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Elastocaloric‑effect‑induced 
adiabatic magnetization 
in paramagnetic salts due 
to the mutual interactions
Lucas Squillante1, Isys F. Mello1, Antonio C. Seridonio2 & Mariano de Souza1*

The temperature change under adiabatic stress, i.e., the elastocaloric effect, is a well‑understood 
phenomenon and of particular interest due to its potential application in alternative ways for 
refrigeration. Here, we demonstrate that in the regime of low‑temperatures (a few mK) real 
paramagnets can be magnetized when compressed adiabatically without applied magnetic field. 
Such adiabatic magnetization is a genuine many‑body problem, stemming from the inherent dipolar 
mutual interactions between adjacent magnetic moments. We showcase experimental setups to 
carry out adiabatic magnetization and thus to access such a subtle effect. Perspectives of further 
investigations by controlling the mutual interactions in Bose–Einstein condensates in magnetic 
insulators and dipolar spin‑ice systems via the adiabatic increase of temperature are also presented. 
Yet, we discuss the connection between the elastic Grüneisen parameter and the shift on the critical 
temperature of second‑order phase transitions under adiabatic stress, as well as its connection with 
the Ehrenfest relation.

The understanding of the behavior of magnetic excitations in solids continues to be a topic of broad interest. 
Indeed, the interplay between magnetism and  superconductivity1,2, a proper description and the search for mate-
rials aiming to maximize the magnetocaloric  effect3,4, magnetic-field-induced quantum phase  transitions5–7, and 
exotic excitations like magnetic  skyrmions8,9 are currently fertile fields of research. It has been almost a century 
since paramagnetic salts have been employed for cooling in the adiabatic demagnetization  process10. It is well-
known that the intrinsic mutual interactions between adjacent magnetic moments are the limiting factor in the 
attainment of lower temperatures, typically a few mK, using this  process7,10. Essentially, such mutual interactions 
generate an effective local magnetic field Bloc that prevents further demagnetization for magnetic fields lower 
than Bloc and, as a consequence, the system cannot be cooled below such a temperature. The many-body effects 
emerging from the mutual interactions show up when both the thermal and the magnetic dipolar  energy10,11 
become comparable. Recently, we have reported on the influence of such many-body effects in preventing the 
realization of a genuine zero-field quantum phase transition in real  paramagnets7. Also, we have reported on 
the possibility of performing adiabatic  magnetization7 by only manipulating the mutual interactions between 
spins. At this point, it is worth mentioning that the adiabatic magnetization here discussed is achieved without 
an external magnetic field and thus it differs from the known adiabatic magnetization usually reported in the 
literature concerning the so-called inverse magnetocaloric  effect12,13. Essentially, the idea consists in increasing 
the temperature  adiabatically10,14, so that the system is magnetized in order to maintain the entropy  constant7. 
This is particularly true based on the fact that in an adiabatic process the total entropy should be held constant, 
while the entropy associated with the various excitations involved can be either decreased or  increased15. Also, 
considering the reversibility of an adiabatic process, the adiabatic magnetization can be restarted as long as the 
system lies in a temperature range, in which the magnetic excitations associated with the mutual interactions 
are relevant. Here, we discuss the basic concepts of Thermodynamics associated with the adiabatic temperature 
increase, as well as experimental setups for the realization of elastocaloric-effect-induced adiabatic magnetization 
in paramagnetic salts. Yet, we discuss the possibility of exploring many-body effects in other magnetic systems 
via the adiabatic increase of temperature.

OPEN

1IGCE - Physics Department, São Paulo State University (Unesp), Rio Claro, SP 13506-900, Brazil. 2Department 
of Physics and Chemistry, São Paulo State University (Unesp), Ilha Solteira, SP 15385-000, Brazil. *email: 
mariano.souza@unesp.br

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-88778-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9431  | https://doi.org/10.1038/s41598-021-88778-4

www.nature.com/scientificreports/

Temperature change due to an adiabatic compression
Based on concepts of Thermodynamics, the temperature of a system can be increased, without heat exchange 
with the surroundings, via adiabatic  compression10,16. In such a case, upon applying pressure the volume v varies 
quasi-statically. Next, we derive the expression for temperature change due to an adiabatic pressurization. We 
start recalling the first law of  Thermodynamics16,17:

where dQ is the infinitesimal heat variation, dU the infinitesimal internal energy variation, and dW the infini-
tesimal work performed on the system upon applying external pressure. In a quasi-static process, the internal 
energy variation dU can be written  as17:

where T is the temperature. The term 
(

∂U
∂T

)

v
 in Eq. (2) can be recognized as the heat capacity at constant volume 

cv
17 and thus:

The infinitesimal work dW performed on the system is given by dW = −pdv10,16,17, where p is the applied pres-
sure. Employing the relation for an adiabatic process p = −

(

∂U
∂v

)

S
17, where S is the entropy, the infinitesimal 

work dW can be written as follows:

The term 
(

∂U
∂S

)

v
= T in Eq. (4) is the canonical definition of  temperature10. Also, employing the Maxwell-relation 

(

∂S
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=
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17, Eq. (4) becomes:

Replacing Eqs. (3) and (5) into Eq. (1):

Recalling that dQ = TdS10,16,17 we  write17,18:

Since d Q = TdS an adiabatic compression at a fixed T means that d Q = 0 and thus implying that S must remain 
constant (dS = 0 ) during this process. Therefore, Eq. (7) becomes:

Employing the  relation17:

and using the Thermodynamic relations for the isothermal compressibility κT = − 1
v
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17 and the volumetric 
thermal expansion β = 1

v
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p
17, Eq. (9) becomes:

Thus, replacing Eq. (10) into (8) we have:

Resulting thus in the key expression:
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where d TS refers to the infinitesimal temperature variation in an adiabatic compression. Equation 11 indicates 
that upon adiabatically compressing a solid, its volume is reduced (dv < 0 ) and thus the temperature is increased 
adiabatically (dTS > 0 ) starting in a certain T. The temperature increase due to an adiabatic volume change here 
discussed is isentropic and thus a reversible adiabatic process. The very same mathematical analysis as in Eq. (11) 
can be performed upon analysing the increase of temperature due to an adiabatic increase of pressure. Now, we 
make use of the following thermodynamic  relation14:

The derivative on the first term of the right side of Eq. (12) is (∂S/∂T)p = cp/T , where cp is the heat capacity at 
constant pressure. Also, employing the Maxwell-relation (∂S/∂p)T = −(∂v/∂T)p

17 Eq. (12) becomes:

Considering a reversible adiabatic process [ dS(T , p) = 0 ], Eq. (13) reads:

where d pS is the adiabatic pressure change. Thus, we achieve:

Essentially, Eq. (15) is similar to Eq. (11). Both Eqs. (11) and (15) can be employed to either describe an adi-
abatic compression (dv < 0 , d p > 0 ) or expansion (dv > 0 , d p < 0 ). However, in this work we have focused on 
the case of an adiabatic increase of temperature (dTS > 0 ), i.e., an adiabatic compression. Note that in Eq. (15) 
the adiabatic temperature increase is written in terms of an infinitesimal adiabatic pressure change d pS . Thus, 
in the light of Eq. (15) the temperature is increased due to an adiabatic application of pressure. At this point, 
we recall that the cooling of a system using pressure as the tuning parameter is the so-called barocaloric effect. 
The physical parameter that quantifies the barocaloric effect is the Grüneisen parameter Ŵp = 1/T(∂T/∂p)S

19. 
Interestingly enough, by manipulating Eq. (15) we obtain:

Multiplying both sides of Eq. (16) by 1/T, gives us:

Note that Eq. (17) embodies naturally the definition of Ŵp
19. Experimentally, one of the ways of increasing the 

temperature adiabatically upon pressurization is by employing an adiabatic application of stress, which is dis-
cussed in the next Section.

Uniaxial stress application
Another way of promoting an adiabatic increase of temperature lies in the application of an uniaxial stress under 
adiabatic  conditions18. The entropy variation in an adiabatic process with respect to the temperature and applied 
stress σ is given  by18:

where σij represents the Voigt’s abbreviated  notation20 for the stress components, the index i corresponds to the 
plane normal on which the stress is applied and j the direction of the applied  stress21. Experimentally, the applica-
tion of uniaxial stress on the specimen may be accompanied by an undesired strain gradient due to the bending 
of the  sample22. Thus, in order to avoid such a strain gradient, a symmetric mounting of the stress application 
setup is required, as discussed in Ref.22. Essentially, the symmetric mounting lies in attaching a rigid cap foil on 
top of the sample’s edges, to ensure that both lower and upper surfaces of the sample’s edges are firmly secured 
and thus a homogeneous stress application is  attainable18,22, cf. Fig. 1. In our analysis, we consider that all stress 
components are kept constant except for one of the normal stresses since we are interested in the case of an 
uniaxial applied stress, cf. Fig. 1. Thus, considering that (∂S/∂σij)T ,σ = αij , where αij is the thermal expansion 
coefficient in the Voigt’s abbreviation, and (∂S/∂T)σ = cσ /T , where cσ is the heat capacity at constant stress. 
Thus, rewriting Eq. (18) we achieve:
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Since we focus on the case of an adiabatic compression, d σij is recognized as the compressive stress, which is 
conventionally  negative21. Thus, d TS in Eq. (19) is positive meaning an adiabatic increase in temperature under 
an adiabatic uniaxial compressible stress. Thus, Eq. (19) can be rewritten as follows:

Following discussions in our previous  work19, we define Ŵec as the elastic Grüneisen parameter, which quantifies 
the temperature change due to an adiabatic uniaxial strain application. A key aspect regarding Eq. (19) refers 
to the experimental difficulties posed in achieving adiabatic conditions. In this regard, the oscillating strain 
technique can be employed, cf. depicted in Fig. 3. Using this technique, the strain frequency should be tuned in 
a time-scale lower than the thermal relaxation time of the  system18. Thus, the system is strained more quickly 
than it exchanges heat with its surroundings and thus an adiabatic strain on the specimen can be attained. At this 
point, we consider that the entropy variation dS also depends on the magnetization change dM and thus we write:

Because of a reversible adiabatic process dS(T ,M, σ) = 0 and thus:

Employing the Maxwell relation 
(

∂S
∂M

)

T
= −

(

∂B
∂T

)

S
17, Eq. (22) becomes:

Equation 23 embodies the principle of the adiabatic magnetization under the application of uniaxial stress. In 
order to hold the entropy constant when the temperature is increased adiabatically, there has to be a variation of 
the magnetization dM to compensate the entropy change associated with both d TS and d σij , as well as a change 
of the magnetic field B in respect to the adiabatic temperature variation. It is clear that B should be recognized 
as Bloc , since there is no external magnetic field acting on the system. Essentially, an adiabatic application of 
σij in a paramagnetic system implies in an adiabatic temperature increase and to hold S constant, the system 
is spontaneously magnetized adiabatically by dM. Note that we have considered that a paramagnetic insulator 
presents a finite magnetization in the absence of an external magnetic field when T → 0 K due to the intrinsic 
presence of Bloc , being thus its ground-state a ferromagnetic phase, cf. discussions presented in Ref.7. Therefore, 
the infinitesimal magnetization dM in Eq. (23) is due to the magnetic energy increase associated with the mutual 
interactions in order to keep the entropy constant as a response to an adiabatic increase of temperature. Based 
on such discussions, it is tempting to infer the concept of positive and negative  temperatures10,23,24 in terms of 
adiabatic deformations. However, the requirements for such are not  fulfilled24.
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Figure 1.  Uniaxial stress application in a solid. Schematic representation of the 9 stress components: 3 normal 
stresses ( σx,−x , σy,−y , and σz,−z ) and 6 shear stresses ( σxy , σxz , σyx , σyz , σzx , and σzy ). All the stress components 
can be represented in the Voigt’s abbreviated notation σij20, as discussed in more details in the main text. The 
dashed lines indicate the length variation �Lx when an uniaxial compressive stress σx,−x is applied. Figure based 
on Ref.21. The application of uniaxial stress can be used for the adiabatic magnetization of a paramagnetic salt, 
cf. depicted in Fig. 2 and discussed in the main text.
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The Grüneisen parameter and strain‑dependent second‑order phase transitions
As discussed by us in Ref.19, the Grüneisen parameter is enhanced close to any critical point due to the intrinsic 
entropy accumulation near it and, as previously discussed, the elastic Grüneisen parameter quantifies the elas-
tocaloric effect. As discussed in the next, the elastic Grüneisen parameter incorporates the shift in the critical 
temperature Tc of a second-order phase transition due to the application of stress. Under adiabatic conditions, 
such a shift in Tc occurs because the temperature variation of the specimen due to the elastocaloric effect has to 
compensate the entropy change associated with the  strain18. We make use of the expression for the entropy vari-
ation of an infinitesimal strain dε under adiabatic conditions (dS = 0 ) close to a second-order phase  transition18:

where c(cr)σ  is the critical contribution to the heat capacity at constant stress. The first term on the right side of 
Eq. (24) associates the entropy change due to (dTc/dε)T and the second term accounts for the entropy variation 
due to the elastocaloric effect of the  specimen18. Rearranging Eq. (24), we  have18:

Equation 25 relates the elastocaloric effect to the corresponding shift in Tc
18. Note that Ŵec can be determined in 

terms of dε upon multiplying both sides of Eq. (25) by 1/T. Since Eq. (25) accounts for the critical contribution 
to the heat capacity near Tc , it is associated with the critical contribution to the elastic Grüneisen parameter 
Ŵcr
ec , namely:

Interestingly, Ŵcr
ec quantifies the shift in Tc in the vicinity of a second-order phase transition due to an adiabatic 

strain. If (dT/dε)S > 0 in Eq. (26) implies that the temperature of the system is adiabatically increased in response 
to the strain, which is the case of an adiabatic compressible stress ( σij < 0 ), cf. Eq. (19). Thus, (dTc/dε)T is also 
positive, i.e., Tc is shifted to higher temperatures in response to the adiabatic strain. Based on similar arguments, 
if (dT/dε)S < 0 in Eq. (26), Tc is shifted to lower temperatures. It is well-known that c(cr)σ  is enhanced close to Tc 
and thus, based on Eq. (26), Ŵcr

ec is enhanced as well. Hence, a pronounced elastocaloric effect is expected close 
to a second-order phase transition. This is in perfect agreement with our recent work about giant caloric effects 
close to critical points, cf. discussed in Ref.19. Next, we discuss the connection between the Grüneisen parameter 
in the vicinity of Tc and the celebrated Ehrenfest  relation25. Note that close to Tc , Eq. (19) can be easily rewritten 
in terms of the thermal expansion and heat capacity jumps, �αij and �cσ , which correspond to the difference 
between critical and ordinary contributions to the thermal expansion coefficient and heat capacity, respectively. 
Hence, we have:

Rearranging Eq. (27), we  achieve26,27:

which has some resemblance with the Ehrenfest  relation25. Equation 28 indicates the Tc variation under adiabatic 
stress. More specifically, Eq. (28) takes into account the critical contribution to the elastic Grüneisen parameter 
Ŵcr
ec , which reads:

In this case, Ŵcr
ec quantifies the shift in Tc under the application of an adiabatic stress analogously to the shift in Tc 

under application of pressure in the well-known Ehrenfest relation. Although Eq. (29) has already been reported 
in Refs.26,27, its connection with the Grüneisen parameter is still lacking. It is worth mentioning that such an 
analysis can be extended to other cases, such as the magneto-caloric and the electro-caloric effects,  namely6,7,19:

and

where Ŵcr
mag and Ŵcr

ece are the critical contributions to the magneto-caloric and electro-caloric Grüneisen param-
eters, and E is the electric field. Thus, in an analogy with the canonical Ehrenfest relation, Eqs. (29), (30), and 
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(31) quantify the Tc shift of a second-order phase transition under the adiabatic application of stress, magnetic 
field, or electric field, respectively.

Adiabatic magnetization by only manipulating the mutual interactions 
between spins
The magnetic interactions between adjacent magnetic moments in a real paramagnet lead to a finite effective local 
magnetic field Bloc , which is usually about 0.01 T considering an average distance between magnetic moments 
of 5Å7. By cooling the paramagnetic system down to temperatures, in the range in which the energy associated 
with the magnetic interactions are relevant (usually T < 6 mK)7, many-body effects set in. In such a temperature 
range it is possible to increase the temperature adiabatically, cf. previous discussions. Essentially, in order to keep 
the entropy constant there has to be an increase of the local field to compensate such temperature  increase7, i.e., 
the system is magnetized. For the sake of completeness, we recall some relevant results reported by us in Ref.7. 
The microscopic treatment of the mutual interactions requires a many-body approach, which can be described 
by the  Hamiltonian7,28,29:

where J ′ is the magnetic coupling constant, �S is the spin vector oriented along the local zi Ising < 111 > axis, i 
and j refer to the two sites of the lattice, �r is the position vector, D = (µ0µ

2)/(4πr3nn) , µ0 is the vacuum perme-
ability, µ the magnetic moment, and rnn is the distance between nearest-neighbor spins. The second term of the 
Hamiltonian (Eq. 32) embodies the magnetic energy associated with the interaction between a single magnetic 
moment and its nearest neighbors. The Hamiltonian of Eq. (32) is key in understanding the adiabatic magnetiza-
tion here discussed, since it takes into account the microscopic character of the mutual interactions responsible 
to give rise to Bloc . It turns out that when the temperature is increased adiabatically, the mutual interactions are 
altered in order to increase the magnetic energy and to keep the entropy constant. In our analysis, we employ a 
simple mean-field-type (molecular-field) approach to treat the mutual interactions, which is discussed in the next. 
At this point, the understanding of the adiabatic magnetization requires a treatment in terms of the uncertainty 
principle. In order to keep the entropy constant during the adiabatic magnetization process, the magnetic energy 
Umag of the paramagnetic system has to be changed, which is given  by30:

where mJ is the is the magnetic quantum number, J the total angular momentum quantum number, and φ is the 
angle between µ and Bloc . Employing Umag , the energy uncertainty �E can be calculated by the  expression10:

where E is the average magnetic energy. Plugging Eq. (33) into Eq. (34) and E = µBBlocN tanh
(

µBBloc
kBT

)

10, where 
N is the number of particles, we  have7:

In Eq. (35), �E is minimized when cosφ → 17. Since the adiabatic magnetization is performed during a quasi-
static process, this means that the uncertainty in time �t should be maximized, while �E is minimized. The 
condition for �E to be minimized lies in varying the total angular momentum  projection7. This is attainable by 
increasing only the z-axis projection of the total angular momentum vector �J  . The consequence of the enhance-
ment of the �J projection in the z-axis is that the magnetic energy is decreased and thus the system is  magnetized7, 
meaning that the angle φ between µ and Bloc is lowered. In summary, the genesis of the increment �Bloc in the 
adiabatic magnetization process is given by the increase of the �J  projection in the z-direction. This is one of the 
key results reported in Ref.7. In general terms, in the adiabatic magnetization process (Fig. 2) of the mutual 
interactions, the temperature is adiabatically increased from T1 to T2 and thus we can  write7:

where µB is the Bohr magneton, kB is the Boltzmann constant, and �Bloc is the magnetic field increment that 
will emerge into the system to compensate the adiabatic increase of temperature. The term �Bloc refers to the 
adiabatic magnetization by only manipulating the mutual interactions of the system upon adiabatically increas-
ing its temperature. Then, �Bloc can be determined by the simple  expression7:
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Experimental realization of the adiabatic magnetization
In order to carry out the adiabatic magnetization of a paramagnetic system, it must be isolated from the sur-
rounding in a low-temperature condition ( T < 6 mK) and pressure, which experimentally can be the stress, 
cf. illustrated in Fig. 3, must be quasi-statically applied to increase its temperature adiabatically. Upon increasing 
the stress as shown in Fig. 3, in such a quasi-static process, the temperature will be increased adiabatically and 
then the paramagnetic system will be magnetized by a term �Bloc , as previously discussed, in order to keep the 
entropy  constant7.

Figure 2.  Schematic representation of the steps for performing the adiabatic magnetization of a paramagnetic 
 specimen7. (A) A sample with volume v is inserted inside a coil, which is attached to an ampere meter, into an 
adiabatic chamber and the temperature is decreased to T1 = 2 mK, being the sample under pressure p1 , with 
entropy S1 , and magnetization M1 . External magnetic fields are absent and thus the resulting magnetic field 
Br = Bloc due to the intrinsic mutual interactions between adjacent magnetic moments (represented by the red 
arrows). The dashed lines represent a zoom of the paramagnetic sample inside the coil and the spins inside the 
sample. (B) A quasi-static pressure, more specifically the stress as depicted in Fig. 3, is applied so that the volume 
is reduced by a factor �v , leading thus to an adiabatic increase of the sample temperature to T2 = 2.1 mK. The 
sample is now under a pressure ( p1 +�p ) and it is magnetized by a factor �M in order to hold the entropy 
S1 constant. Since the magnetization of the sample is increased (minimization of the energy, cf. discussions in 
the main text), the spins are slightly vertically aligned since now the resulting field is Br ≃

√

Bloc
2 +�Bloc

2 . 
(C) During the time interval �t from process A to B (quasi-static applied pressure, i.e., stress cf. Fig. 3), the 
magnetic field is increased from Bloc to 

√

Bloc
2 +�Bloc

2 and thus the magnetic flux is changed over �t inducing 
an electromotive force, which in turn is associated with a finite electrical current, which can be measured by the 
ampere meter. Some parts of this figure were created employing templates available in Ref.31.
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SQUID
Another possible way of measuring �Bloc would be employing a nano-SQUID on a  tip32, which presents outstand-
ing sensitivity to measure the magnetic field generated by a single magnetic moment. In the present case, we are 
interested in measuring the local field during the adiabatic magnetization process. Essentially, the presence of a 
magnetic flux � through the SQUID affects its corresponding superconducting electrical current. Such magnetic 
flux depends on the magnetic field acting on the SQUID and the surface area S′ of the superconducting loop. The 
magnetic flux � through the SQUID is given  by33:

where n is an integer number, h is Planck’s constant, and e the fundamental electron charge. The factor (h/2e) 
is the quantum of magnetic flux �0 and it dictates the SQUID’s sensitivity. Considering the conditions of the 
adiabatic temperature increase from T1 to T2 (cf. Fig. 2) for the realization of the adiabatic magnetization, we 
estimate �Bloc ≈ 3.2  mT7. In the particular case of a nano-SQUID on a  tip32, given the fact that � depends on S′ , 
the sensitivity for detecting magnetic fields is compromised by the nanometer size of such a device. However, the 

(38)� =
∫

S′
�B · d �S′ = n

(

h

2e

)

,

Figure 3.  Schematic representation of the adiabatic magnetization process in a paramagnetic salt employing 
an experimental setup for the application of uniaxial stress. The sample is attached to both movable and fixed 
plates by using epoxy. A nano-SQUID tip sensor is placed close to the sample. Lead zirconate titanate (PZT) 
piezoelectric stacks are attached to the movable plate. In (a) there is no applied A.C. voltage V and thus no 
deformation of the PZT stacks takes place. In (b) an A.C. voltage V  = 0 is applied to the PZT stacks at a given 
frequency f making the PZT stacks to deform. Hence, the sample is uniaxially compressed leading to a variation 
of its length L by �L . The adiabatic regime can be achieved upon tuning f. The employed frequency should be 
higher than the inverse relaxation time τ−1 of the system, since τ represents the time scale of the heat exchange 
between the sample and its surroundings, cf. Ref.18. In this process, the temperature of the system is adiabatically 
increased and thus an adiabatic magnetization of the sample takes place, which is detected by the attached nano-
SQUID tip sensor. Figure prepared based on Refs.18,22,37. More details in the main text.
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spatial resolution of the device is improved and its sensitivity to magnetic dipoles increased, i.e., the nano-SQUID 
on a tip is extremely sensitive to small magnetic  moments32, enabling thus the detection of �Bloc generated 
from the adiabatic magnetization process in a paramagnetic system. Given the high-sensitivity of the SQUID’s 
critical current to both temperature and magnetic field, the nano-SQUID on a tip is also a very accurate scan-
ning cryogenic thermal  sensor34–36. Thus, employing such a device, a very sensitive thermal imaging of energy 
dissipation of nanoscale processes can be carried  out34–36. Hence, the thermal mapping of the adiabatic heating 
during the adiabatic magnetization can be carried out employing the oscillating strain experimental setup pro-
posed in Ref.18 with an attached nano-SQUID on  tip32, cf. depicted in Fig. 3. The relevant parameters involving 
the use of a nano-SQUID on a tip for measuring the adiabatic magnetization here discussed, such as the width 
of the measured signal for a particular frequency of the PZT stacks A.C. voltage, shall depend on the particular 
physical properties of the investigated system.

Adiabatic increase of temperature in interacting systems
The adiabatic increase of temperature upon applying pressure (stress, as depicted in Fig. 3) can lead to other 
investigations in the frame of many-body systems. There is a subtle difference between applying pressure/stress 
(Fig. 3) to a system and then sweeping its temperature non-adiabatically with the case of increasing its tempera-
ture adiabatically upon applying external pressure/stress (Fig. 3). When adiabatic pressurization takes place in 
an interacting system, it will rearrange itself as a whole due to the many-body effects in order to hold the entropy 
constant, which obviously is not the case for non-adiabatic conditions. Thus, employing adiabatic temperature 
changes, the many-body character of various interacting systems can be explored in an unprecedented way. This 
is particular true for Bose–Einstein condensates (BEC) in magnetic  insulators38 and dipolar spin-ice29 systems, 
just to mention a few examples. In the specific case of the BEC in a magnetic insulator reported in Ref.38, the 
adiabatic increase of temperature in such a system will change the energy ε of a triplon (Eq. 2 of Ref.38) and, as 
a consequence, the density of triplons will be altered due to the so-called Zeeman term −gµBBS

z in the triplon 
energy, where g is the gyromagnetic ratio, Sz is the spin projection in the z direction, and z is the direction of 
the external magnetic field. Considering that the resulting magnetic field of the system depends on both the 
external applied magnetic field and Bloc inherent to this particular system, the adiabatic increase of temperature 
will change Bloc , which in turn will change the density of triplons as well. Note that in this particular case, both 
an external magnetic field and Bloc are  considered7, which is not the case for the adiabatic magnetization due 
to the mutual interactions discussed previously. Hence, the adiabatic increase of temperature can be seen as 
an alternative way for investigating the system’s interactions and its phase diagram. This is a simple example 
of an investigation of the many-body character in interacting systems that can be carried out by employing an 
adiabatic increase of temperature. Yet, we point out that a similar case of the adiabatic magnetization for the 
Brillouin-like paramagnet, performed in the temperature range below which is associated with the relevance of 
the magnetic dipolar mutual interactions, can be carried out for the case of electric dipoles. More specifically, 
when considering the temperature regime where the interactions between electric dipoles are relevant, the 
Langevin  equation39 can be employed following the approach reported in Ref.7 to demonstrate that when the 
temperature is adiabatically increased, a spontaneous adiabatic electric polarization of the system takes place, 
analogously to the adiabatic magnetization.

Conclusions
We have revisited the basic concepts associated with the increase of temperature under adiabatic application of 
hydrostatic pressure and uniaxial stress. Experimentally, the attainable mechanism to increase the temperature 
adiabatically is the application of stress. Following our previous  work7, we have proposed experimental setups 
for detecting the magnetic response under adiabatic conditions. Furthermore, we have proposed an alternative 
way for exploring various exotic phases of matter, like BEC in magnetic insulators and spin-ice, upon changing 
the temperature adiabatically. Yet, we have discussed that the elastic Grüneisen parameter quantifies the shift in 
the critical temperature Tc of a second-order phase transition under an adiabatic strain, as well as its connection 
with the Ehrenfest relation.

Methods
All the figures presented in this work were created employing the software Adobe Illustrator Version CC 2017 
and a few templates available in Ref.31 were used in the creation of the figures.
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