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Regulatory role of non‑coding RNA 
in ginseng rusty root symptom 
tissue
Xingbo Bian1,2, Pengcheng Yu2, Ling Dong1,2, Yan Zhao2, He Yang1,2, Yongzhong Han3 & 
Lianxue Zhang1,2*

Ginseng rusty root symptom (GRS) is one of the primary diseases of ginseng. It leads to a severe 
decline in the quality of ginseng and significantly affects the ginseng industry. The regulatory 
mechanism of non‑coding RNA (ncRNA) remains unclear in the course of disease. This study explored 
the long ncRNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in GRS tissues 
and healthy ginseng (HG) tissues and performed functional enrichment analysis of the screened 
differentially expressed ncRNAs. Considering the predictive and regulatory effects of ncRNAs 
on mRNAs, we integrated ncRNA and mRNA data to analyze and construct relevant regulatory 
networks. A total of 17,645 lncRNAs, 245 circRNAs, and 299 miRNAs were obtained from HG and 
GRS samples, and the obtained ncRNAs were characterized, including the classification of lncRNAs, 
length and distribution of circRNA, and the length and family affiliations of miRNAs. In the analysis 
of differentially expressed ncRNA target genes, we found that lncRNAs may be involved in the 
homeostatic process of ginseng tissues and that lncRNAs, circRNAs, and miRNAs are involved in fatty 
acid‑related regulation, suggesting that alterations in fatty acid‑related pathways may play a key role 
in GRS. Besides, differentially expressed ncRNAs play an essential role in regulating transcriptional 
translation processes, primary metabolism such as starch and sucrose, and secondary metabolism 
such as alkaloids in ginseng tissues. Finally, we integrated the correlations between ncRNAs and 
mRNAs, constructed corresponding interaction networks, and identified ncRNAs that may play critical 
roles in GRS. These results provide a basis for revealing GRS’s molecular mechanism and enrich our 
understanding of ncRNAs in ginseng.

Ginseng (Panax ginseng Mayer) is a significant medicinal material with high nutritional value and medicinal 
 value1. Due to the limitations of planting areas and planting patterns, it is more important to improve the yield 
and quality of ginseng for the ginseng industry’s sustainable  development2. As we all know, ginseng has higher 
requirements on the growth environment and longer growth life, so it is easy to occur in the growth process of 
various diseases, affecting its yield and  quality3.

Ginseng rusty root symptom (GRS) is one of the most common diseases in ginseng cultivation and produc-
tion. It produces reddish-brown spots on the periderm of ginseng roots, and with the increase of planting years, 
the spots may gradually expand, which will lead to a decline in commodity-grade and ginseng quality. Previous 
studies have found that chitosan application induces rusty root symptoms, and a variety of phenolic compounds 
and elements accumulate in rusty root  tissues4. In particular, Al and Fe’s accumulation may promote the accu-
mulation of phenolic compounds and the activation of enzymes related to their oxidation. The activity of vari-
ous antioxidant substances and antioxidant enzymes in rusty root tissues is significantly increased, preventing 
phenolic compounds from being  oxidized5. The microorganisms produce pectinase, cellulase, and ligninase 
that damage the cell walls of ginseng roots, causing rusty root symptoms exacerbated by the application of  Fe3+6. 
The presence of potential pathogenic fungi Ilyonectria has been reported, and non-biological factors such as Al, 
Fe stress in the rusty root formation process seem to be closely  related7–12. However, the molecular regulatory 
mechanisms of GRS are still elusive.

In recent years, increasing studies have used the Illumina RNA-seq platform based on transcriptome 
analysis to explore plant responses to abiotic or biological stresses and understand their associated molecular 
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mechanisms. In organisms, there is usually an ncRNA, in addition to mRNA, that does not encode a protein 
but has an important regulatory function. According to their size, ncRNAs can be subdivided into small ncR-
NAs (< 200 nucleotides long), including miRNAs and lncRNAs with a length > 200 bp and circRNAs, consist-
ing of a continuous closed  loop13–15. It has been shown that ncRNA is closely related to plant resistance and 
homeostasis  regulation16,17. Although ncRNAs in ginseng have been studied, the role of ncRNAs in GRS has not 
been  reported18–20. Besides, with the deepening of the research on ncRNA’s function, the regulatory mechanism 
between ncRNA and genes has been gradually improved. The construction of a gene regulatory network has 
become an essential strategy to reveal the regulatory mechanism of diseases and important plant  characters21,22.

In the present study, we identified ncRNAs in GRS tissue, and HG (healthy ginseng) tissue, the characteristics 
of the identified ncRNA were also described. The differentially expressed ncRNAs were screened, and their target 
genes were predicted. And the GO (Gene Ontology) annotation was used for classification and functional analysis 
of target genes, and the biological pathways of these genes were revealed through KEGG (Kyoto Encyclopedia of 
Genes and Genomes) (www. kegg. jp/ kegg/ kegg1. html) pathway  analysis23. Finally, we integrated the correlation 
between ncRNA and mRNA to construct the interaction network.

Results
Quality control and de novo assembly of RNA‑seq reads. We mainly analyzed lncRNA and cir-
cRNA obtained from the cDNA libraries. The sequencing of each ginseng sample produced over 100 million 
reads. After filtering adaptors and low-quality reads, we got high-quality clean reads, accounting for more than 
96% of the raw reads (Table S1). In the sequencing results of six sRNA libraries, each sample produced more than 
12 million reads. Similarly, by removing Adapter related reads and low-quality reads, we get high-quality clean 
reads, accounting for more than 96% of the original reads (Table S2).

Characteristics of ncRNAs. Identification results and characteristics of lncRNAs. By comparison with 
transcript databases and screening for length and coding potential, we predicted a total of 17,645 lncRNAs. The 
complete lncRNAs prediction results are shown in dataset 1, and the sequence information are freely available 
in the NCBI database under accession no. PRJNA713913. As shown in Fig. 1A, 11,914 (67.5%) of all lncRNAs 
were lncRNAs located in intergenic regions (lincRNAs), 3241 (18.4%) antisense lncRNAs, and 2490 (14.1%) 
sense lncRNAs. We compared the newly predicted lncRNAs with mRNAs, and most of the lncRNAs were less 
than 2000nt long, which is consistent with previous  research18. Besides, less exon and shorter Open Reading 
Frame (ORF), which confirms that our predicted lncRNAs are more in line with the general characteristics of 
lncRNAs (Fig. 1B).

Figure 1.  Prediction results and characteristics of lncRNAs. (A) lncRNAs classification; (B) comparison of 
length, number of exons and open reading frame between novel lncRNAs and mRNAs. Image generated with R 
3.6.3 (https:// www.R- proje ct. org)51 ggplot2 package (https:// ggplo t2. tidyv erse. org).

http://www.kegg.jp/kegg/kegg1.html
https://www.R-project.org
https://ggplot2.tidyverse.org
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Identification results and characteristics of circRNAs. By identification, we obtained a total of 245 circRNAs in 
six samples. The complete lncRNAs prediction results are shown in dataset 2, and the sequence information are 
freely available in the NCBI database under accession no. PRJNA715297. The length distribution is shown in 
Fig. 2A, and the identified circRNAs ranged from 50 to 700 nt, and the majority of circRNAs were less than 500nt 
in length. Based on sequence composition, these circRNAs can be divided into exon, intergenic, and intron 
components (Fig. 2B).

Identification results and characteristics of miRNAs. The complete miRNAs prediction results are shown in data-
set 3, and the sequence information are freely available in the NCBI database under accession no. PRJNA715301. 
A total of 299 miRNAs were identified, of which 225 were novel miRNAs. As shown in Table 1, we performed 
statistics on the comparison and annotation of all sRNA with rRNA, tRNA, snRNA, and snoRNA, as well as 
repeat. The proportion of rRNA in each sample ranged from 12.32 to 29.92%, indicating good sample qual-
ity. The highest proportion of known miRNA in all samples was 2.64%, while the highest proportion of novel 
miRNA was 0.84%.

The sRNA length distribution obtained by screening is shown in Fig. 3A, and the sRNA length distribution 
of all six samples was mainly concentrated between 21 and 24 nt. Besides, we performed a family analysis of 
the obtained known miRNAs and new miRNAs to count their miRNA family affiliations. As shown in Fig. 3B, 
a total of 76 miRNAs belonged to 28 miRNA families. Among these miRNA families, MIR156, MIR6135, and 
MIR159 are the larger three families, containing nine, seven, and six miRNAs. Considering that miRNAs are 
highly evolutionarily conserved, we counted the miRNAs identified in ginseng tissues in other species. As shown 
in Fig. 3C, many of the miRNAs identified in the ginseng tissues have high homology with Glycine max, Malus 
domestica, Populus trichocarpa, Zea mays, and other species.

Figure 2.  Identification results and characteristics of circRNA. (A) Length distribution of circRNAs; (B) 
circRNAs classification. Image generated with Microsoft Office Excel and R 3.6.3 (https:// www.R- proje ct. org)51 
ggplot2 package (https:// ggplo t2. tidyv erse. org).

Table 1.  Statistical overview of various sRNA types.

Types GRS1 (percent) GRS2 (percent) GRS3 (percent) HG1 (percent) HG2 (percent) HG3 (percent)

Known miRNA 73,679 (1.79%) 145,816 (1.39%) 120,485 (1.19%) 241,032 (2.64%) 140,930 (2.06%) 226,231 (2.20%)

rRNA 825,401 (20.03%) 1,292,397 
(12.32%)

1,501,552 
(14.86%)

1,783,348 
(19.54%)

2,049,090 
(29.92%)

3,258,171 
(31.63%)

tRNA 180,683 (4.38%) 997,735 (9.51%) 1,643,876 
(16.27%) 408,644 (4.48%) 166,521 (2.43%) 373,450 (3.63%)

snRNA 2364 (0.06%) 5193 (0.05%) 4094 (0.04%) 3337 (0.04%) 2629 (0.04%) 3539 (0.03%)

snoRNA 3235 (0.08%) 5761 (0.05%) 5117 (0.05%) 3973 (0.04%) 3696 (0.05%) 4990 (0.05%)

Repeat 443,558 (10.76%) 1,270,460 
(12.11%) 1,005,613 (9.95%) 1,028,449 

(11.27%) 651,718 (9.52%) 946,467 (9.19%)

Novel miRNA 34,729 (0.84%) 74,360 (0.71%) 58,377 (0.58%) 68,678 (0.75%) 55,896 (0.82%) 79,584 (0.77%)

Other 2,556,886 
(62.06%)

6,697,710 
(63.86%)

5,762,731 
(57.06%)

5,587,575 
(61.24%)

3,778,625 
(55.16%)

5,407,542 
(52.50%)

https://www.R-project.org
https://ggplot2.tidyverse.org
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Figure 3.  Identification results and characteristics of miRNA. (A) Statistics of length distribution of sRNA 
fragments obtained; (B) miRNA family statistics of miRNAs in ginseng tissue; (C) statistics of miRNA in 
ginseng tissue in other species. Image generated with R 3.6.3 (https:// www.R- proje ct. org)51 ggplot2 package 
(https:// ggplo t2. tidyv erse. org).

https://www.R-project.org
https://ggplot2.tidyverse.org
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Differential expression analysis of ncRNAs. Figure  4A,B indicates the volcano plot and clustering 
map of differentially expressed lncRNAs, and detailed information of differentially expressed lncRNAs is shown 
in Table S3. The results showed that there were 1553 differentially expressed lncRNAs (789 upregulated, 764 
downregulated). Figure 4C,D indicates the volcano plot and clustering map of differentially expressed circRNAs. 
The results showed that there were 16 differentially expressed circRNAs. Compared with the HG group, there 
were seven upregulated and nine downregulated in the GRS group (Table S4). Interestingly, many circRNAs 
in the same group also showed significant differences in their expression levels, and some circRNAs were not 
expressed in a certain sample. Considering that a large number of circRNAs could not be detected in some sam-
ples, we showed the read count and RPM of differentially expressed circRNAs in each sample (Table S5). Because 
there were few reports about circRNAs in ginseng and it may need further study. The analysis of differentially 
expressed miRNAs is shown in Fig. 4E,F. The results showed that 107 genes were counted, of which 51 were 
upregulated and 56 were downregulated (Table S6).

Prediction and functional analysis of differentially expressed ncRNA target genes. To investi-
gate the potential regulatory role of ncRNAs in ginseng rusty root tissue, we further used GO and KEGG analysis 
to predict ncRNA target genes’ function.

We predicted the target genes of lncRNAs by co-location and expression correlation between lncRNAs and 
protein-coding genes. Directed acyclic graphs (DAGs) and histograms of differential lncRNAs based on co-
location predictions of target gene GO functional annotation analysis results are shown in Fig. 5. The biological 
process (BP) part is mainly enriched in intracellular signal transduction and regulation of biological quality, 
while the cellular component (CC) part is mainly enriched in chromosome and preribosome, the most significant 
molecular function (MF) part enriched for oxidoreductase activity, transferase activity, and hydrolase activity.

As shown in Fig. 6, we performed GO functional annotation of the target genes predicted by expression 
of differentially expressed lncRNAs. The BP part was significantly enriched in protein phosphorylation, lipid 
metabolic process, and oxidation–reduction process. The CC part is significantly enriched in photosystem I, 
integral component to Golgi membrane and intermediate filament. And, the MF part is mainly enriched in 
oxidoreductase activity and adenyl ribonucleotide binding.

After obtaining differentially expressed circRNAs, we analyzed their source genes. Through GO enrichment 
analysis, we found that these genes were mainly significantly enriched in the single-organism metabolic process, 
membrane part, and cation binding (Fig. 7).

Through the GO enrichment analysis of miRNA target genes, we found that in the BP part, miRNA target 
genes were mainly enriched in the biological regulation and regulation of the cellular process, and specifically 

Figure 4.  Expression profiling changes of ncRNAs in diseased tissues (the data used in heatmaps are Z-score 
of expressions). (A) Volcano plot indicating upregulated and downregulated; (B) heatmap of lncRNAs; (C) 
Volcano plot indicating upregulated and downregulated circRNAs; (D) heatmap of circRNAs; (E) Volcano 
plot indicating upregulated and downregulated miRNAs; (F) heatmap of miRNAs. GRS: ginseng rusty root 
symptom; HG healthy ginseng. Image generated with R 3.6.3 (https:// www.R- proje ct. org)51 pheatmap package 
(https:// cran.r- proje ct. org/ web/ packa ges/ pheat map/) and ggplot2 package (https:// ggplo t2. tidyv erse. org).

https://www.R-project.org
https://cran.r-project.org/web/packages/pheatmap/
https://ggplot2.tidyverse.org
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Figure 5.  Differentially expressed lncRNAs in ginseng tissues predicted the GO enrichment analysis of target 
genes according to the co-location. (A) The directed acyclic graph of the BP part; (B) the directed acyclic graph 
of the CC part; (C) the directed acyclic graph of the MF part; (D) statistical histogram. Image generated with R 
3.6.3 (https:// www.R- proje ct. org)51 ggplot2 package (https:// ggplo t2. tidyv erse. org).

https://www.R-project.org
https://ggplot2.tidyverse.org
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Figure 5.  (continued)
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Figure 6.  Differentially expressed lncRNAs in ginseng tissues predicted the GO enrichment analysis of target 
genes according to the expression correlation. (A) The directed acyclic graph of the BP part; (B) the directed 
acyclic graph of the CC part; (C) the directed acyclic graph of the MF part; (D) statistical histogram. Image 
generated with R 3.6.3 (https:// www.R- proje ct. org)51 ggplot2 package (https:// ggplo t2. tidyv erse. org).

https://www.R-project.org
https://ggplot2.tidyverse.org
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Figure 6.  (continued)
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Figure 7.  Differentially expressed circRNAs in ginseng tissues predicted the GO enrichment analysis of target 
genes. (A) The directed acyclic graph of the BP part; (B) the directed acyclic graph of the CC part; (C) the 
directed acyclic graph of the MF part; (D) statistical histogram. Image generated with R 3.6.3 (https:// www.R- 
proje ct. org)51 ggplot2 package (https:// ggplo t2. tidyv erse. org).

https://www.R-project.org
https://www.R-project.org
https://ggplot2.tidyverse.org
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Figure 7.  (continued)
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in the regulation of translation and regulation of cellular amide metabolic process. Only the nucleus was signifi-
cantly enriched in the CC part. Also, translation regulator activity and ADP binding were significantly enriched 
in the MF fraction, and binding enriched the most target genes (Fig. 8). This result suggests that differentially 
expressed miRNAs may be involved in multiple regulatory processes and cellular structure composition in 
ginseng tissues.

When the data of expression and co-location of differentially expressed lncRNA genes are used for KEGG 
analysis, the most significant related pathways were ribosome, aminoacyl-tRNA biosynthesis (Fig. 9A), pyruvate 
metabolism, and endocytosis (Fig. 9B). In the results of KEGG analysis of differentially expressed circRNAs, the 
most significantly involved pathways were mismatch repair, mRNA surveillance pathway, and biosynthesis of 
secondary metabolites (Fig. 9C). For KEGG analysis of differentially expressed miRNAs, the most significantly 
involved pathways were endocytosis, purine metabolism, and ABC transporters (Fig. 9D).

Real‑time quantitative polymerase chain reaction (qPCR) verified the expression of ncR‑
NAs. To verify the accuracy of RNA-seq results and provide the basis for further research, we randomly 
selected 9 ncRNAs (3 each for lncRNA, circRNA and miRNA) from differentially expressed ncRNAs for qRT-
PCR analysis. The ncRNAs TCONS_00335632, TCONS_00198747, TCONS_00190770, novel_circ_0000349, 
novel_circ_0000605, novel_circ_0000628, ath-miR396b-5p, pgi-miR6143a, and pgi-miR6136a.1 were ana-
lyzed by qPCR (Fig. 10A). The expression levels of corresponding ncRNAs obtained by RNA-seq are shown in 
Fig. 10B. All the validation results fully proved the reliability and accuracy of the transcriptome sequencing data.

Transcriptome association analysis. Aiming at the correlation analysis of lncRNAs and mRNAs, we 
analyzed the intersection of target genes of differentially expressed lncRNAs with differentially expressed genes. 
The intersection of target genes of differentially expressed lncRNAs and differentially expressed genes was shown 
by the Venn diagram (Fig. 11A,B), the up- and down-regulated expression of lncRNAs had 8482 and 7900 target 
genes overlapping with differentially expressed genes. We compared miRNAs’ target genes with mRNAs and 
obtained 157 miRNA-mRNA pairs with potential negative regulatory relationships. As shown in Fig. 11C and 
Table S7, of the 85 pairs in which miRNA was down-regulated while mRNA was up-regulated, ath-miR396b-5p, 
pgi-miR2118, novel_241, and novel_75 had higher degrees. At the same time, we obtained 72 pairs of down-
regulated miRNAs and up-regulated mRNAs, among which the degree of ath-miR156a-5p and novel_80 was 
greater than 5 (Fig. 11C and Table S8). These findings indicate that these miRNAs may interact with a larger 
number of genes, and it is speculated that these miRNAs may play an essential regulatory role in response to 
GRS. For example, ath-miR396b-5p potentially targets the defense-related gene NONHOST RESISTANCE1 
(NHO1) (Pg_S6553.3, Pg_S0488.16), and pgi-miR2118 potentially targets the disease resistance gene ribosomal 
protein S2 (RPS2) (Pg_S2587.2).

The lncRNA can be the precursor molecule of miRNA, so we analyzed the homology of lncRNA and miRNA 
precursors. As shown in Table S9, we found 31 potential homologous relationships. In addition, we constructed 
a miRNA-lncRNA interaction network based on the targeting relationship between differentially expressed miR-
NAs and differentially expressed lncRNAs (Fig. 12). In the network, we found 65 potential targeting relationships 
(Tables S10, S11). The miRNAs with high degree are ath-miR159a, ath-miR159b-3p and novel_92.

Based on the competing endogenous RNA (ceRNA) theory, lncRNA gene pairs with the same miRNA binding 
site were searched, and lncRNA gene pairs with lncRNA as a decoy, miRNA as the core, and mRNA as the target 
were constructed to construct the regulatory network of ceRNA (Fig. 13). A total of 90 lncRNAs, 43 miRNAs, 
and 191 mRNAs were found to have regulatory relationships with at least one other RNA species (Table S12). 
The degrees of miRNAs were generally high in the constructed interaction networks, with ath-miR396b-5p, 
ath-miR156a-5p, ath-miR159a, ath-miR159b-3p, novel_24, novel_243, novel_19, and novel_75 having degrees 
greater than 10, which were in the more central position of the interaction networks. The degrees for lncRNA 
and mRNA are generally 1 and 2.

Discussion
This work investigated the differential expression of ncRNAs in GRS tissues compared to HG tissues. The 
potential functions of differentially expressed ncRNAs were predicted by GO and KEGG pathway analysis, and 
regulatory networks of mRNAs and ncRNAs were constructed. These findings suggest that ncRNAs may play a 
regulatory role in diseased tissues.

NcRNA is a class of RNA molecules that cannot translate proteins. According to their morphology and func-
tion, ncRNAs can be divided into various types. As the functional studies of non-coding RNAs continue to be 
explored, the various types of RNAs’ regulatory mechanisms are gradually  uncovered24,25. The network of inter-
actions at the transcriptional level cannot be ignored. Currently, the mechanisms of transcriptional regulation 
of mRNAs and ncRNAs in GRS are unknown. Therefore, our study analyzed lncRNAs, circRNAs, and miRNAs 
in diseased tissues and predicted the functions and regulatory roles between mRNAs and them, which is vital 
for further in-depth and comprehensive studies on the mechanisms of GRS.

A total of 17,645 lncRNAs, 245 circRNAs and, 299 miRNAs were obtained by rigorous screening and predic-
tion with a variety of bioinformatics software and online tools. Compared to previous studies, we predicted more 
noval ncRNAs in ginseng, so the characteristics of ncRNAs in the samples were described as necessary. Then, 
we conducted differential expression analysis and cluster analysis of ncRNAs in GRS tissues and HG tissues. The 
results showed 1553 lncRNAs, 16 circRNAs and, 107 miRNAs significantly differently expressed in GRS tissue. 
Interestingly, due to their circular structure, circRNAs are generally highly stable and conserved compared to 
other RNA types. However, we also found large differences in circRNAs in the same set of samples (Fig. 4D). 
Given the relatively few reports on circRNAs in ginseng, the reasons for this may require further investigation.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9211  | https://doi.org/10.1038/s41598-021-88709-3

www.nature.com/scientificreports/

Figure 8.  Differentially expressed miRNAs in ginseng tissues predicted the GO enrichment analysis of target 
genes. Image generated with R 3.6.3 (https:// www.R- proje ct. org)51 ggplot2 package (https:// ggplo t2. tidyv erse. 
org).

https://www.R-project.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
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Figure 8.  (continued)
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To understand the biological functions and potential regulatory mechanisms of ncRNAs in GRS tissues, we 
predicted the screened differentially expressed ncRNAs’ target genes and then performed GO and KEGG func-
tional enrichment analysis on the obtained target genes. The mechanisms by which lncRNAs regulate target genes 
are diverse, and we predict the differential expression of lncRNA target genes by the most common ways of acting 
downstream (co-location and expression). Co-location means that the lncRNA may have a regulatory effect on a 
nearby protein-coding gene; expression means that the lncRNA regulates downstream genes through expression 
correlation. In the GO enrichment analysis of target genes with differential lncRNAs screened by co-location, 
we found that the target genes were significantly enriched in " regulation of biological quality" (GO:0065008) 
and specifically in " homeostatic process" (GO:0042592). These suggest that differentially expressed lncRNAs in 
ginseng diseased tissues may be involved in regulating the maintenance of internal homeostasis. Interestingly, we 
also found enrichment for the "reproductive process"(GO:0022414) in this section, whereas no reports of ginseng 
reproduction affected by GRS have been reported so far. The enrichment of chromosomal, ribosome-associated 
terms (GO:0000228, GO:0000775, GO:0030684, etc.) suggests that lncRNAs may be involved in transcriptional 
regulation translation in ginseng cells. Besides, lncRNAs may also be involved in regulating various enzyme activ-
ities, including oxidoreductase and transferase, in ginseng tissue (GO:0003674). The results of GO enrichment 
analysis of differentially expressed miRNAs showed that, compared to healthy ginseng, differentially expressed 

Figure 9.  Scatter plot of KEGG pathway enrichment results for differentially expressed ncRNAs target genes. 
(A) Co-location of lncRNA; (B) expression correlation of lncRNA; (C) circRNA; (D) miRNA. Image generated 
with R 3.6.3 (https:// www.R- proje ct. org)51 ggplot2 package (https:// ggplo t2. tidyv erse. org).

https://www.R-project.org
https://ggplot2.tidyverse.org
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miRNAs in red skin tissues exhibited differential enrichment for the regulation of translation (GO:0006417, 
GO:0045182), regulation of transcription (GO:0006355), and "nucleotide binding" (GO:0000166).

In the results of the KEGG enrichment analysis of target genes that differentially expressed ncRNAs, we can 
understand that ncRNA may be involved in the synthesis of various amino acids and the ribosome pathway. 
This result may indicate that ncRNAs mainly regulate the translation process of diseased tissue. Moreover, both 
differentially expressed lncRNAs and miRNAs are involved in the fatty acid synthesis, metabolism, or elongation 
under this disease’s background. Fatty acids are crucial components of cellular membranes, suberin, and cutin 
waxes that provide structural barriers to the environment. On the one hand, cutin and wax can physically shield 
against pathogenic bacteria by influencing the physical properties (mechanical strength and hydrophobicity) 
of the stratum corneum; on the other hand, they can directly control the proliferation and differentiation of 
pathogenic bacteria through hydroxy fatty acids and other bacteriostatic components to achieve their chemical 
defense  function26–28. The “cutin, suberine and wax biosynthesis” pathway was also enriched in the expression of 
differentially expressed lncRNAs. This result may mean that ncRNA’s regulatory effect on fatty acids is significant 
in  GRS29. Alkaloids are of great significance for plants to resist pathogens and play a role of poison or  expulsion30. 
In our enrichment results, ncRNAs are involved in regulating a variety of alkaloid biosynthesis, indicating that 
ncRNAs may play a significant role in phytochemical resistance in ginseng diseased tissues.

In our analysis, 25 known miRNAs were differentially expressed (Table S6). For example, miR6143a have 
been reported to have a potential role in callus development and  maintenance19. Moreover, mi6135k, miR6140d, 
miR6139, miR6140a, and miR6136b are responsive to heat treatment. MiR6139 are probably involved in the 
homeostasis of metal  ion31. The target gene prediction of miR2118 also indicated that miR2118 may have a 
regulatory effect on disease-resistance protein  genes19. We have obtained many differentially expressed ncRNAs 
in GRS, but most of them are novel ncRNAs, and there are few studies on their roles. Therefore, their potential 
roles still need to be further explored.

To further understand the interactions between mRNAs and ncRNAs, we analyzed the correlations between 
differentially expressed mRNAs and ncRNAs in HG tissues and GRS tissues, and based on these data. We 
found substantial overlap after matching the target genes of differentially expressed lncRNAs with differentially 
expressed mRNAs, suggesting that many differentially expressed genes in GRS are likely to be regulated by 
lncRNAs.

We compared the target genes of differentially expressed miRNAs with mRNAs and constructed miRNA-
mRNA networks by retaining only the negatively regulated miRNA-mRNA pairs. A total of 157 negatively 
regulated combinations were obtained. We found ath-miR156a-5p, novel_80, and several other miRNAs in the 
more central position of the network, which was hypothesized to play essential roles in GRS formation.

Considering that miRNA-lncRNA interactions may play an important regulatory role in plant response 
to  stress32, we analyzed the targeting relationship between differentially expressed miRNAs and differentially 
expressed lncRNAs, and constructed an interaction network. It’s worth noting that, we found that known miR-
NAs, ath-miR159a and ath-miR159b-3p, have a high degree in the network. The miR159 family can respond to 
various environmental  stresses33, suggesting that ath-miR159a and ath-miR159b-3p may play an important role 
in GRS through targeted regulation of lncRNAs.

Finally, we constructed an mRNA-lncRNA-miRNA interaction network based on the ceRNA  mechanism34,35. 
Some lncRNAs and mRNAs were found to be regulated by the same miRNA, which may indicate that these RNAs 
may be involved in the relevant regulation in GRS through the ceRNA mechanism.

In summary, we identified lncRNAs, circRNAs, and miRNAs in GRS tissues and HG tissues and performed 
functional enrichment analysis of the screened differentially expressed ncRNAs. We obtained 17,645 lncRNAs, 
245 circRNAs, and 299 miRNAs from the ginseng root tissues and characterized the obtained ncRNAs. By GO 
and KEGG analysis, we found that lncRNAs may be involved in homeostasis regulation, and lncRNAs, circRNAs, 
and miRNAs are involved in fatty acid-related regulation that alterations in fatty acid-related pathways may play a 
key role in GRS. Differentially expressed ncRNAs play an essential role in transcription and translation, primary 

Figure 10.  qRT-PCR validation of significant differentially expressed genes. (A) qRT-PCR, the data were 
presented as the mean ± SEM (n = 3); **p < 0.05; (B) RNA-seq. The figure was created by using GraphPad Prism 7 
(https:// www. graph pad. com/).

https://www.graphpad.com/
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metabolism, and secondary metabolism in ginseng tissues. Finally, we integrated the correlations between ncR-
NAs, constructed the corresponding interaction network, and identified ncRNAs that may play a key role in GRS. 
These results provide the basis for revealing the molecular mechanism of GRS and enrich our understanding 
of ncRNA in ginseng.

Materials and methods
Site description and sample collection. In previous  investigations36, we found that the ginseng grown 
at a ginseng farm showed more rust root symptoms in Hunchun city (42.86′ N and 130.37′ E) in northeast China. 
And this farm is the first to grow ginseng; the application of pesticides strictly complies with the “Ginseng safe 
production technical specification of pesticide application (DB22/T 1233-2019)”.

The diseased and healthy tissues were cut from GRS and HG, and all ginseng was taken from 5-year-old 
ginseng. Three independent biological replicates were prepared, and each replicate included root materials from 
three or more ginseng plants. The permissions were obtained from concerned authorities for collection and use 
of sample. And all methods were performed in accordance with the relevant regulations.

Figure 11.  Association analysis of mRNA and ncRNA in the diseased tissues. (A) Venn diagram showing 
the overlap number of targeted mRNA of up regulated lncRNAs and differentially expressed mRNAs; (B) 
Venn diagram showing the overlap number of targeted mRNA of down regulated lncRNAs and differentially 
expressed mRNAs; (C) Interaction network of miRNA-mRNA in ginseng tissues. Image generated with R 3.6.3 
(https:// www.R- proje ct. org)51 ggplot2 package (https:// ggplo t2. tidyv erse. org) and network diagram made by 
Cytoscape sofware 3.8.2 (https:// cytos cape. org/)57.

https://www.R-project.org
https://ggplot2.tidyverse.org
https://cytoscape.org/


18

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9211  | https://doi.org/10.1038/s41598-021-88709-3

www.nature.com/scientificreports/

RNA extraction and quality control. RNA extraction and quality control refer to previously  methods37. 
TRIzol reagent (Invitrogen, Carlsbad, CA) was used to isolate the total RNA of each sample. RNA degradation 
and contamination were monitored on 1% agarose gels. RNA purity was checked using the NanoPhotometer 
spectrophotometer (IMPLEN, CA, USA). RNA concentration was measured using Qubit RNA Assay Kit in 
Qubit 2.0 Flurometer (Life Technologies, CA, USA). RNA integrity was assessed using the RNA Nano 6000 
Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA).

Library preparation for RNA sequencing. A total of six complementary DNA (cDNA) libraries for 
screening lncRNA and circRNA, three GRS, and three HG were constructed in this part. A total amount of 3 µg 
RNA per sample was used as input material for RNA sample preparation. Sequencing libraries were generated 
using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA), following the manufacturer’s recommen-
dations, and index codes were added to attribute sequences to each  sample38. Briefly, mRNA was purified from 
the total RNA using poly-T oligo-attached magnetic beads. Fragmentation was conducted using divalent cations 
under elevated temperatures in NEBNext First Strand Synthesis Reaction Buffer (5X). The first strand cDNA 
was synthesized using a random hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). The second 
strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. Remaining over-
hangs were converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3′ ends of DNA 
fragments, NEBNext Adaptor with a hairpin loop structure was ligated to prepare for hybridization. To select 

Figure 12.  Interaction network of miRNA-lncRNA in ginseng tissues. Network diagram made by Cytoscape 
sofware 3.8.2 (https:// cytos cape. org/)57.

https://cytoscape.org/
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cDNA fragments of preferentially 150–200 bp in length, the library fragments were purified with the AMPure 
XP system (Beckman Coulter, Beverly, USA). Then, 3 µl USER Enzyme (NEB, USA) was used with size-selected, 
adaptor-ligated cDNA at 37 °C for 15 min, followed by 5 min at 95 °C before PCR. PCR was performed with 
Phusion High-Fidelity DNA polymerase, Universal PCR primers, and Index (X) Primer.

We also constructed six small RNA libraries, three GRS, and three HG. A total amount of 3 µg total RNA per 
sample was used as input material for the small RNA library. Sequencing libraries were generated using NEBNext 
Multiplex Small RNA Library Prep Set for Illumina (NEB, USA), following the manufacturer’s recommenda-
tions, and index codes were added to attribute sequences to each  sample39. Briefly, the NEB 3′ SR Adaptor was 
directly and specifically ligated to the 3′ end of miRNA, siRNA, and piRNA. After the 3′ ligation reaction, the 
SR RT Primer hybridized to the excess of 3′ SR Adaptor (that remained free after the 3′ ligation reaction). It 
transformed the single-stranded DNA adaptor into a double-stranded DNA molecule. This step is important to 
prevent adaptor-dimer formation; additionally, dsDNA is not substrates for ligation-mediated by T4 RNA Ligase 
1. Therefore, do not ligate to the 5′ SR Adaptor in the subsequent ligation step. Adapter 5′ ends were ligated to 
5′ ends of miRNAs, siRNAs, and piRNAs. Then, the first strand cDNA was synthesized using M-MuLV Reverse 
Transcriptase (RNase H-). PCR amplification was performed using LongAmp Taq 2X Master Mix, SR Primer 
for Illumina, and index (X) primer. PCR products were purified on an 8% polyacrylamide gel (100 V, 80 min). 
DNA fragments corresponding to 140–160 bp (the length of small noncoding RNA plus the 3′ and 5′ adaptors) 
were recovered and dissolved in an 8 µl elution buffer.

In the end, all library quality was assessed on the Agilent Bioanalyzer 2100 system.

Figure 13.  Interaction network of lncRNA-miRNA-mRNA in ginseng tissues. Network diagram made by 
Cytoscape sofware 3.8.2 (https:// cytos cape. org/)57.

https://cytoscape.org/
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Clustering and sequencing. Clustering of the index-coded samples was performed on a cBot Clus-
ter Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia), according to the manufacturer’s 
 instructions40. After cluster generation, cDNA library preparations were sequenced on an Illumina Hiseq PE150 
platform and, 150 bp paired-end reads were generated. The small library preparations were sequenced on an 
Illumina Hiseq SE50 platform, and 50 bp paired-end reads were generated. The raw RNA-seq data are freely 
available in the NCBI database under accession no. PRJNA684799 and PRJNA684889.

Data analysis. Quality control of sequencing data. Raw data (raw reads) of the fastq format were first pro-
cessed through in-house Perl scripts. In this step, clean data were obtained by removing reads containing the 
adapter, reads containing poly-N, and low-quality reads from raw data. At the same time, Q20, Q30, and GC 
content of the clean data were calculated. Clean reads obtained were used for subsequent analysis. The 18-35nt 
range was selected from small libraries clean reads for subsequent miRNA analysis.

Reads mapping to the reference genome. The reference genome (http:// ginse ngdb. snu. ac. kr/ downl oad. php? filen 
ame= ginse ng_ v1. fasta) and gene model annotation files (http:// ginse ngdb. snu. ac. kr/ downl oad. php? filen ame= 
IPGA_ v1_ Jbrow se_ update_ 1.1. gff, ginseng) were downloaded from the genome website  directly41. The refer-
ence genome index was built using STAR, and paired-end clean reads were aligned to the reference genome 
using STAR (v2.5.1b). STAR used the method of the maximal mappable prefix (MMP), which can generate a 
precise mapping result for junction reads. The miRNA tags were mapped to Bowtie’s reference sequence without 
mismatch to analyze their expression and distribution on the reference.

NcRNA identification and target gene prediction. For lncRNA, based on lncRNA’s characteristics, we used a 
strict screening method to identify  lncRNAs42. First, the transcript with the number of exons ≥ 2 and the length 
greater than 200 bp was selected. Then, Cuffcompare software was used to filter out the transcript that over-
lapped with the exon region of the database annotation. Thirdly, after filtering out known transcripts from the 
database using Cuffcompare,  CPC243,  Pfam44, and  CNCI45 software were used to screen for coding potential, 
and the intersection of transcripts with no coding potential from these software analyses was used as a candidate 
novel lncRNA dataset for this analysis. Finally, the candidate novel lncRNAs were screened and named regarding 
the HGNC (The HUGO Gene Nomenclature Committee) naming guidelines for lncRNAs to obtain the novel 
lncRNAs for this analysis.

The target genes of the lncRNAs were predicted by co-location and expression between the lncRNAs and 
the protein-coding genes. The screening range for target gene analysis by co-location was within 100 kb. The 
screening condition for prediction of lncRNA target genes by expression was a Pearson correlation coefficient 
greater than 0.95 and less than -0.95.

For circRNA, two most commonly used circRNA identification software (find circ and CIRI) are used for 
circRNA identification to improve the accuracy of circRNA  identification46,47. And then, we predicted the poten-
tial function of circRNAs based on the corresponding relationship between circRNAs and their source genes.

For miRNAs, after obtaining clean reads of each sample, small RNAs (sRNAs) in the 15-30nt length range 
were screened. The length-filtered sRNAs were localized to a reference sequence using bowtie (v.1.2.2) soft-
ware, and the distribution of sRNAs on the reference sequence was analyzed by comparing the specified range 
sequences in the miRBase database (v.21), and known miRNAs were obtained. Besides, miREvo (v.1.2) and 
mirdeep2 (v.0.1.2) software were integrated for novel miRNA analysis and prediction of novel miRNAs in the 
 samples48,49. Family analysis was performed on the detected miRNAs to explore the occurrence of miRNA families 
in other species. The known miRNA used miFam.dat (http:// www. mirba se. org/ ftp. shtml) to look for families; 
novel miRNA precursor was submitted to Rfam (http:// rfam. sanger. ac. uk/ search/) to look for Rfam families. 
Finally, predicting the target gene of miRNA was performed by psRobot_tar in psRobot (v.1.2)  software50.

Quantification of gene expression level. HTSeq (v.0.6.0)51 was used to count the read numbers mapped to each 
gene. FPKM of each gene was calculated based on the length of the gene and read count mapped to this gene. 
FPKM, the expected number of fragments per kilobase of transcript sequence per million base pairs sequenced, 
considers the effect of sequencing depth and gene length for the read count at the same time and is currently the 
most commonly used method for estimating gene expression levels.

The circRNA and miRNA expression levels were estimated by RPM (reads per million) through the following 
criteria: normalized expression = mapped reads count/total mapped reads*1,000,000.

Differential expression analysis. The R software (v.3.6.3) (https:// www.R- proje ct. org) DESeq2 package (http:// 
www. bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ DESeq2. html) (v.1.12.0) was used to perform differential 
expression analysis between the two groups based on reads  count52,53. DESeq2 provided statistical routines for 
determining differential expression in digital gene expression data using a negative binomial distribution model. 
The resulting P-values were adjusted using Benjamini and Hochberg’s approach for controlling the false discov-
ery rate.

GO and KEGG enrichment analysis. GO (http:// www. geneo ntolo gy. org/) enrichment analysis of differentially 
expressed genes was implemented by the GOseq based Wallenius non-central hypergeometric distribution, in 
which gene length bias was  corrected54. GO terms with corrected P-values less than 0.05 were considered sig-
nificantly enriched by differential expressed genes. KEGG is a database resource for understanding high-level 
functions and utilities of the biological system, such as the cell, organism, and ecosystem, from molecular-level 

http://ginsengdb.snu.ac.kr/download.php?filename=ginseng_v1.fasta
http://ginsengdb.snu.ac.kr/download.php?filename=ginseng_v1.fasta
http://ginsengdb.snu.ac.kr/download.php?filename=IPGA_v1_Jbrowse_update_1.1.gff
http://ginsengdb.snu.ac.kr/download.php?filename=IPGA_v1_Jbrowse_update_1.1.gff
http://www.mirbase.org/ftp.shtml
http://rfam.sanger.ac.uk/search/
https://www.R-project.org
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.geneontology.org/
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information, especially large-scale molecular datasets generated by genome sequencing and other high-through-
put experimental technologies (http:// www. genome. jp/ kegg/). We performed KEGG enrichment analysis on 
differentially expressed genes using KOBAS (v.2.0)  software55.

Quantitative real‑time RT‑PCR. For lncRNA and circRNA, total RNA isolation and cDNA preparation 
from different tissue samples of GRS and HG were the same as those above in “RNA isolation and quality con-
trol.” The quantitative real-time PCR (qRT-PCR) analysis was performed using 2 × RealStar Green Fast Mixture 
(GenStar, China) and the Real-Time PCR System (Lightcycler 96, Roche, Switzerland). β-actin was used as an 
internal control gene. For each reaction, 0.5 μl of the forward and reverse primers and 2 μl of cDNA template 
were added.

In PCR validation of miRNA expression, total RNA reverse transcription was performed using the Mir-X 
miRNA First-Strand Synthesis kit (TaKaRa, Dalian, China). The 5′ forward primers for qRT-PCR validation of 
miRNAs included the entire sequence of the mature miRNAs, as suggested by the manufacturer, and the 3′primer 
for qRT-PCR was supplied with the kit. The qRT-PCR analysis was performed using TB Green Premix Ex Taq 
II (TaKaRa, Dalian, China) and the Real-Time PCR System (Lightcycler 96, Roche, Switzerland). U6 was used 
as the internal control. For each reaction, 0.8 μl of the forward and reverse primers and 2 μl of cDNA template 
were added.

All of the primers used in this study are listed in Table S13. The relative gene expression level was calculated 
according to the  2−ΔΔCt  method56.

Whole transcriptome association analysis. We carried on the association analysis to the obtained data 
to reveal the role and interactions between differentially expressed ncRNAs and their relationship to differen-
tially expressed  genes57 in GRS:

1. We focused on the differentially expressed lncRNA to find the mRNA with the target relationship with the 
differentially expressed lncRNA. Then we crossed these mRNA with the corresponding combination of 
the differentially expressed mRNA to get the differentially expressed mRNA targeted by the differentially 
expressed lncRNA.

2. Taking the differentially expressed miRNA as the center, we searched for the mRNA that had a target rela-
tionship with the differentially expressed miRNA and then crossed these mRNAs with the corresponding 
combination of the differentially expressed mRNA to get the differentially expressed mRNA targeted by the 
differentially expressed miRNA.

3. In order to analyze the potential interactions of lncRNA-miRNA, lncRNA-miRNA pairs were found based 
on the homology between lncRNA and miRNA precursors. Then the miRNA-targeted lncRNAs were pre-
dicted by psRobot software, and the miRNA-lncRNA interaction network was constructed according to the 
obtained prediction information.

4. miRNA was used as the center of the map to associate lncRNA and mRNA. The interaction network was 
built based on the screening of lncRNA-miRNA-gene pairs with psRobot software.

The visualization of the above interaction network was completed by Cytoscape (v.3.8.2)  software58.
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