series of these parameters. Bin 
sizes of n = 70, 80 and 90, in conjunction with overlap of 70%, 75%, and 80% of the sample (i.e., incremental 
age-based “steps” of 20%, 25%, and 30%), were examined. Every combination of bin and step sizes were used, 
thus producing 9 configurations. A visual representation of the data for one sliding window configuration is 
presented in Fig. 1.

For each of these 9 sliding window configurations, structural covariance networks were created for each age-
bin, and the median age of each age-bin was assigned to the respective matrix. Each participant contributed a sin-
gle scan to each age-defined network. In instances where more than one scan from a participant fell into a given 
age bin, the scan closest to the median age was selected. The 3 bin sizes and 3 step parameters were chosen based 
on the trade-off between bin size and repeated assessments per participant within each bin. In other words, larger 
bin sizes had wider age ranges, and thus participants were more likely to contribute two scans to each age-bin.

Given sample differences in demographics and scanner protocols described above, prior to creating structural 
covariance networks for each bin, we performed linear regression, modelling cortical thickness of each region 
as a function of sex, cohort (iCATS, NICAP) and scanner (pre-upgrade, post-upgrade) across the full sample. 

http://surfer.nmr.mgh.harvard.edu/
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The standardized residuals of this model were calculated using the “rstandard” function in R, and used to create 
the structural covariance networks. That is, for the subsample of participants in each bin, we correlated cortical 
thickness across 360 regions defined by the HCP-MMP1 parcellation, and as supplemental analyses for the 62 
regions defined by the DKT parcellation.

There are concerns of noise when estimating structural covariance networks from small sample sizes, although 
knowledge of appropriate sample size remains  limited32. Prior research has used a probabilistic bootstrap thresh-
olding procedure to address this  issue8, whereby connections are retained on the basis of a criteria of connection 
“likelihood” rather than connection weights or fixed edge density. The bootstrap thresholding approach identifies 
the most statistically robust connections in a network, which are least likely to represent false positives. Within 
each age-bin, 1000 sets of participants were sampled with replacement, to re-estimate the structural network. We 
retained edges that were consistently positive across bootstraps (at false discovery rate [FDR] corrected α = 0.05) 
and set the remaining edges to zero (note, negative edges were identified in an average of 0.04% (range: 0.06–0.1) 
of the edges across all window configurations). Thresholded networks were binarized prior to graph analyses.

Graph metrics. Graph metrics of each thresholded and binarized SCN were examined using global, nodal and 
modular properties. We focused on basic metrics as bootstrap thresholding produces variable density for each 
network, which can confound differences between networks when comparing higher-order graph  metrics44. 
Thus, we examined global density (i.e., percentage of total connections) and node degree (i.e., number of con-
nections per region). Hubs were defined as nodes with standardized degree greater than 1 (i.e., > 1SD from the 
mean of a given SCN)45,46. SCNs were also decomposed into a functional modular structure using the Yeo 7 
parcellation  scheme47, with each cortical region of the HCP-MMP1 atlas assigned to one Yeo module based on 
maximum overlap of  vertices48. For this structure, we calculated i) intra-modular density, defined as the density 
of connections within each module (i.e., number of connections between nodes within a module, relative to all 
possible connections) and ii) inter-modular density, defined as the density of connections between each pair of 
modules (i.e., number of connections between nodes in each pair of modules, relative to all possible connec-
tions)8. Given changes in global network properties over age windows, these modular metrics were normalized 
(i.e., divided by) global density of the respective SCN.

Development of structural covariance networks. Changes in the topological properties of SCNs between 8 and 
15 years of age were examined with generalized additive models (GAM), using the “mgcv”  package49 in  R50. 
Specifically, a given property of each bin was assigned to the median age of participants within the bin. We then 
examined changes in the property with respect to the (median) age. In a “smooth” model, (e.g.) density was pre-
dicted by a smooth age term with a basis function of 3 (i.e., the maximum possible degrees of freedom allowed 
for the smooth term) given the constrained time frame (e.g., density ~ s(age, k = 3)). This model was compared 
to a “linear” model (e.g., density ~ age) and a “null” model (e.g., density ~ 1). All models were examined with 
maximum likelihood (ML) estimation, and model comparisons were used to identify best-fitting developmental 
trajectories. Model comparisons were based on AIC values, with more complex models selected if AIC was at 
least 3 less than all lower-order models (i.e., a “smooth” model was only selected if AIC was lower than both 
“linear” and “null” models).

This model fitting procedure was first used to examine changes in the mean correlation of unthresholded 
networks and global density of thresholded networks. Second, we examined changes in the connectivity of 
“hubs” by modelling age-related changes in the (standardized) degree of hub regions. We limited these analy-
ses to regions that were classified as hubs in at least two age-bins, in order to minimize potential noise from 
regions classified as hubs in one age-bin alone. Third, we examined changes in (normalized) intramodular and 

Figure 1.  Illustration of 16 age-bins for the sliding window configuration with a bin size of 80 and step of 
25%. The number of age-bins varied between 12 and 23 across the 9 sliding window configurations. Structural 
covariance networks (adjusted for sex, cohort, scanner) were created for each age-bin, and the median age was 
assigned to each network. Individual scans contributed to multiple age bins, but only one scan per participant 
was included in each bin.
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intermodular density of functional networks using the same model fitting procedure. We additionally checked 
the significance of smooth age terms when correcting for multiple comparisons using Benjamini & Hochberg 
FDR  correction51 in nodal and modular analyses.

GAM models were run for 9 combinations of bin and step size, and only findings that were identified in more 
than 50% of these sliding window configurations are presented. Model coefficients and illustrations of significant 
developmental patterns are presented for the bin size of 80 and 25% step, as it represents the median of all 9 
configurations that were examined. Whole brain maps in Figs. 2C and 3 (as well as Supplementary Figures S1C 
and S4) were created using PySurfer v0.10.0 (https:// pysur fer. github. io/).

Associations with cortical thinning. Rates of thinning were calculated for each region using linear mixed models 
using the “lmer” package in R. We modelled linear trajectories based on prior work examining cortical develop-
ment in this  dataset36: Y = Intercept +  di + β1 (sex) + β2 (cohort) + β3 (scanner) + β4 (age) +  ei. Models were con-
ducted within each  ith subject, with a random intercept  (di) to account for the repeated observations per subject. 
The  ei represents the normally distributed residual error term. The β coefficients for age were extracted as effect 
sizes of regional thinning. In order to understand whether rates of cortical thinning were associated with covari-
ance properties in mid-adolescence, we correlated the β coefficients with standardized node degree in the oldest 
age-bins. Significant associations were followed up by correlating β coefficients to node degree of the youngest 
age-bins, to determine whether potential associations were unique to mid-adolescence (and thus reflective of 
changes with age). To calculate significance of these correlations, BrainSMASH was used to simulate 1000 sur-
rogate brain maps that preserve the spatial autocorrelation of the original cortical map (based on the geodesic 
distance matrix of parcels in each hemisphere)52. Correlations between thinning and covariance in each hemi-
sphere were then calculated for each surrogate map, and non-parametric p values were calculated as the propor-
tion of surrogate maps that generated correlations equal to or greater than the empirical value.

Exploratory sex differences. Using the same sliding window configurations as above, SCNs were recreated for 
males and females within each age-window. To do so, linear regression was first run within each sex to remove 
the influence of variables of non-interest (cohort (iCATS, NICAP) and scanner (pre-upgrade, post-upgrade)) 
from cortical thickness. Next, SCNs for males and females were created for each age-window. They were boot-
strap-thresholded, binarized, and graph metrics were calculated. Generalized additive models examined sex 
differences in age-related trajectories for mean correlations and global density of SCNs. Finally, we examined 
changes in (normalized) intramodular and intermodular density of functional networks within each sex, and 
GAMs examined “null”, “linear” and “smooth” change. Sex differences in modular density were not statistically 
examined as normalized metrics are dependent on global density, which differed between males and females.

Results
Global development. Generalized additive modelling of non-thresholded SCNs revealed nonlinear 
change in edge strength (i.e., mean of all correlations) between the youngest and oldest age windows, character-
ized by a “peak” around 11.5 years of age. This pattern of nonlinear change in mean correlation was consistent 
across 8 out of 9 sliding window configurations. When focusing on the most statistically robust connections (i.e., 
bootstrap-thresholded and binarized SCNs), GAMs revealed a similar pattern of nonlinear change with maxi-
mum global edge density at 11.5 years of age (Fig. 2A). This pattern of nonlinear change was consistent across all 
9 configurations. Thresholded SCNs also exhibited increased variability in degree (i.e., degree distribution) at the 
middle age windows (~ 11.5 years) relative to the youngest and oldest windows (Fig. 2B). Refer to Supplementary 
Table S1 for model fit and coefficients. Nonlinear changes in global metrics over the age windows was replicated 
for the DKT parcellation, although degree distribution was negatively skewed (i.e., most of the 62 regions were 
correlated with one another; see Supplementary Fig. S1).

Nodal development. At a regional level, a similar pattern of nonlinear change was identified for nodal 
degree (Fig. 2C); across the cortex, regions exhibited a pattern of increasing numbers of connections between 
the youngest and middle age windows (i.e., roughly 9.5 to 11.5 years of age), followed by reductions through 
to the oldest age-window (~ 13.5 years). Hubs, defined as regions with high degree (> 1 SD) in at least two age 
windows, were identified across sensorimotor and association cortices during early adolescence (Fig. 3). While 
GAMs revealed that a number of these hubs did not exhibit change in standardized degree across the age-bins, 
significant decreases were identified in motor regions and increases were identified in multiple frontal and pari-
etal regions (see Supplementary Table S2 for model comparisons and coefficients). Additionally, correlational 
analyses conducted across the entire parcellation revealed that rates of cortical thinning were associated with 
standardized degree in the oldest age-bin, such that regions exhibiting greater thinning had greater degree (Left 
hemisphere: r =  − 0.270, p = 0.011, 9/9 window configurations; Right hemisphere: r =  − 0.241, p = 0.044, 6/9 con-
figurations). However, there were no such associations in the youngest age-bin (Left: r =  − 0.160, p = 0.182, 9/9 
configurations; Right: r =  − 0.185, p = 0.171, 9/9 configurations).

Modular development. In the context of functional communities, “peaks” were identified for mean 
density across all modules, consistent with patterns of global density. To further understand community-level 
changes, we examined “normalized” metrics of modular density that accounted for global density. Normalized 
intramodular density (i.e., connections of regions within a network) of the dorsal attention and frontoparietal 
networks exhibited nonlinear increases over age-windows (Fig. 4A,B), while that of the visual and somatomo-
tor networks exhibited linear decreases over age. Normalized intermodular density (i.e., connections of regions 
between networks) exhibited predominantly linear increases between the ventral attention, dorsal attention, 

https://pysurfer.github.io/
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Figure 3.  (A) Age-related change in standardized degree of hubs regions (as identified in more than 50% 
of sliding window configurations; refer to Supplementary Fig. S4 for illustration of changes in each window 
configuration). (B) Patterns/directions of change illustrated by standardized degree of these hubs in early, 
middle and late age-bins. (C) Prototypic changes in standardized degree (k) within the left ventrolateral PFC 
(vlPFC) and left primary motor cortex (PMC). Effect sizes in (B) and (C) are illustrated for the sliding window 
size of 80 and step of 25%.

Figure 2.  (A) Changes in global properties of SCNs across age-bins, illustrating nonlinear change in mean 
strength of positive correlations across the network, and global edge density of the bootstrap-thresholded 
network (Refer to Figures S2 and S3 for illustration of changes in each sliding window configuration). (B) 
Changes in degree distribution of bootstrap-thresholded networks, and (C) Nodal degree (k) across the left 
cortex at 5 age-bins between late childhood and mid-adolescence. Effect sizes are illustrated for the sliding 
window size of 80 and step of 25%.
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frontoparietal, and default mode networks (see Fig. 4A,C). Comparatively, changes involving the visual network 
were largely characterized by “peaks”, while those involving the limbic network were characterized by “troughs”. 
Model comparisons and coefficients for modular density are presented in Supplementary Table S3. Post-hoc 
illustration of differences between hemispheres are presented in Supplementary Fig. S5.

Sex differences. Exploratory analyses failed to identify any consistent sex differences in age-related changes 
of non-thresholded mean correlation (“smooth” AIC: − 143, “smooth * sex” AIC: − 145) and thresholded global 
density (“smooth” AIC: − 136, “smooth * sex” AIC: − 137). Next, changes in the density of connections between 
functional communities were examined within each sex, normalized by their respective global densities. In 
females, increases in intra- and inter-modular density were limited to the dorsal and ventral attention networks, 
particularly in connection with the frontoparietal and default mode networks. In comparison, a number of non-
linear reductions were identified for the visual and somatomotor networks (Fig. 5A,C). In males, increases in 
modular density were present for the dorsal attention and frontoparietal networks, while decreases were limited 
to intramodular connections of ventral attention and limbic networks (Fig. 5B,D). See Supplementary Table S4 
for results.

Discussion
The current investigation revealed age-related changes in structural covariance networks during the transi-
tion from childhood to adolescence. As hypothesized, there was a “peak” in global covariance between 9.5 and 
14.5 years of age based on correlations in regional thickness across subjects. There was also regional variability 
beyond this global pattern, with association cortices exhibiting greater increases in covariance. Relatedly, regions 
within higher-order neurocognitive systems exhibited greater within-network and between-network covariance 
with age, compared to sensorimotor networks. Exploratory analyses also indicated that these patterns were more 
prominent in females relative to males. Finally, as hypothesized, regions exhibiting the greatest thinning during 
this period had the greatest covariance with the rest of the brain.

Findings indicate that the transition from childhood to adolescence is characterized by global increases in 
structural covariance, followed by reductions into mid-adolescence. This pattern was identified for the strength 
of non-thresholded connections (i.e., mean correlations), as well as the density of thresholded connections. 
Similar nonlinear trajectories have been identified during this period for mean  correlations19,21,53 and mean 
local efficiency (a measure of communication between the nodes)19. These global “peaks” may be reflective of a 
transient period of convergence in anatomical properties across the cortex during early adolescence, followed 
by a divergence that reflects greater inter-individual variability in the rates or timing of regional maturation 
over the course of the second decade. Somewhat consistent with this speculation, others have shown that global 
covariance continues to decrease through late adolescence before plateauing in the early 20 s, which corresponds 
to the protracted maturation of association  cortices8. Future research is needed to understand whether such a 
divergence may be related to the onset of socioemotional problems during adolescence, as purported by mismatch 
models of  neurodevelopment24,54.

Our analyses also highlighted regional differences in covariance properties of sensorimotor and association 
cortices during early adolescence. Examination of (standardized) degree revealed the prominence of sensorimo-
tor regions as highly connected “hubs” by late childhood. The connectivity of visual hubs remained consistent 
across early adolescence, while motor hubs exhibited significant reductions with age. Although there were some 
hub regions present in associations cortices by late childhood, the extent and strength of hubs within frontal and 
parietal cortices increased with age. These results are consistent with prior literature that has highlighted the 
prominence of hubs within association cortices during  adolescence19, although this has been limited to parietal 
regions in some  studies20. Findings are also supported by regional variability in group-level trajectories, with fron-
tal, parietal and temporal cortices exhibiting greater changes than occipital and motor cortices in  adolescents55,56 

Figure 4.  Changes in the density of connections for functional networks. (A) Change in “normalized” 
density of connections between and within networks (l and s indicate significant linear and nonlinear 
(smooth) trajectories, respectively). Effect size is the difference between maximum and minimum density for 
the sliding window size of 80 and step of 25%. Significant developmental trajectories of certain networks for 
normalized (B) intramodular density and (C) intermodular density, also illustrated for the sliding window 
size of 80 and step of 25%. DA dorsal attention, DM default model, FP frontoparietal, Lim limbic, VA ventral 
attention, Vis visual.
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and exhibiting later maturation in  macaques57. Moreover, increasing covariance was mostly limited to regions that 
support abstract higher-order cognitive skills that continue to mature during  adolescence58. Interestingly, others 
have shown that mean correlation strength is related to (group-level) working memory during  adolescence21. 
However, our findings suggest potential value in examining the contribution of specific regions’ covariance 
properties in relation to cognitive maturation during early adolescence.

When accounting for the global “peaks” in density, there were also age-related (linear) increases in intramodu-
lar (within network) correlations in frontoparietal and ventral attention networks, suggesting that regions within 
these networks become increasingly connected with one another relative to average connectivity of the cortex. 
There were also age-related linear increases in intermodular (between network) connections between the ventral 
attention, dorsal attention, frontoparietal and default mode networks. Comparatively, there was a decoupling of 
connections with visual and somatomotor networks with age. Taken together, higher-order cognitive networks 
appear to undergo coordinated structural development that supports their specialization and segregation across 
adolescence, within the context of a generalized divergence across the cortex. These findings are consistent with 
seed-based analyses of covariance that have found primary sensory and motor networks to be well-developed in 
early childhood, and later maturation of salience and executive control networks during  adolescence17. Others 
have found that higher-order networks continue to mature into young adulthood, with the frontoparietal network 
exhibiting the greatest reduction in covariance during the late teens and early 20 s, whilst the default mode and 
ventral attention networks are the last to reach adult levels of  maturity8. A similar developmental pattern is also 
postulated for functional connectivity, with visual and sensorimotor areas developing  earlier59 and exhibiting less 
variability in their  trajectories60 than other networks. Findings are also consistent with continued maturation of 
between-network connectivity of task-positive (frontoparietal, attention) and task-negative networks (default 
mode) during  adolescence61–64. Developmental patterns in both nodal and modular properties are therefore 
consistent with earlier mastery of basic sensory and motor skills, but continued refinement of emotion regula-
tion, social cognition and other complex executive functions that are supported by frontoparietal, default mode, 
and attention networks.

Figure 5.  Change in “normalized” density of connections between and within networks in females (A) and 
males (C); l and s indicate significant linear and nonlinear (smooth) trajectories, respectively. Effect size is the 
difference between maximum and minimum density relative to minimum density for the sliding window size 
of 80 and step of 25%. Significant developmental trajectories of certain networks illustrated in females (B) and 
males (D), also illustrated for the sliding window size of 80 and step of 25%. DA dorsal attention, DM default 
model, FP frontoparietal, Lim limbic, VA ventral attention, Vis visual.
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The exact mechanisms that underlie structural covariance networks remain uncertain, but it is frequently 
postulated to arise from coordinated functioning of distributed brain regions. In support, there is some overlap 
between structural covariance and functional  networks65,66. Work in neonates has also found that SCNs develop 
later than functional networks, suggesting that coactivation of functional networks may guide the development 
of  SCNs16. There is also partial convergence with structural connectivity  networks67, suggesting a role of mutually 
trophic effects mediated by underlying axonal  connections10. Others have highlighted similarities with matura-
tional covariance networks (i.e., correlations of longitudinal regional trajectories)65, as well as coordinated gene 
expression during brain  development68,69. Moreover, higher covariance between regions at shorter distances 
may also relate to shared gene expression from common embryonic  origins69. Importantly these mechanisms 
are not mutually exclusive, as trophic, genetic and neurodevelopmental processes are most likely interconnected 
influences on  SCNs9,11.

Less is known of the mechanisms that may contribute to developmental changes in structural covariance. 
However, we found that regions exhibiting greater cortical thinning had greater degree by mid-adolescence. As 
rates of cortical thinning were not associated with node degree during late childhood, findings imply that thin-
ning specifically contributes to changes in covariance networks between late childhood and mid-adolescence. 
During later adolescence, greater cortical thinning has conversely been show to relate to more reductions in 
nodal  degree8. As association cortices exhibited the greatest cortical thinning across both datasets, it appears 
that underlying neural mechanisms, such as synaptic pruning and myelination, may have nonlinear effects on 
the network properties of these regions across the extended period of adolescence. Váša and  colleagues8 also 
show that intracortical myelination has stronger associations with regional changes in covariance than cortical 
thinning, highlighting the need for multimodal analyses to unpack the evolving relationship between structural 
connectivity and structural covariance networks during development.

Exploratory investigations of sexual dimorphism failed to identify consistent differences in age-related 
changes of global covariance (i.e., mean correlation and global density), although nonlinear age-related differ-
ences in a number of sliding window configurations suggest that females may have steeper “peaks” than males 
in global density during early adolescence. Given these inconsistencies, continued research with larger sample 
sizes per group, within this targeted age range, is thus needed to further investigate sex differences. Our finding 
of overall greater mean correlation in females is also inconsistent with prior research that has found greater cor-
relations of subcortical volumes in  males70, suggesting that sex differences in anatomical networks may differ by 
regions-of-interest and/or morphologic properties during development. When accounting for potential global 
differences, females exhibited a general pattern of increased covariance of (dorsal and ventral) attention networks 
with one another and the frontoparietal and default mode networks, while males had fewer such increases that 
were concentrated in the dorsal attention and frontoparietal network. Moreover, females exhibited a number of 
decreases in the covariance of primary sensorimotor networks. Prior seed-based analysis has shown sex-specific 
associations between testosterone levels and prefrontal-hippocampal covariance during  adolescence71. Moreover, 
covariance has been found to differ between peri- and post-menopausal  women72, and is also related to estradiol 
levels in  adults73. Together with the lack of sex differences in the structural covariance of neonates and later 
adolescents/young  adults8,16, it appears that sex differences in covariance may be specific to periods of rapidly 
changing hormone levels. Our pattern of findings may also be suggestive of earlier maturation in females, as they 
had more extensive segregation of later maturing higher-order cognitive networks, and also exhibit “decoupling” 
of earlier maturing sensorimotor networks. However, it is important to note that differences in modular density 
are qualitative, and further investigations incorporating hormones and a more extended period of adolescence 
is needed to test our hypotheses.

Limitations. Our findings need to be considered in light of certain strengths and limitations. The current 
investigation of age-related changes infers developmental processes from group-level networks. As discussed 
above, changes in cross-sectional correlations are suggestive of individual differences in developmental trajec-
tories and longitudinal research is needed to fully understand these underlying neurodevelopmental processes. 
Our analyses are also dependent on the configuration of age-windows based on window and step/overlap sizes. 
However, we conducted statistical analyses on a range of window and step sizes so as to identify results that were 
consistent across the majority of configurations. Windows were also comprised of large participant numbers and 
narrow age ranges relative to prior literature, but further increases in sample size will continue to decrease noise 
within age-defined SCNs, and also create additional age-bins/estimates to model age-related changes. Another 
limitation of the sliding window approach is that each window’s topological properties that are modelled within 
GAMs are not independent of one another. The MRI scanner was also upgraded between waves in one of the 
cohorts, but we additionally modelled this upgrade as a covariate in our analyses. Moreover, comparison on 
age-matched participants pre- and post- scanner upgrade failed to identify significant  differences36. We also note 
that stringent quality control procedures were undertaken to minimize the influence of head motion, but future 
studies with estimates of head motion for T1-weighted images are needed to confirm findings while statisti-
cally controlling for motion confounds. Finally, our sex differences are considered exploratory given the smaller 
sample size when differentiating males and females, although we note that similar sample sizes have been used 
frequently in the literature. Nevertheless, given concerns of the reliability of estimates for small  samples32, future 
work with larger samples of this age range are needed to corroborate our findings. The incorporation of pubertal 
measures may also provide novel insight into the biological processes that may underlie the identified changes 
in structural covariance networks during this period.
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Conclusions
The transition from childhood to adolescence is characterized by nonlinear trajectories with “peaks” in global 
covariance of cortical thickness. While occipital and motor regions are more highly connected hubs during late 
childhood, the prominence of frontal and parietal regions as hubs increases with age. Beyond global patterns, 
attention, frontoparietal and default mode networks exhibit increasing covariance, suggesting greater specializa-
tion and segregation of regions that support higher-order cognitive processes during early adolescence.

Data availability
The datasets analysed in the current study are not publicly available as we do not have consent from participants 
in the Imaging of the Children’s Attention Project (iCATS) cohort to share individual data. However, it can be 
made available from the corresponding author on reasonable request. Custom analysis scripts can be found at 
https:// github. com/ nandi vij/ struct_ cov_ dev.
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