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Proton range verification 
with MACACO II Compton camera 
enhanced by a neural network 
for event selection
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Josep F. Oliver1, Ikechi Ozoemelam2, Jorge Roser1 & Gabriela Llosá1

The applicability extent of hadron therapy for tumor treatment is currently limited by the lack of 
reliable online monitoring techniques. An active topic of investigation is the research of monitoring 
systems based on the detection of secondary radiation produced during treatment. MACACO, a 
multi‑layer Compton camera based on  LaBr3 scintillator crystals and SiPMs, is being developed 
at IFIC‑Valencia for this purpose. This work reports the results obtained from measurements of 
a 150 MeV proton beam impinging on a PMMA target. A neural network trained on Monte Carlo 
simulations is used for event selection, increasing the signal to background ratio before image 
reconstruction. Images of the measured prompt gamma distributions are reconstructed by means of 
a spectral reconstruction code, through which the 4.439 MeV spectral line is resolved. Images of the 
emission distribution at this energy are reconstructed, allowing calculation of the distal fall‑off and 
identification of target displacements of 3 mm.

Hadron therapy is a growing technique that has been employed to treat over 350,000 cancer patients  worldwide1. 
The reason for its increasing importance is its beneficial dose deposition profile, which enables highly focalised 
treatments and better sparing of the surrounding healthy tissue. However, the high concentration of the deliv-
ered dose at the Bragg peak makes hadron therapy very sensitive to any source of deviation from the treatment 
planning or to uncertainties in the plan itself. As a consequence, additional safety margins of several millimeters 
are set in the treatment planning in order to ensure that the clinical volume target receives the prescribed dose 
and that organs at risk are not  irradiated2. The reduction of safety margins would allow a better delineation of 
the irradiated volume and a wider use of hadron therapy in tumors close to organs at risk. This can be achieved 
by monitoring online the particle range inside the patient.

Online monitoring can be realized by detecting the secondary radiation emitted along the beam path. Sec-
ondary particles are produced in the de-excitation of nuclei and nuclear fragments formed in the interactions 
between the beam and the irradiated tissue. Positron Emission Tomography (PET) has already been used clini-
cally to monitor the distributions of β + emitters generated during  irradiation3–5. However, PET imaging presents 
some intrinsic drawbacks: displacement of β + emitters due to biological washout, delayed signal with respect 
to irradiation time due to the half-lives of the most abundant β + emitters and the high background of prompt 
 emissions6,7. In addition, PET imaging devices must be adapted for in-beam imaging, requiring a dedicated 
design to integrate the scanner with the  beam8. To overcome the delayed emission and displacement caused 
by washout, PET imaging of very short-lived β + emitters is currently under  investigation9–11. Alternatively, the 
prompt emission of high energy photons or prompt gamma-rays (PG), which do not suffer from the mentioned 
drawbacks, can also potentially be used for online  verification12,13.

The PG emission spectrum exhibits a decreasing continuum, extending up to several MeV, with the presence 
of prominent lines corresponding to discrete transitions between nuclear energy  levels14. In particular, an intense 
peak of emission is found at 4.439 MeV, originating from the de-excitation of 12 C to its ground state. During 
irradiation, the excited state of 12 C is produced following inelastic proton scattering off 12 C and proton induced 
spallation of 16O15, both of which are relatively abundant in human tissues. The cross section of the involved 

OPEN

1Instituto de Física Corpuscular (IFIC), CSIC/Universitat de València, València, Spain. 2KVI-Center for Advanced 
Radiation Technology, University of Groningen, Groningen, The Netherlands. 3Department of Radiation Oncology, 
University Medical Center Groningen, University of Groningen, Groningen, Netherlands. *email: Enrique.Munoz@
ific.uv.es

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-88812-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9325  | https://doi.org/10.1038/s41598-021-88812-5

www.nature.com/scientificreports/

nuclear reactions have a maximum at low proton  energies16. As a consequence, the emission distribution of PG at 
this energy presents a peak of intensity near the end of the beam range and can be correlated to the delivered dose.

Several monitoring techniques based on the detection of PG are currently under investigation. Mechanical 
collimation has been proposed with different collimator  geometries17–20. Clinical tests with a collimated gamma 
camera have also been  reported21. However, a disadvantage of this modality is the collimator thickness required 
to fully absorb the high energy PG, which reduces drastically the detection efficiency. Other methods based 
on measuring the PG time of flight distribution, correlated to the ion range inside the patient, are also being 
 investigated22,23. A review of the state of the art in hadron therapy monitoring through PG can be found  in24. 
Another imaging modality currently under study for treatment monitoring is based on electronic collimation. 
Compton imagers have emerged as a promising candidate due to their ability to image photons at the PG energy 
range and the fact that they do not require mechanical collimation. Compton cameras are also being investigated 
for Single Photon Emission Computed Tomography (SPECT) with high  efficiency25–27. In Compton imaging, 
the initial energy of a measured photon must be known in order to constrain its origin to a conical surface 
containing its emission position. To deal with the polychromatic nature of the PG spectrum, Compton imaging 
can be achieved by detecting three-interaction events, which allow reconstruction of the initial energy photon 
 energy28,29. If only two-interaction events are detected, images can be reconstructed by selecting well-known PG 
emission lines, requiring full energy absorption in the second interaction or employing spectral reconstruction 
methods to estimate both the spatial and the spectral emission  distribution30–32. Different Compton camera 
prototypes and reconstruction methods have been designed for this  purpose33–38. To the end of reconstructing 
the measured activity distribution by means of a Compton camera, the background component in the measured 
data must be taken into account. Event selection for background reduction is usually employed in Compton 
imaging, both in its application to  astronomy39 and to medical  imaging40. Event selection is of great importance 
in PG reconstruction for hadron therapy monitoring, since high intensity clinical beams can lead to an increase 
of random coincidences produced by different incoming  particles41. In addition to photons, a high background 
of neutrons and protons can reach the detectors, triggering the acquisition of unwanted events that contaminate 
the true signal.

At IFIC-Valencia, the MACACO (Medical Applications CompAct COmpton camera) prototype is being 
developed for the purpose of hadron therapy online treatment monitoring. It is a three-plane Compton camera 
based on LaBr3 crystals coupled to silicon photo-multiplier (SiPM)  arrays42. The first prototype was previously 
fully characterised and tested in the laboratory with a variety of  sources43 and in-beam44,45. The promising results 
obtained with the first version led to the development of MACACO II, a second prototype with enhanced energy 
 resolution46. This paper presents the results obtained in-beam with MACACO II operated with two detector 
planes and using a spectral method to estimate the PG energy. The experiment was conducted at the irradiation 
facility of the AGOR cyclotron at KVI-Center for Advanced Radiation Technology, University of Groningen. A 
Polymethyl methacrylate (PMMA) target placed at different locations with respect to the camera was irradiated 
by a 150 MeV proton beam.

In this paper, a fully connected neural network (NN) is employed for event selection. NNs have been pre-
viously applied to identification of sequence ordering in a multi-layer Compton  telescope47. In this work, the 
implemented NN is trained to discriminate signal from background events, and a simulation study is performed 
to demonstrate that this discrimination improves identification of the PG peak of emission. Finally, the trained 
NN is used for background reduction in the experimental data. Images are reconstructed using a spectral recon-
struction method for two-plane Compton  cameras32, with particular emphasis on the 4.439 MeV PG emission 
line. The reconstructed images and profiles are presented, demonstrating the system capability of detecting 
range shifts of 3 mm.

Results
Event selection with simulated data employing a neural network. The event selection procedure 
is performed by means of a NN, described in the event selection subsection of the methods section. A total of 
1.2 · 106 events were obtained from Monte Carlo simulations using  GATE48, labeled as true signal or background 
events as explained in the simulations subsection. The simulated dataset was divided into two equally sized 
training and validation sets with 6.1 · 105 events each. The NN parameters are optimized with the training data-
set, and the validation dataset is then used to analyse the NN performance. The percentage of true signal and 
background events in the validation set before and after event selection by the trained NN is shown in Table 1.

Events in the validation set are selected by the trained NN with a recall (percentage of the total true signal cor-
rectly classified) of 84.0% and a precision (percentage of true signal over the accepted events) of 10.3%, improving 
the percentage of signal from the original 7.6% registered in the raw data. This constitutes a relative increase of 
35.4% in the ratio of signal events, which has an important effect in the reconstructed images.

Images of the photon emission distribution produced by the simulated proton irradiation have been recon-
structed using three different sets of data extracted from the validation set: only true signal, all events and events 
selected by the NN. The images obtained at the energy of 4.4 MeV are shown in Figs. 1a,b,c. The longitudinal 

Table 1.  Signal and background events in the validation set before and after NN selection.

Total True signal Background Percentage of true signal (%)

Events before selection 6.1 · 105 4.7 · 104 5.6 · 105 7.6

NN selected events 3.8 · 105 3.9 · 104 3.4 · 105 10.3
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profiles along the beam direction are plotted in Fig. 1d, where the reconstructed emission peaks can be identified. 
Different parameters have been calculated from the reconstructed images in order to assess the effect of the event 
selection technique (see the image assessment and range estimation subsection). The calculated parameters are 
listed in Table 2. All the parameters obtained with NN selected events improve with respect to those obtained with 
all events. The peak height and position along the beam direction are calculated relative to the values obtained 
using only signal events. As seen from Fig. 1d, the maximum peak position using all events is displaced by 45 mm, 
while the deviation obtained from the selected events is reduced to 3 mm. In the transverse beam direction, the 
full with at half maximum (FWHM) is also reduced with this dataset, showing a better reconstruction of the 
beam lateral spread. This can be seen in Fig. 1e, where the transverse profiles from the three datasets are plot-
ted. The image reconstructed with selected events also assigns a higher value at the true peak position, and the 
background voxels outside the region of interest have lower average value and standard deviation. This results 
in an enhanced contrast-to-noise ratio (CNR), improving from 4.0 to 7.7. Finally, the reconstructed energy 
spectra in the three cases are also plotted in Fig. 1f. In this plot, a better identification of the 4.4 MeV line is also 
obtained with the NN selected events. Gaussian fits to the peaks around this energy yield a mean and sigma of 
4.3± 0.7 MeV when NN selected events are used, improving from the 4.8± 1.2 MeV calculated with all events. 
The R2 coefficients of determination of these fits range from 0.9798 to 0.9947.

Figure 1.  Reconstructed images at 4.4 MeV using three different simulated data sets: only true signal events 
(a), all events (b) and events selected by the trained NN (c). (d) Line profiles along the beam direction from 
the above images. (e) Transverse line profiles at the maximum position. (f) Energy spectra recovered after 
integration over the reconstructed image spatial domain.

Table 2.  Studied parameters of the reconstructed images with the three simulated datasets.

Signal events All events NN selected

Relative Max, R80 and R50 positions (mm) – –44.8  –41.3  13.1 3.0  4.1  11.1

Relative value at true peak position 1 0.83 0.98

Relative average background value (6.3 ± 9.6) ·10−3 0.24 ± 0.15 0.18 ± 0.10

Contrast-to-noise ratio 100 4.0 7.7

FWHM in transverse beam direction (mm) 19.6 ± 0.8 63 ± 3 47 ± 2

Reconstructed energy peak (MeV) 4.4 ± 0.4 4.8 ± 1.2 4.3 ± 0.7
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Reconstructed images with experimental data. Images of the distribution of photons generated by 
the proton beam irradiation of a PMMA target placed at different positions with respect to the prototype have 
been reconstructed. An initial measurement was performed with high statistics in time coincidence to obtain a 
detailed reconstruction of the PG emission distribution profile. In addition, six more measurements at different 
positions were performed aimed at the identification of shifts in the Bragg peak location. In order to emulate 
shifts in the Bragg peak without altering the beam parameters, measurements were taken with the target at dif-
ferent positions with respect to the system. Data were taken with target displacements of ±2, ±5 and ±25 mm 
along the beam direction, with a precision of ±5 µ m. The measurement time was 2 hours for the initial measure-
ment and 35 minutes for each of the six measurements at different positions.

The NN trained in the previous simulation study was also employed for event selection in the experimen-
tally measured data. The number of events used for image reconstruction, after selection with the NN, was 
13.9 · 104 events for the 0 mm position and (4.11± 0.07) · 104 on average for the six measurements with target 
displacements.

Images reconstructed from the measurement with higher statistics (position 0) are shown in Fig. 2. Figure 2a,b 
show the spatial distributions obtained after integration over the whole spectral domain and at 4.4 MeV, cal-
culated by integrating the reconstructed image between 4.3-4.5 MeV. The reconstructed spectrum is plotted in 
Fig. 2d. This spectrum is obtained after integration of the spatial domain in the reconstructed images, and repre-
sents the emission activity of PG estimated from the data employed for reconstruction. As in the reconstructed 
spatial images, this estimation is contaminated by the background present in the measured dataset. Nevertheless, 
a local maximum can be appreciated at 4.4 MeV. The peak at 2.2 MeV corresponds to the line produced by the 
de-excitation of deuterium after neutron capture by hydrogen. Since this distribution is not correlated to the 
primary proton  range24, it is not expected to contain usable beam information, and it has not been employed in 
this work for the determination of target shifts. The 2.2 MeV line is the main contribution to the high background 
in the image integrated over the whole energy range. A region of higher activity at the expected peak position 
can be seen in this image, but the wide spread of intensity over the whole image makes it difficult to estimate 

Figure 2.  Reconstructed image from measurement at position 0. (a) Image integrated over the whole spectral 
domain. (b) Image obtained at the energy slices of 4.4 MeV. (c) Line profiles along the beam direction from 
the above images: whole energy range (black dashed line) and 4.4 MeV (red solid line). (d) Energy Spectrum 
recovered after integration over the reconstructed image spatial domain.
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the beam range from it. The beam direction and range are much better defined in the 4.4 MeV image, where the 
emission intensity increases steadily until reaching a peak, after which the intensity quickly drops. This can be 
better appreciated in the longitudinal profiles plotted in Fig. 2c.

The reconstructed spatial images corresponding to target displacements at the energy of 4.4 MeV are shown 
in Fig. 3. Since these measurements have lower statistics than the previous one, the images obtained are noisier, 
leading to local peaks in the reconstruction. Nevertheless, the emission distribution along the beam direction, as 
well as a peak of intensity at the end of the beam range, can be seen in all cases. The calculated lateral spread of 
the reconstructed beam in these figures is 46 ± 3 mm FWHM on average, degraded from the 35 ± 1 mm obtained 
from the reference image with higher statistics. These images also present a higher background level, causing the 
CNR to be degraded from 6.9 in the reference image to 5.7 ± 0.3 for the six displaced positions. Regarding the 
reconstructed emission spectra, the reconstructed peak position was 4.5 ± 0.4 MeV on average, demonstrating 
that the PG emission line at 4.4 MeV can also be recovered from these measurements.

In order to estimate the range from the different images, the position of the maximum of the reconstructed 
photon emission distribution and the positions at R80 and R50 after the maximum are calculated. These features 
are obtained from the longitudinal profiles along the beam direction, plotted in Fig. 4. Figure 4a,b plot together 
the longitudinal profiles obtained from measurements in which the PMMA target was shifted to the left (–25, –5 
and –2 mm) and right (+2, +5 and +25 mm) of the central position, respectively. From all profiles, it can be seen 
that the distal edge is shifted in agreement with the displacement of the target along the beam direction. Relative 
displacements at the different target positions have been quantified taking as a reference the values obtained for 
each of the three parameters (maximum, R80 and R50) at position 0. These values at position 0 are –35.7 mm 
for the maximum peak, –29.9 mm for R80 and –23.4 mm for R50. Considering these relative displacements, the 
best results are achieved using the R80 parameter, with an average relative deviation from the expected values of 
3.4 mm (2.2 mm if we consider only the central positions, with target displacements between –5 and 5 mm). The 
average relative deviations from the expected values obtained using the other two parameters is 6.2 mm for the 
maximum peak and 5.5 mm for R50. All the parameters calculated for each of the images are listed in Table 3.

For a better visualization, the reconstructed maximum, R80 and R50 positions from the different measure-
ments are plotted in Fig. 5. In this figure, discontinuous lines with slope 1 and containing the reference values of 
the maximum, R80 and R50 at position 0 are also drawn to indicate the expected reconstruction positions. The 
biggest deviation from the expected value is found in the reconstructed peak position from the measurement with 
a target displacement of +2 mm. As seen from its corresponding profile in Fig. 4b, in this case the reconstructed 
region with highest activity is distributed over an elongated area before the beam range, and the peak position 
is found at a longer distance from R80 and R50. As shown in Fig. 5, the reconstructed positions of R80 and R50 

Figure 3.  Reconstructed images at 4.4 MeV at 6 different target positions. Top row, from left to right: target at 
–25 (a), –5 (b) and –2 mm (c). Bottom row, from left to right: target at +2 (d), +5 (e) and +25 mm (f).
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Figure 4.  Line profiles along the beam direction from images at 4.4 MeV shown in Fig. 3: (a) top row, 
(b) bottom row.

Table 3.  Calculated parameters from the images reconstructed with measurements at different target 
positions. Positions along beam direction are calculated relative to the values obtained at position 0. Average 
values on the last row are calculated excluding position 0.

Target position (mm)

Relative position (mm) Lateral spread

CNR Energy peak (MeV)Max R80 R50 FWHM (mm)

0 – – – 35 ± 1 6.9 4.4 ± 0.3

–25 –17.9 –18.7 –18.1 42 ± 1 6.8 4.4 ± 0.3

–5 –5.7 –4.7 –4.0 47 ± 1 5.8 4.4 ± 0.4

–2 –3.0 –0.2 +4.0 38 ± 3 5.5 4.5 ± 0.4

+2 –17.9 +2.6 +8.1 41 ± 2 5.0 4.6 ± 0.4

+5 +11.9 +10.9 +11.6 51 ± 2 6.2 4.7 ± 0.3

+25 +26.8 +30.3 +31.4 54 ± 4 4.7 4.6 ± 0.3

Average deviation from expected value

Average values 6.2 ± 7.3 3.4 ± 2.8 5.5 ± 2.4 46 ± 3 5.7 ± 0.3 4.5 ± 0.4

Figure 5.  Range estimation for the six measured target positions using the maximum peak position (black), 
R80 (blue) and R50 (red) distances. Positions obtained from the longitudinal profiles at 4.4 MeV shown in Fig. 4. 
The error bars represent one voxel width. Dotted lines indicate the expected experimental positions, taking the 
values obtained from position 0 as a reference. The x axis is discontinued to include the two extreme points.
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are in better agreement with the expected values, which indicates that these parameters might be more robust 
to statistical fluctuations for the determination of range shifts.

Discussion
The aim of this work was to test the ability of our two-layer Compton camera to detect experimentally and quan-
tify range shifts of proton beams. The results presented in the previous section show that this can be achieved 
by the current version of the prototype.

With the aim of recovering PG emission images from the experimental measurements, two aspects regarding 
the nature of the detected data have been addressed: the high background of coincidences produced by unwanted 
events and the spectral distribution of the PG that convey the sought signal information. Background reduction 
in the dataset before image reconstruction was accomplished through the implementation of a NN for event 
selection or rejection. After event selection, image reconstruction was performed using the four-dimensional 
(space and energy) model described in (Muñoz et al. 2020)32.

The NN was trained with synthetic data obtained from simulations. Results with simulated data show that 
the percentage of true signal increased from 7.6 to 10.3%, with a recall of 84.0%, after event selection with the 
NN. In relative terms, the ratio of true signal events is increased by 35.4%. In the reconstructed four-dimensional 
images (Fig. 1), this translates into a better recovery of the 4.4 MeV spectral line. From the spatial images and 
profiles obtained at this energy, it can be seen that the peak position is better determined after event selection 
with the NN. All the parameters studied to analyse the reconstructed images show an improvement when the 
dataset of events selected by the NN is employed (Table 2): the images obtained present a narrower lateral spread, 
more accurate positioning of the peak in both spatial and spectral dimensions, a lower background component 
and a higher CNR. When all events are included in the reconstruction, the reconstructed spectrum shows a 
peak of intensity at 4.8 ± 1.2 MeV. In this dataset, the 4.44 MeV peak is contaminated by the non-signal events 
generated by PG undergoing a e +e− pair production followed by the detection of an annihilation photon. These 
background events cannot be properly reconstructed by the spectral algorithm and hinder the determination of 
the correct energy of emission. The peak at 4.44 MeV is better determined in the spectra reconstructed from the 
set of selected events, showing that the NN effectively reduces this kind of background. Given the enhancement 
produced by the used event selection technique, the use of different NN architectures with increasing complex-
ity is also foreseen to study a possible enhancement of the method. Another studied technique for background 
reduction is the employment of time of flight (ToF) measurements to reject neutron  contributions49. Since the 
timing performance of the current prototype does not allow using ToF information, the development of an 
experimental prototype with improved time resolution is under investigation.

After application of the trained classification NN to experimental data, the production distribution of PG 
has been reconstructed. The reconstructed four-dimensional image for the measurement at position 0 (Fig. 2), 
with higher statistics (13.9 ·104 events after NN selection), can be analysed in more details. The recovered experi-
mental spectrum is similar to the one obtained from simulations after event selection, with intensity peaks at 
2.2 and 4.4 MeV.

In order to consider the contribution of all emission energies, an image of the emission distribution of all PGs 
can be obtained by integrating over the whole considered energy range (0.8–9.9 MeV, see the image reconstruc-
tion subsection). In the integrated image obtained from our measured data (Fig. 2a), a region of higher activity is 
recovered at the end of the beam range. Since the irradiated target is made of PMMA, with a high 12 C component, 
the most intense PG line correlated to the beam range is emitted at 4.44 MeV, and this energy is the best suited for 
imaging in this case. In the image obtained at 4.4 MeV (Fig. 2b), an emission distribution along the beam path 
ending in a peak is reconstructed, beyond which the intensity quickly drops. Other energies, such as the emission 
of 6.13 MeV photons by 16 O, are also expected to produce images correlated to the Bragg peak position in the 
irradiation of human  tissue50,51. In the case of beam irradiations on targets of different material compositions, 
for which the 6.13 MeV line may become more important, the procedure followed in this work is expected to 
yield similar results as long as the NN for event selection is re-trained with an appropriately generated set of data.

For the detection of range shifts, data from the target at six different positions with respect to the system were 
taken. The PG emission distribution at the energy of 4.4 MeV was reconstructed in all cases. The longitudinal 
profiles extracted from the images show that the reconstructed distributions for the different positions are dis-
placed according to the experimental shifts, demonstrating the system capability of detecting range shifts of at 
least 3 mm. Due to statistical fluctuations, in some cases the reconstructed longitudinal profiles present several 
peaks of high intensity before the distal edge. For this reason, the maximum peak position is not always the best 
indicator to detect range shifts. In the case of measurement at position P0+2 mm, a more extended region of 
high intensity is reconstructed at the end of the beam range, and the maximum of intensity is placed further from 
the distal edge than in the other measurements. The parameters R80 and R50 are also evaluated at the different 
positions. Based on the results obtained in this work, with the limited available statistics, the parameters R80 
and R50 appear as more robust indicators of the beam range inside the target. As seen from Fig. 5, the calculated 
R80 and R50 values for the different measurements are shifted in the correct direction of the experimental target 
displacements in all cases. The best results are achieved using the R80 parameter, with an average relative devia-
tion from the expected values of 3.4 mm.

The correct identification of 3 mm range shifts is compatible with the results reported in the literature with 
similar systems.  In52, a shift of 2 mm is identified using a four-stage Compton camera based on CZT detectors. 
In that work, the first plane of the camera was placed at 15 cm from the beam, and the D2C  filter40, based on the 
prior spatial knowledge of the beam position, is employed for event selection and assignment of the initial energy. 
Systems employing PG imaging modalities other than Compton cameras for beam range estimation, and more 
advanced towards their clinical application, have demonstrated higher precision at clinical rates with full-scale 
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prototypes. In Xie et al.21, the authors claim that a precision of 2 mm can be achieved with a system based on 
knife-edge slit collimation using spot aggregation. In the case of Hueso-Gonzalez et al.53, a system for beam 
range monitoring using PG spectroscopy and a single-slab collimator is presented, and a precision of 1.1 mm at 
a 95% confidence level is reported using spot aggregation as well. While the results obtained with our current 
prototype still lie behind the ones obtained with more advanced systems, they show its viability to detect range 
shifts with the technology employed and its potential for performance improvement.

The results obtained demonstrate the feasibility of the employed technique to detect range shifts inside the 
target. While the technique is promising, the measurements reported in this work were performed with a total of 
2.1 ·1011 protons, which is between 3 and 4 orders of magnitude more than the number used per spot in a clinical 
scenario. In order to reach the statistics achieved in the reported measurements in a clinical treatment scenario, 
the detection efficiency of the experimental prototype must be upgraded. New detectors with a detection area 
four times larger than the ones employed in this work are already under development. Using the methodology 
for the calculation of the system sensitivity validated in a previous  work54, the efficiency of a two-plane Compton 
camera at 4.4 MeV with the new detectors is estimated to increase by a factor of around 14 with respect to the 
current prototype. The use of detectors with larger area will lead to an increase of the count rate. However, the 
number of fortuitous coincidences is also expected to be amplified, which will require an improvement of the 
event selection technique. To this end, NNs with more complex architectures will be investigated. In order to cope 
with higher measurement rate, new acquisition electronics are under investigation to be able to process the data. 
An additional factor of 2 can be gained when all two- and three-coincidence events can be  measured43 and the 
detection efficiency can also be enhanced by reducing the distance between the beam and the first working plane. 
Even with the foreseen geometry optimization, spot aggregation might be required in order to reach the neces-
sary statistics for range determination. In addition to the efficiency improvement, the larger detection surface, 
an optimized geometry and the use of all the available coincidences in a three-plane system is also expected to 
enhance the quality of the reconstructed images, improving the system capability of recovering the Bragg peak 
position and achieving similar results with fewer statistics. All these aspects are being addressed by the group 
for clinical applicability of a future prototype.

Methods
Experimental set‑up. The Compton camera consists of three independent detectors operating in time 
coincidence. Each of these detectors is composed of a monolithic LaBr3 scintillator crystal coupled to an array of 
64 SiPMs. Crystals in the first two planes have an active volume of 25.8×25.8×5.0 mm3 , whereas the size of the 
third one is 36.0×32.4×10.0 mm3 . The coincidence time window used to associate events in different planes is 
50 ns. A detailed description of the system can be found in (Barrio et al. 2017)46.

Tests were performed on-beam at the irradiation facility of the AGOR cyclotron at KVI-Center for Advanced 
Radiation Technology, University of Groningen, the Netherlands. The AGOR cyclotron can deliver proton beams 
with energies between 20 MeV and 190 MeV, with a radio frequency of 55 MHz. The experiments in this work 
were performed with proton beams with fixed energy of 150 MeV and an irradiation rate of about 108 protons 
s −1 , monitored by an open air ionization chamber that allows measuring the beam intensity during irradia-
tion. At this energy, the Bragg peak position is calculated at 133.5 mm from the entrance surface in the PMMA 
target. The target was placed on a motorized stage using a Newport LTA-HS high speed motorized actuator, 
with an accuracy of ±5 µ m, which allows its displacement over a range of 50 mm. The collimated beam has an 
estimated spot size of 7 mm FWHM in both horizontal and vertical directions at the target entrance. Changes in 
the beam range due to energy losses in air are estimated below 50 µm for the target displacements measured in 
this study, and can therefore be neglected. The beam broadening in air for the distance between the two extreme 
target positions is calculated to be 0.38 mm FWHM, which is not expected to cause significant differences in 
the reconstructed beam ranges. The employed beam intensity was selected due to the limited count rate of the 
current version of the experimental prototype.

A picture of the experimental set-up is shown in Fig. 6a, where the beam exit, PMMA target and Compton 
camera are visible. A diagram of the system positioning with respect to the target and particle beam can be seen 
in Fig. 6b. Although the system was assembled with three planes for the entire experiment, only two-detector 
coincidence events from the pair formed by the second and third detectors have been used for image reconstruc-
tion, due to the worse performance of the first detector observed in the data analysis.

Simulations. The experiment was simulated with  GATE48 version 8.2, using  Geant455 version 10.05, to gain 
insight into the measured data. A 150 MeV proton beam impinging on a PMMA cylinder with the same dimen-
sions as the experimental target was simulated. The physical processes and probabilities were defined using the 
predefined QGSP-BIC-HP-EMZ physics list, which yielded results compatible with the experimental measure-
ments. For these simulations, the different detector planes were placed at the distances corresponding to the 
experimental measurements. In order to increase the statistics and reduce simulation time for this study, the 
area of the three planes was set to 100 × 100 mm2 . For this study, a total of 4 · 1010 protons have been simulated, 
distributed among 2000 different simulations. Each simulation was performed with a total of 2 · 107 primary 
protons, which took 35 hours of computing on a single core. The total computing time needed to achieve the 
obtained statistics was approximately 7 · 104 hours, computed in parallel on 20 different cores on the GRID com-
puting farm at  IFIC56. The precision achieved by the NN as a function of the number of events used for training 
reached a plateau after 80% of the simulated events, so the results are not expected to improve significantly for 
higher statistics with the employed NN architecture.

The purpose of the simulations is twofold: in the first place, to use the realistic simulated spectra, including all 
by-products generated during irradiation, to calibrate the energy response of our system in the measured data; 
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in the second place, to use the energy distributions of signal and background events to train the NN designed 
for event selection to maximize the ratio of true signal events in the data employed for image reconstruction. For 
the purpose of event selection, the simulated data are first classified as true signal or background. The set of true 
signal events includes all events in which a photon generated during irradiation reaches the system and under-
goes a Compton scatter in the scatterer, followed by any interaction in the absorber. All other events, including 
photon interactions with wrong ordering and those produced by other particles, are classified as background. 
It should be noted that this criterion classifies as signal all events produced by any photon reaching the system, 
irrespective of its creation process, so secondary photons are also classified as signal. In order to exclude low 
energy photons produced by radiative processes, which are not correlated to the deposited  dose57, a low energy 
threshold of 750 keV was applied in the combined deposited energy before event selection.

Calibration of measured spectra. The individual detector planes have been calibrated using the spectra 
measured in-beam in singles mode, that is, working independently from the other planes (not in time coinci-
dence). The measured energy response of each detector is calibrated by comparing the identifiable peaks (511, 
718 and 3417 keV) to those obtained in simulations. The calibrated spectra are plotted in Fig. 7, showing good 
agreement with simulated results. This calibration has been maintained for the measurements in time coinci-
dence, from which images of the PG emission distribution have been reconstructed.

Event selection. A NN has been implemented using  TensorFlow58 to the end of reducing background 
events. The energy measured in the two individual planes is fed to the NN as input, and its final output is a 
binary classificator to either accept or reject the event. The NN contains two fully connected hidden layers of 80 
and 40 nodes respectively, employing the ReLU (Rectified Linear Unit) activation function. A dropout layer with 
a rate of 25% after the first layer is included for regularization in the training stage. The output value of the NN 
is obtained after a sigmoid activation in the output layer, which yields a numeric result between 0 and 1. The NN 
prediction for an event is 1 (true signal) if its output value is greater than 0.5 and 0 (background) otherwise. The 
NN is trained by minimizing the binary cross entropy loss function between actual and predicted event labels.

Figure 6.  (a) Picture of the experimental set-up showing beam exit, PMMA target and Compton camera. (b) 
Diagram of relative distances in the experimental set-up.

Figure 7.  Experimental and simulated spectra in singles mode measured in the second (a) and third (b) planes.
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The training and validation sets used to optimize the NN parameters were obtained from simulations and 
labeled as signal or background as described in the simulations subsection. After training, the NN was employed 
for event selection in the experimentally measured datasets prior to image reconstruction.

Image reconstruction. Images have been reconstructed by means of a spectral reconstruction method that 
estimates the spatial and energy distributions of the measured photons. The method considers a four-dimen-
sional (three spatial coordinates and energy) field of view (FoV), in which the four-dimensional voxels are asso-
ciated to an emission energy. Each measured event is backprojected to the FoV using all the possible emission 
energies in the range considered. Taking into account the Compton scattering formula, this means that every 
event generates a set of conical surfaces, each corresponding to a single emission energy. The different conical 
surfaces are modelled as a dense set of rays and backprojected onto the FoV using a ray-tracing  technique59. A 
detailed description of the implementation of the method and calculation of the system and sensitivity matrices 
can be found in (Muñoz et al. 2020)32.

Spatial-spectral images are calculated with the standard list-mode Maximum Likelihood Expectation Maxi-
mization (MLEM) algorithm. In this work, all images have been reconstructed using a FoV with 101× 101× 1 
spatial voxels of 3× 3× 3 mm3 and 92 energy bins of 0.1 MeV, ranging from 0.8 to 9.9 MeV. A median filter with 
size 3× 3× 1× 3 (3 voxels in the x,y spatial dimensions and 3 voxels in the energy dimension) and constant 
weights is applied to the current image estimate between successive iterations. All reconstructed images shown 
in this work correspond to iteration 50 of the algorithm, after convergence is reached.

The reconstructed four-dimensional images provide information on both the spatial distribution and the 
spectral emission of the measured dataset. If the spectral domain of the image is integrated out, the spatial 
distribution for the whole energy range is obtained. Conversely, the reconstructed energy spectrum can be 
recovered by integrating out the spatial extent of the image. In addition, the spatial distribution reconstructed 
for a particular emission energy can be extracted by selecting the corresponding three-dimensional slice. Since 
4.439 MeV is the most prominent PG emission energy correlated to the absorbed dose, in this work the spatial 
image obtained for the energies between 4.3 and 4.5 MeV has been used for the estimation of range shifts within 
the irradiated target.

Image assessment and range estimation. A method for range estimation similar to the one employed 
in Ortega et al.41 has been followed to calculate the distal fall-off. Longitudinal profiles along the beam direction 
are generated by integrating the reconstructed voxels in a 3 cm wide slice in the y direction (perpendicular to the 
beam). This width is chosen to include the activity of the beam lateral spread. From these longitudinal profiles, 
in order to compare the gradient of the curve, different depths have been considered: the depth at the maximum 
peak and the depths at 80% (R80) and 50% (R50) height of the maximum peak. Given that images are recon-
structed with a fixed number of voxels, the minimum resolution of the profiles is limited to the voxel size. For 
the calculation of the range estimation parameters, the peak position is taken as the center of the corresponding 
voxel, and R80 and R50 are calculated from a linear interpolation between the voxels immediately above and 
below the heights of 80 and 50 percent of the peak.

In addition to range estimations, other figures of merit are used to quantify the reconstructed images. The 
beam lateral spread is calculated as the FWHM of the beam transverse profiles, obtained at the maximum posi-
tion with a width of 10 voxels in the x direction. The contrast-to-noise ratio (CNR) of the images is calculated 
as CNR = |S − µ|/σ , where S is the intensity at the peak position and µ and σ are respectively the mean value 
and standard deviation of the background. For this calculation, the background values are taken from the voxels 
located outside a region of 150 mm along the beam direction and 60 mm in its perpendicular direction to exclude 
the lateral spread of the reconstructed activity.

Conclusion
The tests reported in this work were aimed at assessing the performance of MACACO II with experimental beam 
data, using a spectral method to estimate the PG energy and a NN for event selection and background reduction. 
The results obtained from in-beam measurements demonstrate that the system is able to detect range shifts in the 
irradiated target. Images of the emission distribution of 4.4 MeV prompt gammas have been recovered, allowing 
calculation of the distal fall-off and identification of target displacements of 3 mm.
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