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Single molecule tracking 
and analysis framework 
including theory‑predicted 
parameter settings
Timo Kuhn1,3, Johannes Hettich1,3, Rubina Davtyan1,2 & J. Christof M. Gebhardt1*

Imaging, tracking and analyzing individual biomolecules in living systems is a powerful technology 
to obtain quantitative kinetic and spatial information such as reaction rates, diffusion coefficients 
and localization maps. Common tracking tools often operate on single movies and require additional 
manual steps to analyze whole data sets or to compare different experimental conditions. We report a 
fast and comprehensive single molecule tracking and analysis framework (TrackIt) to simultaneously 
process several multi‑movie data sets. A user‑friendly GUI offers convenient tracking visualization, 
multiple state‑of‑the‑art analysis procedures, display of results, and data im‑ and export at different 
levels to utilize external software tools. We applied our framework to quantify dissociation rates 
of a transcription factor in the nucleus and found that tracking errors, similar to fluorophore 
photobleaching, have to be considered for reliable analysis. Accordingly, we developed an algorithm, 
which accounts for both tracking losses and suggests optimized tracking parameters when evaluating 
reaction rates. Our versatile and extensible framework facilitates quantitative analysis of single 
molecule experiments at different experimental conditions.

Single-molecule experiments are gaining increasing importance when investigating dynamical and structural 
parameters such as binding kinetics, diffusion coefficients or spatial distributions of biomolecules in living 
 systems1–4. In these experiments, the biomolecule of interest is typically fused to a fluorescent label, such that 
the signal of fluorescent photons in successive recordings reports on the position and movement of the biomol-
ecule. Extracting quantitative information from such movies includes linking individual detections of biomol-
ecules at consecutive time points to continuous  tracks5–10. In recent years, several tracking algorithms have been 
adapted to tracking of biomolecules, including basic nearest neighbour and more complex algorithms such as 
Kalman filtering, combinatorial optimization, multiple hypothesis tracking or neural  networks6,11–15. Still, the 
intuitive application of tracking algorithms is challenged by a significant dependence on empirical parameters, 
such as the tracking radius which is oftentimes determined on visual  aspects9. For the extraction of diffusion 
coefficients, a tracking radius of three times the root mean squared displacement was shown to yield accurate 
 results12,16,17. In addition, upper limits to minimize misconnections were  estimated18. Similar rules for binding 
time analysis, however, are still missing. Furthermore, only few of the particle tracking and analysis software 
published up to now were made accessible to a broader audience by providing an intuitively operable graphical 
user  interface13,19–23. In addition, the subsequent analysis steps to extract quantitative information from tracked 
molecules are mostly left to additional software such as  SMTracker24, Spot-ON25 or  vbSPT26. Thus, analyzing 
whole data sets consisting of multiple movies or comparing different experimental conditions is cumbersome 
as they require extensive manual intervention. Overall, there is high demand for a user-friendly, comprehensive 
program covering tracking, analysis, and data visualization of single molecule experiments.

Linking detections of biomolecules into tracks unavoidably comes with errors, amongst others due to missed 
detections, inappropriate tracking radius or mix-up at high molecule  density6,9,16. The probability for errors can 
be reduced by low molecule densities,  though27. Premature loss of a track also occurs if the fluorescent label 
photobleaches. Photobleaching can be conveniently corrected for, e.g. by comparison with immobile histone 
 molecules28, by ensemble  measurements29,30, or by time-lapse  imaging31. In contrast, errors inherent to the linking 
process are more challenging to tackle and often only assessed qualitatively. Recently, the effect of allowing several 
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gaps in assembling tracks of immobile molecules has been  considered23. Also the impact of the tracking radius 
on the diffusion coefficient has been  discussed9,16. In diffusion analysis, molecules diffusing out of the focal plane 
need to be accounted  for25. However, a theoretical description of tracking errors and how they can be corrected 
for is missing for the determination of the binding (or residence) time of fluorescently labelled biomolecules.

We introduce TrackIt, an integrative tracking and analysis software for fast and extensive analysis of single 
molecule data sets within a single framework. Our user-friendly graphical user interface (GUI) provides access to 
two different tracking algorithms and multiple analysis procedures for kinetic and spatial parameters. Moreover, 
it comes with several data visualization options. Additionally, tracking results can be exported to utilize external 
analysis algorithms such as Spot-ON and  vbSPT25,26. Analysis parameters and associated data are organized in 
a batch structure such that the workflow starting from spot detection over tracking to quantitative analysis can 
be repeated in a single step. This enables convenient comparison of different tracking parameters as well as of 
data sets recorded using different experimental conditions. Furthermore, we introduce a formalism to estimate 
tracking errors when linking immobile molecules and quantify the decrease of tracking losses if a gap frame is 
allowed. Using this formalism, we calculate optimal parameter settings for tracking and subsequent residence 
time analysis. We apply the theory-suggested parameter set to extract residence times of the transcription factor 
CDX2 in the cell nucleus from a single molecule  experiment32.

Results
Single molecule tracking. Our single molecule tracking and analysis framework is designed to simulta-
neously analyse and compare several multi-movie data sets corresponding to different experimental conditions 
such as movie acquisition schemes or biochemical treatments, thereby facilitating the workflow (Fig.  1 and 
Supplementary Material). The data-loading tool automatically scans selected folder structures for tiff-formatted 
movies. Specific regular expressions in filenames can be used to automatically determine frame cycle times or 
to select for experimental conditions. In addition, accompanying images or movies carrying information about 
regions of interests (ROIs) such as the cell nucleus can be loaded. We implemented common movie handling and 
visualization features such as brightness, contrast and z-projection. Movies within the same or a different data 
set can be conveniently accessed.

Our single molecule tracking approach includes four steps to detect individual molecules and link their 
motion through consecutive images. First, we apply a combination of two wavelet filters to enhance spots repre-
senting single  molecules33. Wavelet filters performed well in the particle tracking  challenge6. Second, we select 
spot candidates using a local maximum search approach and filtering candidates with a user-defined intensity 
threshold. Third, we refine the localization of the filtered spots using TrackNTrace’s fast 2D Gaussian  fit19. Finally, 
we link spot localizations into tracks using a simple model-free nearest neighbour algorithm, which is widely 
used at low or intermediate spot  densities6,9,10,16,27. For high spot densities or movement models known a prior, 
we implemented u-track as an alternative tracking  algorithm11. The nearest neighbour algorithm links spots that 
are nearest neighbours in two consecutive frames as long as their distance does not exceed a user-defined tracking 
radius. To account for fluorophore blinking and stochastic fluctuations in spot intensity, the tracking algorithm 
may bridge missing detections (gap frames) in a user-defined number of subsequent  frames23, as long as the first 
track segment contains a certain number of detections. The choice of tracking radius and concatenating track 
segments may introduce tracking errors, which we discuss below. Our GUI allows controlling all four steps of 
the tracking workflow. Importantly, we implemented the possibility to compare different choices of tracking 
parameters to enable assessing their influence on the tracking results.

Our framework simplifies the effort of analysing numerous movies of multiple data sets by applying the detec-
tion and linking steps to all loaded movies without further input by the user. The results and tracking parameters 
are stored in a single analysis batch structure. This unique data structure summarizes associated files, properties of 
detected spots and tracks and all tracking parameters in one single file. Thus, reproducing results and comparing 
multiple processed data sets is possible with minimal effort.

Data analysis. We implemented a GUI-module to analyse multiple characteristics of single molecule tracks 
and to display the results, enabling direct comparison of different data sets (Fig. 1 and 2, “Materials and meth-
ods” and Supplementary Material). Tracked molecules can be visualized using a set of intuitive tools allowing 
both directly inspecting the effect of changes in tracking or analysis parameters and accessing their spatiotem-
poral dynamics. Besides conventional plotting of spots and tracks, heat maps of  localizations2,34,35 and jump 
 distances36 can be displayed. We distinguish mobile and immobile molecules based on the time spend within 
a certain  area28–30 ( “Materials and methods”). Lifetimes of immobile molecules, imaged using different time-
lapse conditions to allow for photobleaching  correction31, are collected in survival time  distributions29. From 
these, the complete spectrum of dissociation rates is extracted by inverse Laplace transformation using  GRID32. 
Also, the fractions of bound molecules can be assessed using interlaced time-lapse  microscopy37. For mobile 
molecules imaged at sufficient acquisition speed, analysis of the jump distances within each track yields diffu-
sion  coefficients38, the bound fraction as amplitude of apparent slow diffusion due to the localization  error29,39 
and confinement radii as function of the mean  displacement40. In addition, histograms of the angles between 
the jumps of a track can be displayed, informing on compact versus non-compact  diffusion18,41,42. We further 
implemented the possibility to analyse the intensity profile of  tracks43. The batch structure facilitates assessing 
differences between multiple experimental conditions.

To ensure transparency and flexibility, we included a data export option, with which track coordinates are 
stored in specific Matlab or csv file formats to enable utilizing external analysis environments, such as Spot-On 
or vbSPT for diffusion  parameters25,26.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9465  | https://doi.org/10.1038/s41598-021-88802-7

www.nature.com/scientificreports/

Figure 1.  Workflow of TrackIt software. TrackIt enables comparative tracking and analysis of multiple single 
molecule data sets, each consisting of multiple movies. After loading and manual or automatic determination of 
tracking parameters, molecules are detected and tracked within a region of interest. Various display options of 
tracks provide visual feedback on the tracking process. Within the analysis tool, multiple quantitative parameters 
can be extracted, including bound fractions, residence times, diffusion coefficients, jump angles and confinement 
radii. Data is stored in a convenient batch structure for later reanalysis or comparison to other data sets.

Figure 2.  Examples of evaluation parameters and display options. (a) Duration of all tracks (track lengths) 
are collected in a histogram. Bound molecules can be segmented by the choice of tracking parameters, i.e. 
the tracking radius. For molecules classified as bound, the dissociation rate spectrum via GRID and bound 
fractions can be obtained. (b) Diffusion coefficients and confinement radii can be computed from jump distance 
distributions. (c) Angles between consecutive jumps are calculated and displayed in a polar histogram. (d) Each 
track can be individually explored by plotting the intensity over time together with a kymograph. The upper and 
lower graphs show examples of an immobile and mobile molecule, respectively.
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Description of tracking errors. The track of an immobile molecule stops when (i) the molecule exits the 
immobile state, (ii) the fluorescent label photobleaches (photobleaching loss) or (iii) a tracking error occurs 
(tracking loss) (Fig. 3a). Only case (i) depends on the properties of the molecule and carries information about 
its residence time in the immobile state. In contrast, both photobleaching and tracking errors falsely terminate a 
track and thus blur the survival time distribution if they are not corrected for. Although tracking loss may occur 
as often as or even exceed photobleaching loss, correction methods for tracking loss are less developed than for 
photobleaching loss.

Figure 3.  Prediction of loss probabilities in nearest neighbour tracking. (a) The track of a bound molecule 
stops after dissociation, which depends on the laboratory time. Additionally, photobleaching and tracking 
losses may falsely terminate a track. These losses depend on the frame-cycle time. (b) Sketches of tracking losses 
in the nearest neighbour algorithm. Tracking loss may occur due to jumps out of the tracking radius (s) or 
erroneous links to a different molecule in close proximity. If one gap frame is allowed, both types of losses can 
be partially recovered. Recovered tracks retain the correct temporal information, however the spatial properties 
of the track will be altered. (c) Simulated loss probability as function of tracking radius. Large tracking radii 
increase erroneous links to neighbouring detections, small tracking radii increase losses of the tracked molecule. 
After each loss a track is split into fragments. The colour coding indicates the different track fragments. (d) 
Comparison of loss probabilities (open circles) of simulated spots tracked with the nearest neighbour algorithm 
using different tracking radii with loss probability predicted by theory (lines). Three different time-lapse 
conditions where simulated, with frame-cycle times of 0.05 s (blue), 1 s (magenta) and 5 s (green) (Table 1 
Scenario 1). (e) and (f) Dissociation rate spectra of molecules simulated with five different dissociation rate 
constants after tracking them using the tracking radii suggested by theory for a given loss probability (Table 1 
Scenarios 2 and 3). (e) For low densities, dissociation rate spectra are correctly inferred if the loss probability 
was below 10% per frame. (f) For a density of 0.005 Spots per pixel, only fast dissociation rates were recovered in 
cases of low loss probabilities.
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To be able to account for tracking errors of immobile molecules, e.g. transcription factors bound to chromatin, 
we established a model for the tracking loss of the nearest neighbour algorithm ( “Materials and methods”). We 
considered tracking loss due to jumps out of the tracking radius and erroneous links to a different molecule in 
close proximity (Fig. 3b). If one gap frame is allowed, these losses can be partially recovered and the lifetime of 
the immobile state stays unaltered ( “Materials and methods”). Oversize jumps are recovered if the molecule 
returns back into the tracking radius after the gap frame and is closer to the centre of the tracking area than to 
its previous position. A falsely linked track can be correctly continued, if the subsequent detection is within the 
tracking radius of the falsely linked spot. We calculated the probabilities of recovery and final loss by consider-
ing the geometry of these situations and obtain an overall probability atr for the tracking loss of ( “Materials and 
methods”):

where aNN is the loss due to erroneous linking, that depends on the spot density ρ and az is the loss due to jumps 
out of the tracking radius s . The factor (1− f ) represents the reduction of the tracking loss by allowing one gap 
frame. The optimal loss probability balances obtaining fully linked tracks at large tracking radii and low errone-
ous linking of adjacent molecules (Fig. 3c).

To validate our approach, we simulated a single immobile spot without photobleaching and without dissocia-
tion from chromatin (Table 1 and “Materials and methods”). We linked it with our nearest neighbour algorithm, 
and obtained the loss probability from the average lifetime of the tracks. We compared the loss probability as 
function of tracking radius and at different time-lapse conditions with our theoretical prediction (Fig. 3d and 
Table 1). The theoretical expectation well described the in silico experiment.

Experimental correction of tracking errors. Tracking errors have a certain probability to occur after 
each frame of a movie, similar to photobleaching. When measuring the residence time of immobile molecules, 
tracking errors can be corrected for by applying a time-lapse imaging scheme with several time-lapse conditions, 
if the loss probability per frame is constant for all time-lapse conditions. In this case, correction using time-lapse 
imaging is similar to the correction of  photobleaching31. The reason is that the residence time of the molecule 
does not depend on the time-lapse condition, while both tracking errors and photobleaching do. In effect, both 
photobleaching and tracking errors can be corrected for simultaneously by combining both losses in a single 
loss probability.

When analysing a time-lapse experiment, a different tracking radius has to be chosen for each time-lapse 
condition to yield an overall constant loss probability (Fig. 3d). We implemented an algorithm in our tracking 
and analysis framework, which, for a user-defined loss probability, calculates the corresponding tracking radius 
for each time-lapse condition.

We tested the performance of our correction approach in the analysis of residence times of immobile mol-
ecules. We simulated a time-lapse experiment for a scenario where immobile molecules at a low density of 5 spots 
in 100 × 100 px were subject to five different binding interactions with corresponding dissociation rates (Fig. 3e, 
Table 1 and “Materials and methods”). We tracked the molecules by specifying a loss probability and using the 
suggested tracking parameters for each time-lapse condition in the nearest neighbour algorithm. Subsequently, 
we used GRID to extract the spectrum of dissociation  rates32. To determine to which extent tracking errors 
influenced the result we varied the loss probability over two orders of magnitude. We found that for high loss 
probabilities > 10%, small dissociation rates arising from long-lasting tracks could not be inferred correctly. In 
contrast, for low loss probabilities < 10%, the ground truth was well inferred with our analysis.

We further tested to which extent the density of molecules affected our approach. We simulated densities 
up to 50 spots in 100 × 100 px (Fig. 3f and Table 1) in steps of 0.0005 spots per pixel to provoke incorrect link-
ing between individual spots. Molecules were again subject to five different binding interactions. The maximal 
density of molecules at which dissociation rate spectra and thus associated residence times could be well inferred 
was 0.0025 spots per pixel.

Analysis of the dissociation rate spectrum of the transcription factor CDX2. Finally, we applied 
our tracking and analysis framework and the algorithm which predicts optimal tracking parameters to re-ana-

(1)atr = aNN (ρ)+ az(s)
[

1− f
]

[1− aNN (ρ)]

Table 1.  Simulation parameters for time-lapse data. Scenario 1 (Fig. 3 Panel d) corresponds to a single spot 
that has an infinite residence time and does not exhibit photobleaching. Scenario 2 (Fig. 3 panel e) and 3 
(Fig. 3 panel f) correspond to a molecule that exhibits five dissociation rates from chromatin and is subject to 
photobleaching at different spot densities per frame.

Scenario
Molecules per 
frame Relative frequency

Dissociation Rate 
 (s−1)

Photobleaching 
rate a
(Probability per 
frame)

Time-lapse
conditions (s) Frames

Point spread 
function width

Conversion factor 
pixel to µm

1 1 1 1e−15 1e−15 0.05; 1; 5 500 1px 0.16

2 5 0.03,0.06,0.130,0.26,0.52 3e−3, 2e−2, 0.2, 
1.3, 10 0.01 0.05,0.3,1.5,5 400 1px 0.16

3 50 0.03,0.06,0.130,0.26,0.52 3e−3, 2 e−2, 0.2, 
1.3, 10 0.01 0.05,0.3,1.5,5 400 1px 0.16
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lyse the dissociation rate spectrum of the transcription factor CDX2 using previously published single molecule 
imaging data (Fig. 4)32. The data consists of four time-lapse microscopy conditions of a HaloTag-CDX2 fusion 
protein labelled with a SiR dye. Time-lapse movies were obtained with 50 ms exposure time and an overall frame 
cycle time of 0.05 s, 1 s, 5 s and 9 s. In our tracking parameter prediction algorithm, we set the loss probability 
to 0.01 and the algorithm calculated a corresponding set of tracking parameters for each time-lapse condition. 
As a result, the algorithm revealed tracking radii and the corresponding time periods during which a HaloTag-
CDX2 molecule should stay within this boundary to be identified as bound. The tracking radii where 100 nm, 
240 nm, 410 nm and 430 nm for the frame cycle time condition of 0.05 s, 1 s, 5 s and 9 s, and the minimum 
track length was 5 frames for 0.05 s frame cycle time movies and 2 frames for the other conditions. For tracking, 
we used the nearest neighbour algorithm and allowed bridging detection gaps of one frame as long as a track 
already existed for at least 2 frames. Next, the resulting track durations were transferred to the GRID toolbox to 
extract the dissociation rate spectrum. Our approach with computationally determined tracking radii and the 
previous analysis using manually chosen tracking radii yielded comparable dissociation rate spectra (Table 2). 
The main deviations are in the amplitudes, not the values of dissociation rate clusters. For future experiments, 
computationally determined optimized tracking radii will ensure robust data analysis.

Discussion
We introduced the tracking and analysis framework TrackIt, which simplifies analysing and comparing multiple 
different large single molecule fluorescence data sets due to a comprehensive list of GUI modules and a batch 
structure. Thus, fast and reproducible analysis can be performed without the need for additional manual steps or 
programming. In particular, TrackIt is well suited to systematically compare different settings of tracking param-
eters and to scan data sets differing in experimental conditions for differences in kinetic or structural parameters.

We further introduced quantitative considerations of tracking losses of immobile molecules in a nearest 
neighbour tracking algorithm and implemented means to partially correct for them. The nearest neighbour 
algorithm is more prone to linking errors than more complex  algorithms6,11,12. However, in contrast to complex 

Figure 4.  Re-analysis of CDX2 dissociation rate spectrum. Live-cell single molecule movies of SiR-Halo-
CDX232 where analysed using the tracking radii suggested by theory for a tracking loss probability of 1e−2. 
(a) Fluorescence survival time distributions of tracked molecules (red lines) at different time-lapse conditions 
(indicated on top) and survival time functions obtained by GRID (black dashed lines). (b) State spectrum of 
SiR-Halo-CDX2 obtained by GRID using all data (red circles) and a superposition of 499 GRID results obtained 
by resampling 80% of data (black circles) as an error estimate of the state spectrum.

Table 2.  Comparison of the inferred CDX2 spectrum  with32. Dissociation rate interval specifies the manually 
assigned dissociation rate intervals corresponding to a dissociation rate cluster. The spectral weight of each of 
the five distinct clusters of the CDX2-spectrum was obtained by integrating the GRID amplitudes resulting 
from 100% of the measured survival times.

Cluster No 1 2 3 4 5

Dissociation rate interval (1/s)32

(Manual parameter settings) 0.004–0.007 0.018–0.026 0.08–0.09 0.50–0.55 4.6–5.2

State spectrum  weight32

(Manual parameter settings) 30.3% 38.5% 14.7% 10.5% 6.1%

Dissociation rate interval (1/s)
(Theory predicted parameter settings) 0.003–0.006 0.026–0.035 0.1–0.15 0.44–0.56 2.6–3.9

State spectrum weight
(Theory predicted parameter settings) 46.4% 30.1% 7.5% 9.2% 6.8%
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approaches that produce unpredictable tracking losses, the nearest neighbour algorithm allows for a theoretical 
prediction of tracking losses. This prediction allowed us to automatically determine consistent settings of track-
ing parameters for the analysis of immobile molecules. We note that tracking errors in every tracking algorithm 
can be minimized by measuring at low molecule densities, thereby trading optimized tracking for measurement 
throughput. Overall, we provided a pipeline to analyse transcription factor residence times including both pho-
tobleaching and tracking error corrections.

We used theory-suggested tracking parameters and GRID to determine the spectrum of dissociation rates of 
CDX2 proteins. We could verify our previous results, where manually assigned tracking parameters were carefully 
adjusted considering movies of all time-lapse conditions. Our theory-predicted tracking radii reach the same 
quality as manual parameters and thus enable reproducible, user-independent data analysis.

We only treated Brownian motion in our tracking formalism. Accordingly, we used the nearest neighbour 
algorithm that does not base the linking process on the molecule’s past movement. Other modes of motion like 
the Ornstein–Uhlenbeck  process44, super- and anomalous  diffusion45,46 as well as Lévy  flights47 were discussed 
for the movement of biomolecules. In contrast to Brownian motion, these processes have a memory i.e. their 
current movement depends on their past. Thus, it may be advisable to use model based tracking algorithms e.g. 
Bayesian or Kalman filters that are able to predict the molecules movement based on the past track for these kinds 
of motion. Our idea of calculating empirical parameters from a given loss probability can be readily applied, 
however new calculations for the respective model are necessary.

Each research question comes with its own requirements for data analysis. Thus, while our framework pro-
vides state-of-the art analysis approaches applied in recent publications, care has to be taken whether an imple-
mented approach optimally covers the analysis needs. For example, analysing bound fractions requires separating 
molecules into different kinetic classes. While we implemented a commonly used approach to identify bound 
molecules by their restricted mobility  area28–30, alternative classification approaches have been  published40,48–50. 
Moreover, the bound fraction analysis we implemented is best suited for data sets captured using interlaced time-
lapse  microscopy37. Some important analysis approaches are not yet implemented in TrackIt, for example the 
possibility to analyse two-colour single molecule data. However, being implemented in commonly used Matlab 
format, our framework constitutes a broadly accessible platform to which novel analysis schemes can be added.

Materials and methods
Localization and jump distance mapping. The spatial distribution of localizations and mobility param-
eters of tracked molecules contains valuable information about their function and  environment2,35,36. We ena-
bled creating a heat map of localizations by using all detected spots whose position is determined to sub-pixel 
precision with a 2D Gaussian fit. The positions of all spots were then accumulated in a 2D histogram. The pixel 
values therefore correspond to the amount of detections in each pixel. The image can be upscaled by dividing 
the original bin size (i.e. the original pixel size) into smaller units resulting in a super-resolved image, or down-
scaled by merging several bins. Similarly, we create a heat map of jump distances. We define a jump as a change 
in position between two consecutive frames of a track. Jumps involving gap frames are omitted. For all jumps 
within a track, a virtual line is drawn between the start and end positions of a jump. Each pixel touching this line 
is assigned with the corresponding jump distance. The resulting 2D histogram is then normalized by the amount 
of jump events in each pixel. Again, the image can be up- or downscaled by using an appropriate bin size of the 
histogram.

Jump distances and diffusion analysis. To obtain a direct overview of the jump distance distribution of 
all tracks, a histogram is created using all single molecule jump distances between consecutive frames. The bin 
size �r of the histogram can be set individually. In addition, the number of jumps of a tracked molecule to be 
considered in the histogram can be chosen. If only one jump per track is chosen, a biased weight of immobile 
over mobile molecules is minimized.

To extract diffusion coefficients from mobile molecules, we created a cumulative histogram of the squared 
jump distances, normalized to the total number of jump events. We fitted the resulting cumulative density 
distribution of squared displacements with a Brownian diffusion model including either two or three different 
diffusion  components29,31,39. For the two-component model we used

while for the three-component model we used
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Using the GUI, the original cumulative histogram is overlaid with the fitted function for visual inspection. 
Moreover, the resulting diffusion constants and amplitudes are displayed and compared between different data 
sets. We give 95% confidence intervals as an estimate of the error of fit-parameters. Adjusted  R2 values are used 
to estimate how well the data is represented by one of the models.

Confinement radius analysis. We implemented a two-parameter representation of tracks in which tracks 
are sorted according to their confinement radius and their mean jump  distance40. This representation gives 
insights into different mobility classes of single molecules. We calculated the confinement radii as previously 
 described40. In brief, the mean squared displacement as function of time of each track is fitted with a confined 
diffusion  model16,40

where R is the radius of confinement,  D* is the local diffusion coefficient, and the offset is introduced to account 
for the finite localization precision. In order to select only confined tracks for analysis, the mean squared dis-
placement as function of time of each track is fitted with a power law MSD = 4 · D · tα , where D is the diffusion 
coefficient and α an exponent that indicates the motion  type40. A threshold can be chosen for the maximum 
value of α that should be considered for further analysis.

Analysis of the dissociation rate spectrum and corresponding residence times. For immobile 
molecules, we implemented the possibility to analyse their dissociation rate spectrum and corresponding resi-
dence times. To obtain the dissociation rate spectrum, the survival time distribution of track durations of all 
tracks in continuous video or a time-lapse data set were calculated in the GRID toolbox. In time-lapse micros-
copy, the acquired frames are separated by a time period without illumination of the sample. Next, dissociation 
rate spectra were extracted in a global analysis of all time-lapse data sets using  GRID32. In brief, solving the 
inverse Laplace transformation of each survival time distribution is translated into a single minimization prob-
lem that can be handled by a gradient method.

Bound fraction analysis. The fraction of molecules bound to a stable structure such as chromatin can 
be determined by interpreting the amplitudes of diffusion components of tracked  molecules29,39. In another 
approach, the fractions of molecules belonging to two different binding time classes can be approximated using 
the interlaced time-lapse microscopy (ITM) illumination  scheme37,51. In ITM, two subsequent frame acquisi-
tions are followed by a longer dark time. Detected molecules are sorted into different binding time classes. 
Tracks, which survive at least one dark period, are classified as long bound, tracks which persist for two consecu-
tive frames are classified as short bound and single detections are classified as unbound/diffusing. To obtain 
accurate fractions, they have to be corrected for  photobleaching37. Continuous movies may contain information 
comparable to ITM, however will be highly affected by photobleaching.

Once classified, we calculate the overall bound fraction using

where Nunbound denotes the number of bound molecules and Nunbound the amount of unbound molecules.
In order to distinguish transient and stable bound molecules we calculate the fraction of long bound molecules

where Nlong denotes the number of long bound molecules and Nshort the amount of short bound molecules. A 
determination of bound fractions for each movie leads to a variation in the bound fraction from movie-to-movie 
and the final bound fraction is calculated from the mean value over all movies. To avoid an over-representation 
of movies with low molecule counts, events for each binding time class are additionally summed over all movies 
resulting in a single “pooled” bound fraction of all movies.

Intensity and kymograph analysis. We implemented the possibility to select individual trajectories and 
plot them in a separate window together with its intensity and the associated  kymograph43. To visualize the 
intensity over time, the mean intensity in a 3 × 3 pixel window around the spot centre is calculated and plot-
ted until the track is lost. Kymographs are visualized in separate plots for each spatial dimension. One spatial 
dimension is displayed versus time, while the other spatial dimension is maximum projected. After the end of 
track, both intensity plot and kymographs are continued for another 20 frames where the projection window 
remains centred on the last position of the track. Thus kymographs indicate whether the molecule was lost due 
to tracking errors or diffusion out of the focal plane. The extracted intensity trajectory furthermore informs on 
photobleaching steps.

Jump angle analysis. To analyse the angles between consecutive  jumps18,42, we calculated the scalar prod-
uct between the two normalized vectors representing the directions of the two consecutive jumps. Angles involv-
ing jumps over gap frames are omitted. We then took the inverse cosine to calculate the angle between the two 
vectors. The resulting angles are visualized in an angular  histogram18.

(4)MSDcircle = R2 ·

(

1− e
−4·D∗·

tlag

R2

)

+ offset

(5)BF =
Nbound

Nbound + Nunbound

(6)BFlong =
Nlong

Nlong + Nshort
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Simulation of single molecule time lapse data. We generated single molecule movies using a custom 
simulator implemented in Matlab 2019a. We simulated diffusion of a protein and photobleaching of an attached 
fluorescent label. Diffusion is altered upon association to or dissociation from chromatin by the protein. The 
protein can enter different binding states that are characterized by their on- and off-rates.

In favour of fast simulations, we renounced simulating the molecule position at fixed small time steps, but 
used the Gillespie direct method. With this approach, motion blur is not included in the simulation. We first 
determined the times until a photobleaching event or until a transition event from a diffusing to a bound state 
or vice versa. We then determined the position of the molecule for each frame. In case a state transition occurred 
outside a frame interval, we also determined the position of the molecule at the corresponding time. Jump dis-
tances were drawn from the 2D diffusion probability density corresponding to the diffusion coefficient D of the 
current state (free diffusion or apparent diffusion due to the localization error if bound).

We then used the simulated trajectories to generate images. For each spot, we simulated a point spread 
function with intensities corresponding to a lognormal photon count distribution. To add background, we used 
uniform random numbers for background noise. To approximate non-uniform background, we applied a band-
pass filter, which additionally enhanced features of the background.

Tracking loss in nearest neighbour tracking. The nearest neighbour algorithm links detected spots 
into tracks by comparing their positions in two consecutive frames. It links spots that are closest to each other if 
their distance does not exceed a certain tracking radius. Spots that cannot be linked to an existing track start a 
new track. Errors occur if a jump distance is larger than the tracking radius or if the track is erroneously linked 
to a different molecule in close proximity.

To estimate the probability of losing a track we assumed that the detected position of a spot depends on dif-
fusion and a localization error. The effective squared jump distance between two consecutive frames is given by

which results in the corresponding probability density for the detected position

The probability P(|�r| > s) of the spot position to exceed the tracking radius s is obtained by integrating the 
above equation over the interval s ≤ |�r| ≤ ∞

where we introduced the dimensionless variable

We further considered an interruption of the track due to an erroneously linked molecule. The position of the 
disturbing molecule is denoted by �r# . In order to disrupt the track, the molecule has to be closer to the second 
detected position. The probability to lose a track due to linking errors in dense environments is obtained by 
considering all possible configurations of this scenario:

where ρ is the density of spots/frame.

Partial recovery of tracking loss by introducing one gap frame. Tracking loss can be partially 
recovered if the tracking algorithm allows bridging one frame with missed detection.

We first calculated the probability I that two consecutive jumps including localization error lie within a given 
area �:

with the integration borders

where h is the jump of the molecule and g is the detected position. By inserting the probabilities (8) and detected 
spot positions (13) in (12) and integrating with respect to �g1, �g2, �g3 we obtain

(7)σ 2(τtl) = σ 2
0 + 4Dτtl

(8)p(r) =
1

πσ 2
exp

(

−
r2

σ 2

)

(9)P(|�r| > s) =

∫

|�r|>s

p(r)d�r = exp

(

−
s2

σ 2

)

= exp (−z)

(10)z =
s2

σ 2

(11)
aNN =
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(
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0
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(
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)

p
(
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)

p
(
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(13)�r1 = �h1 − �g1 + �g2 �r2 = �h2 − �g2 + �g3;
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We next used I to estimate the effect of a gap frame. We calculated the probability I(�) of a molecule to return 
inside the tracking radius after having left it in the previous frame. For this case, we need to consider that the 
molecule outside the tracking radius was detected but not linked to the existing track and therefore started a new 
track. The detection in the current frame has to be closer to the starting position than to the molecule outside the 
tracking radius otherwise the track will be cut. The area � = �Gap corresponding to this situation is given by:

Solving the Integral (14) with area �Gap yields the probability that the track is recovered. The integral 
I(�) was calculated numerically. The corresponding probability to lose a track after a gap frame is given by 
1− I(�Gap) = aGap = P(|�r| > s) . Compared with the tracking loss without gap frame, the probability to lose a 
track if tracked with a gap frame is upmost a factor of 0.5 smaller.

The overall probability atr for losing a track in presence of a gap frame and in presence of erroneous linking 
is given by:

Calculation of tracking radius to ensure a certain loss probability. To obtain the tracking radius for 
a given loss probability we need to solve equation (16) for s . Since no closed-form equation can be given for s(atr) 
, we employed an iteration scheme. We started the iteration at a starting point s0 and iterated until the change 
between the i-th and i + 1-th iteration is smaller than 1e−2. The equations for the step i → i + 1 are given by

In our iteration, we accounted for the fact that jump distance distributions are cut by the tracking  radius16. In 
each iteration, we determined the mean of squared jump distances σ 2(si) by tracking with the nearest neighbour 
algorithm with tracking radius si.

Simulation parameters. We simulated videos with frame sizes of 100 × 100 pixels. The SNR of spots was 
chosen as 25. The diffusion constant of chromatin bound molecules was set to D = 1e−3 µm2  s−1, the free diffu-
sion constant was set to D = 10 µm2  s−1.

Data availability
Data supporting the findings of this manuscript will be available from the corresponding author after publication 
upon reasonable request. Single particle movies of CDX2, described  in32, and tracking results are freely available 
at https:// doi. org/ 10. 5061/ dryad. 0zpc8 66wh.

Code availability
The TrackIt software is freely available. TrackIt is written in Matlab and available at https:// gitlab. com/ Gebha 
rdtLab/ Track It.
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