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of hemodialysis patients
Stanislas Werfel1,7, Georg Lorenz1,7, Bernhard Haller2, Roman Günthner1, Julia Matschkal1, 
Matthias C. Braunisch1, Carolin Schaller1, Peter Gundel1, Stephan Kemmner1,3, 
Salim S. Hayek4, Christian Nusshag5,6, Jochen Reiser5, Philipp Moog1, Uwe Heemann1 & 
Christoph Schmaderer1*

Cohort studies often provide a large array of data on study participants. The techniques of statistical 
learning can allow an efficient way to analyze large datasets in order to uncover previously unknown, 
clinically relevant predictors of morbidity or mortality. We applied a combination of elastic net 
penalized Cox regression and stability selection with the aim of identifying novel predictors of 
mortality in a cohort of prevalent hemodialysis patients. In our analysis we included 475 patients from 
the “rISk strAtification in end-stage Renal disease” (ISAR) study, who we split into derivation and 
confirmation cohorts. A wide array of examinations was available for study participants, resulting in 
over a hundred potential predictors. In the selection approach many of the well established predictors 
were retrieved in the derivation cohort. Additionally, the serum levels of IL-12p70 and AST were 
selected as mortality predictors and confirmed in the withheld subgroup. High IL-12p70 levels were 
specifically prognostic of infection-related mortality. In summary, we demonstrate an approach how 
statistical learning can be applied to a cohort study to derive novel hypotheses in a data-driven way. 
Our results suggest a novel role of IL-12p70 in infection-related mortality, while AST is a promising 
additional biomarker in patients undergoing hemodialysis.

End-stage renal disease (ESRD) with hemodialysis treatment continues to be associated with dramatically 
increased morbidity and mortality. While cardiovascular mortality represents the prevalent cause of death in 
these patients, death due to other causes such as infection is also more frequent than in the general population1. 
Several risk factors of cardiovascular and all-cause mortality have been identified and risk scores have been 
successfully established based on these2–7. Beyond the quantification of a personal prognosis, the identification 
of novel risk factors can lead to hypothesis generation for further research, novel therapeutic interventions and 
finally lead to improvements in patient outcomes.

Machine learning approaches for survival analysis can allow efficient selection of the most relevant risk fac-
tors even when a large number of potential predictors for only a relatively small patient population is available8,9. 
Among them, Cox regression using “elastic net” regularization allows selection even in settings where there are 
more predictors than events in the sample10. Here regularization refers to the procedure of penalizing and thereby 
shrinking the regression coefficients while (in the case of “elastic net”) allowing them to become zero and there-
fore omitting variables with less predictive power for the outcome. An advantage of this procedure compared 
to many other machine learning techniques is that it produces a model which is accessible to interpretation by 
clinician scientists, in a similar way as common multivariable Cox regression. This allows to draw conclusions 
from the resulting model itself such as e.g. generation of hypotheses for future therapeutic interventions.
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A more recent advancement is a combination of regularization with resampling, termed “stability selection”, 
which consists of recalculating the regularized regression many times with random subgroups of the available 
patient population in order to select the variables which show most consistent association with the outcome. This 
reportedly results in a more reliable selection in settings with a large number of potential predictors compared 
to the number of patients11.

Here we report on the application of elastic net regularization combined with stability selection for the iden-
tification of relevant predictors of mortality in the “ISAR” cohort of prevalent hemodialysis patients12.

Results
Characteristics of the study population and collected data.  The overall study design and rationale 
of the ISAR cohort trial have been described in our previous report12. Briefly summarized, prevalent hemodialy-
sis patients were recruited in 17 centers in and around Munich, Germany and followed up for a median time of 
37 months (interquartile range of 25–49 months). A total of 475 patients were included in the analysis (Fig. 1). 
Baseline characteristics for this population were previously reported5. Mortality events were classified into three 
categories: cardiovascular, infectious/sepsis and other (or unknown), with 64, 43 and 62 respective events occur-
ring during the follow-up period (Fig. 1). Overall over 100 possible predictors were collected for the patients in 
the study population including clinical parameters, comorbidities and medications, blood value measurements 
and static retinal vessel analyses (Table S1).

We randomly separated the total cohort into a derivation and confirmation dataset (n = 317 and 158 respec-
tively) with similar characteristics (Fig. 1). The sets were specifically similar with regard to age, gender, dialysis 
patient adapted Charlson comorbidity index (CCI)13, serum IL-6 and mortality (Table 1).

Application of a combination of elastic net regularization and stability selection for the identi-
fication of mortality predictors.  Variable selection with consecutive stability selection in the derivation 
dataset resulted in a substantially reduced predictor subset compared to using only the elastic net regression 
(Figure S1 and Fig. 2). Most of the predictors passing selection criteria for all-cause mortality or the cause-
specific events showed significant associations with mortality in the withheld confirmation cohort (Table 2). 
Among the comorbidities diabetes mellitus, pulmonary hypertension, atrial fibrillation (AF), history of myocar-
dial infarction, neoplasia, atherosclerosis (other than CHD) and peripheral artery disease (PAD) were selected 
and confirmed. Most of these have in fact previously been shown to have a significant effect on mortality13. 
Other previously reported predictors were catheter use for dialysis, blood pressure, hemoglobin levels, serum 
creatinine, CRP2,14, use of oral anticoagulation15, serum levels of IL-6 and YKL-40, as well as IP-105. We could 
also observe a detrimental effect of low serum triglycerides in our population as has been reported previously16. 
Interestingly, we also found low levels of AST to be associated with reduced all-cause mortality, while high levels 
of IL-12p70 were associated with an increased infection-associated mortality (Table 2). The association of AST 
with mortality is a relatively novel finding in dialysis patients17. The positive association of IL-12p70 with mor-
tality in these patients is to our knowledge a novel finding. We therefore further analyzed these predictors in our 
study population.

Patients enrolled
(n=519)

CV-related death
(n=64)

Infection-related 
death (n=43)

Death due to other
causes (n=62)

Censored
 (n=306)

Excluded due to missing
 cytokine data (n=44)

Median followup = 37m

Random split into a derivation and a confirmation dataset
(n= 317 and 158 respectively)

Included in analysis
(n=475)

Figure 1.   Patient flow diagram for the ISAR dialysis trial. The censoring for patients without an event occurred 
largely (≈ 80%) at the time point of last follow-up (4 years after study initiation). Death due to other causes also 
included unknown cause of death. Further details of the derivation and confirmation datasets are presented in 
Table 1. CV, cardiovascular.
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Serum AST as predictor of mortality in dialysis patients.  Low serum AST levels were associated 
with decreased all-cause mortality (hazard ratio (HR), 0.31; 95% confidence interval (CI), 0.10–0.98, p = 0.046, 
in the confirmation subcohort, Table 2). In this “low” group, AST levels were in the range of 3–13 U/l and there-
fore on the lower end or even below the reference range for the normal population (10–50 U/l for males and 
10–35 U/l for females). When analyzing mortality binned by AST subgroup in the total study population, this 
protective effect could be observed for all-cause and cardiovascular mortality, while increased levels of AST (top 
quintile) were associated with increased mortality for all-cause and “other” mortality causes (Fig. 3a). Modelling 
mortality using spline fitting on log transformed AST values significantly outperformed a regular Cox model 
(p = 0.038 for all-cause mortality in a likelihood ratio test on the total population with non-missing AST-values, 
n = 377, one patient was excluded due to strongly increased AST and ALT as discussed in “Methods”). We addi-
tionally observed a numerically improved predictive performance for a spline fitted model as further discussed 
below (Fig. 5a). In univariate and multivariable Cox regression incorporating spline transformations a similar 
association as described above for both a protective effect of lower than average AST as well as a detrimental 
effect of increased AST levels for all-cause mortality as well as cause-specific hazard for cardiovascular mortal-
ity and other causes were identified (Fig. 4). Of note, unknown mortality causes were also classified as “other” 
causes, we therefore expect some degree of overlap with cardiovascular mortality within this group due to e.g. 
sudden cardiac death.

Interestingly, despite a strong correlation of serum AST with ALT levels (Pearson coefficient: 0.62, p < 0.001), 
ALT levels were not significantly associated with all-cause or cardiovascular mortality (not shown) and did not 
show a similar protective effect of lower values when spline transformations were considered (Figure S2).

IL12p70 as a predictor of infection‑associated mortality in dialysis patients.  High IL-12p70 was 
one of the most stable predictors associated with mortality due to infection (Fig.  2c), showing a significant 

Table 1.   Matching characteristics of the derivation and confirmation datasets. Nominal variables are reported 
as counts and percentages, ordinal/continuous variables as median and interquartile range. P-values were 
calculated using a Chi-squared and a Mann–Whitney test respectively. Dialysis-patient adapted comorbidity 
index was calculated as described by Liu et al.13. D/T, due to.

Total Derivation Confirmation p-value

n (%total) 475 (100%) 317 (67%) 158 (33%)

Age (year) 68 [55–77] 67 [55–77] 69 [54–77] 0.72

Sex (%male) 331 (70%) 219 (69%) 112 (71%) 0.77

Comorbidity index 3 [1–6] 3 [2–6] 4 [1–7] 0.96

Serum IL-6 (pg/ml) 9.4 [5.6–16.1] 9.2 [5.6–15.6] 10.2 [5.7–16.6] 0.58

All-cause mortality 169 (36%) 112 (35%) 57 (36%) 0.95

Cardiovascular mortality 64 (13%) 44 (14%) 20 (13%) 0.82

Mortality D/T infection 43 (9%) 27 (9%) 16 (10%) 0.68

Mortality D/T other causes 62 (13%) 41 (13%) 21 (13%) 1.00

1 year mortality 35 (7%) 24 (8%) 11 (7%) 0.96

Figure 2.   Stability paths of the elastic net regression for all-cause (a), cardiovascular (b), and infection-
associated mortality (c). Each curve represents either a nominal predictor or a group (top/bottom quintile) of 
an ordinal/continuous predictor. The colors are coded as indicated. Vertical dashed lines represent the penalty 
parameter (ln-lambda) chosen by the stability selection, horizontal dashed lines represent the predefined 
selection threshold of 60%. Variables above this threshold at the selected penalty were considered stable. "High" 
and "low" indicates that the value falls within the top or bottom quintile of the total study population (see 
“Methods”).
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Table 2.   Summary of the stably selected variables and their confirmation. For ordinal variables "high" 
and "low" indicates that the value falls within the top or bottom quintile of the total study population (see 
“Methods”). ac, anticoagulation; AC, all-cause mortality; AF, atrial fibrillation; AST, Aspartate transaminase; 
CHD, coronary heart disease; CI(95%), 95% confidence interval of the hazard ratio; CV, cardiovascular 
mortality; CVD, cardiovascular disease; D/T, due to; DBT (24 h), average (24 h) diastolic blood pressure; 
DM, Diabetes mellitus; EN, elastic net; ESRD, end-stage renal disease; H.o., history of; HB, hemoglobin; HF, 
heart failure; HR, hazard ratio; HRD, heart rhythm disorder; INF, infection-associated mortality; MAP (24 h), 
average (24 h) mean arterial pressure; MI, myocardial infarction; n, number of non-zero observations of the 
respective predictor in the confirmation group; PAD, peripheral artery disease. *p < 0.05; #, two-sided p < 0.1 
and same effect direction as in the elastic-net regression derivation dataset for respective all-cause or cause-
specific mortality. Effect direction in the derivation dataset is indicated as sign of elastic net coefficient: + , 
regularized HR > 1; −, regularized HR < 1. Statistics were calculated in the confirmation dataset using univariate 
Cox regression. Tests were only performed in the confirmation dataset for predictors which passed stability 
selection for the respective outcome in the derivation dataset.

Derivation Confirmation

n

Stable selection
Sign of EN 
coefficient All-cause Cardiovascular Infection-associated

AC CV INF AC CV INF HR CI (95%) p-value HR CI (95%) p-value HR CI (95%) p-value

Age (per 10 years) x x x  +   +   +  1.64 (1.31–2.06)  < 0.001* 1.86 (1.23–2.81) 0.003* 1.75 (1.12–2.73) 0.014* 158

Atherosclerosis (non 
CHD) x x  +   +  2.14 (1.26–3.61) 0.005* 2.70 (1.01–7.21) 0.048* 47

Atrial fibrillation x  +  2.67 (1.58–4.52)  < 0.001* 42

CVD x  +  2.35 (0.97–5.71) 0.059# 62

Dialysis catheter x x x  +   +   +  3.72 (1.59–8.72) 0.002* 3.47 (0.80–15.12) 0.098# 4.09 (0.92–18.12) 0.064# 8

DM x x  +   +  2.00 (1.19–3.37) 0.009* 1.38 (0.57–3.35) 0.470 61

H.o. amputation due 
to PAD x x x  +   +   +  1.57 (0.67–3.67) 0.296 2.43 (0.71–8.35) 0.158 0.90 (0.12–6.81) 0.918 10

H.o. MI x  +  2.49 (0.97–6.40) 0.057# 37

H.o. neoplasia x  +  2.22 (0.90–5.46) 0.082# 42

HF x  +  2.57 (1.49–4.41) 0.001* 35

HRD (non AF) x  +  2.07 (0.59–7.31) 0.256 19

Oral anticoagulation x  +  3.10 (1.71–5.64)  < 0.001* 22

Other ac (dialysis) x  +  0.00 (0.00–Inf) 0.998 7

PAD x x  +   +  2.13 (1.23–3.69) 0.007* 2.56 (0.93–7.05) 0.069# 31

Pulmonary hypertension x  +  3.58 (1.19–10.81) 0.023* 13

DBP (24 h) low x  +  3.41 (1.18–9.80) 0.023* 20

MAP (24 h) low x  +  2.22 (0.71–6.87) 0.169 23

Immunosuppression x  +  0.47 (0.06–3.48) 0.457 17

Kt/V high x − 2.85 (0.98–8.26) 0.054 25

HB low x  +  3.26 (1.18–9.03) 0.023* 29

Serum AST low x − 0.31 (0.10–0.98) 0.046* 23

Serum cholesterol high x  +  0.22 (0.03–1.67) 0.144 24

Serum creatinine high x − 0.44 (0.18–1.11) 0.083# 30

Serum creatinine low x x  +   +  1.34 (0.77–2.33) 0.295 1.77 (0.72–4.35) 0.210 44

Serum hsCRP high x  +  1.82 (1.00–3.28) 0.048* 31

Serum IFN-gamma high x  +  0.95 (0.27–3.33) 0.934 29

Serum IL-12p70 high x  +  3.12 (1.16–8.41) 0.024* 33

Serum IL-13 low x  +  0.26 (0.03–1.95) 0.190 32

Serum IL-6 high x x x  +   +   +  2.96 (1.73–5.07)  < 0.001* 1.98 (0.75–5.20) 0.165 4.49 (1.67–12.05) 0.003* 36

Serum IP-10 high x  +  1.19 (0.45–3.10) 0.726 38

Serum IP-10 low x − 0.57 (0.13–2.53) 0.462 30

Serum iron low x  +  1.94 (0.62–6.05) 0.251 26

Serum LDL high x  +  0.49 (0.11–2.13) 0.343 24

Serum phosphate low x  +  1.28 (0.49–3.33) 0.615 36

Serum triglycerides low x x  +   +  2.30 (1.16–4.56) 0.018* 1.20 (0.28–5.19) 0.809 16

Serum YKL-40 high x  +  2.51 (1.44–4.35) 0.001* 32
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Figure 3.   Cumulative incidence plots for all-cause, cardiovascular (CV), infection-associated mortality 
and other mortality causes. Patients were stratified by AST levels (a, patients within top, middle and lowest 
quintile thresholds) and IL-12p70 levels (b, below detection limit, detected but not in top quintile, top quintile 
threshold). The analysis was performed on the total cohort with non-missing values for the respective variables. 
P-values were calculated using log-rank test for trend.
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association also in the confirmation cohort (infection-associated HR 3.12, 95% CI 1.16–8.41, p = 0.024, Table 2). 
Criteria for stability selection were missed by a small margin for all-cause mortality (Fig. 2a). With the applied 
assay for IL-12p70, the majority of patients showed an undetectable level of this interleukin (Figure S3). When 
analyzing mortality binned by IL-12p70 expression (undetectable, weakly elevated, top quintile) in the total 
study population, we could observe a selective increase in mortality in the top quintile without according ten-
dency in the weakly elevated group (Fig. 3b).

Added value of AST and IL‑12p70 for mortality prediction.  Time-dependent receiver-operating 
characteristics (ROC) analysis for univariate Cox models showed highest areas und the ROC curve (AUC) for 
AST after logarithmic transformation and spline fitting (Fig. 5a). Using the predefined threshold (top quintile) 
for IL-12p70 had a similar AUC for all-cause mortality as using transformed full data and when fitting a spline 
(Fig. 5a). Fitting a spline to transformed IL-12p70 data also did not show a significant improvement in a likeli-
hood ratio test (p = 0.209 for all-cause and p = 0.137 for infection-associated mortality, n = 475).

The AUCs for these single predictors were comparable to those of other established predictors such as serum 
albumin and the use of a catheter for dialysis, though not as high as some of the top predictors for mortality, age 
and adapted comorbidity score (Fig. 5a).

Analysis of multivariable models showed an additive effect of the new predictors on our previously established 
model5 (Fig. 5b, see “Methods” for included predictors). In fact, inclusion of both AST and IL-12p70 (green line 
in Fig. 5b) was superior to albumin or catheter use and had a similar additive value on AUC as the strong predic-
tors age and adapted CCI within the first year of follow up (orange and blue dashed lines in Fig. 4b left panel).

Discussion
Here, we applied techniques of statistical learning to analyze a cohort study of dialysis patients. Although similar 
techniques have been previously applied in this population in order to improve mortality prediction18–20, our 
approach differs in that our main goal was not to derive an overall prediction model or to address a specific 
hypothesis, but rather to find novel promising candidates as predictors in a setting with a large amount of avail-
able characteristics for a relatively small study population. Many of the well-known and established prognostic 
factors for mortality were recovered, while a relatively modest number of 317 patients (with 112 events during 
follow-up) were used for selection among ≈ 110 predictors. We were then able to confirm significant associa-
tions in the withheld smaller confirmation group for most of the factors obtained after stability selection using 

Figure 4.   AST spline functions. Spline functions to ln transformed serum AST values were fit in a Cox 
regression for all-cause, cardiovascular (CV), infection-associated (INF), and other mortality causes. Horizontal 
boxplots represent the distribution of ln-transformed AST values in ISAR patients. Red lines represent the 
estimated (cause-specific) HR (patients with median AST as reference) and the dashed lines represent the 
95% confidence interval of HR at a given AST level. The models were univariate (a) or were adjusted for other 
relevant predictors in a multivariable model (b) and were fit to the total cohort with non-missing values for the 
respective variables. Multivariable model predictors are described in “Methods” section. Vertical dashed line 
represents the cutoff value for the lowest AST quintile.
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univariate Cox regression. These findings underline the overall validity of the selection process in order to identify 
important mortality predictors. A notable observation was thereby the identification of a previously unknown 
association of IL-12p70 with infection-associated mortality.

Figure 5.   Time-dependent area under the curve (AUC) calculated using bootstrapping. (a) Univariate analyses 
comparing individual variables and transformations. For AST ln transformation was applied. IL-12p70 values 
were transformed using areasinus hyperbolicus (asinh) due to a large number of patients with measurements 
below the detection limit. Dashed lines represent established predictors for comparison (as indicated in the 
color legend). (b) Multivariable analysis was fitted using known predictors as described in “Methods” (“All-
cause model”, black curve). Solid lines represent the addition of AST (ln-transformed, fitted by a spline) and/or 
IL-12p70 (high group) to the all-cause model. Dashed lines represent the all-cause model after removal of the 
indicated known predictors. Dots in (b) represent AUC values for individual imputed datasets for each model 
(see “Methods”). Lines in (a) and (b) represent smoothed conditional means. Bootstrapping was performed on 
the total cohort with non-missing values for (a) and on the total cohort (n = 475) with missing values imputes as 
described in “Methods” section for (b). Tr., transformation; spl., spline fit; Catheter, use of catheter for dialysis.
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IL-12p70 is the active heterodimer form of IL-12, which consists of the IL-12p35 and IL-12p40 subunits. 
While IL-12p35 is thought to be specific for IL-12, IL-12p40 also associates with IL-23p19 to form active IL-23. 
IL-12 activity has been implicated in the immunologic response to pathogens and tumor cells, as well as in 
autoimmune disease21,22. Levels of IL-12p70 are known to be relatively low in the serum of healthy individuals23 
and were below the detection limit for our assay in the majority of the study population. Contradictory reports 
concerning IL-12 activity exist for dialysis patients. One study, published shortly after the discovery of this 
cytokine, observed an increased level of IL-12 in dialysis patients compared to healthy controls24, a finding that 
could possibly be explained by increased IL-12 release from peripheral blood mononuclear cells (PBMCs) as an 
inflammatory response to the dialysis membrane25. This study also reported, contrary to our observation, that 
increased IL-12 levels were associated with improved survival in dialysis patients24. However, in a more recent 
report assessing specifically the levels of IL-12p40 and IL-12p70, a significant increase of IL-12p40 was observed, 
while no increase was reported for IL-12p70 in dialysis patients vs. healthy controls26. The discrepancy between 
our finding and those of Kimmel et al.24 could therefore be explained by the specificity for IL-12p70 in our assay. 
Alternatively, since we categorized data and compared individuals with 20% highest levels to others, the effects of 
IL-12 might be non-linear, in that they might be protective up to a certain level and detrimental or indicative of 
an additional underlying disease (e.g. autoimmune) above that level. Further studies employing more sensitive 
IL-12p70 and IL-12p40 measurements would be of interest to solve this question. Having high levels of IL-12p70 
was one of the most stable predictors for increased infection-associated mortality in our derivation cohort. 
Although a causal relationship cannot be established by the applied approach, this close correlation suggests that 
it may be a causal factor or that it may be closely linked to a process causing mortality in hemodialysis patients. 
Further studies into the underlying pathophysiology would be highly interesting to elucidate this relationship 
and clarify if modulation of IL-12 activity may serve as a therapeutic intervention.

Another stable predictor which was obtained in our analysis is AST and we further looked into this association 
because until now it has received little attention in dialysis patients. AST is often used in clinical practice to assess 
liver damage, however unlike ALT it is less specific and is also elevated in other conditions, such as myocardial 
infarction or skeletal muscle damage27,28. Levels of AST have been shown to be predictive of both all-cause as 
well as specifically cardiovascular mortality (potentially due to an association with the metabolic syndrome) 
in the general population29–32. While on average a decreased AST activity in dialysis patients compared to the 
general population was observed long ago33,34, we could only find one previous study analyzing its association 
with mortality in dialysis patients17 (in this case with all-cause mortality). Our results confirm these findings 
and suggest a potential association with cardiovascular disease in dialysis patients. An association with liver 
disease may explain an increased mortality due to "other" causes in patients with high AST values, similar as 
was observed for increased ALT values (Figure S2). The finding that ALT levels do not show a similar association 
with cardiovascular mortality, however, suggests that there may be an alternative relevant pathomechanism or a 
source of AST elevation outside the liver (such as the heart) which is worthy of further investigation. Although 
our study is not sufficiently powered to further elucidate the pathophysiology behind AST variation (e.g. only 
5% of participants had a known liver disease based on medical records) our results underline the prognostic 
value of AST and support the previously expressed need for different reference ranges in hemodialysis patients35.

When assessing the additional value of AST and IL-12p70 for the prediction of mortality in dialysis patients 
using time-dependent ROC analysis, we found an additive value of these predictors. Although in the multivari-
able model the numeric gain was relatively modest, it has to be compared to other established variables, because 
the model already incorporated many important predictors. We observed a similar effect of AST and IL-12p70 
as e.g. for known independent predictors albumin and catheter use for dialysis. The added effect of these two 
predictors together was similar in the first year to some of the strongest predictors: age and adapted CCI score.

One of the limitations of the applied penalized Cox regression is that it assumes linear associations with the 
outcome (as does regular Cox regression). This also means that single high-leverage points, which can represent 
false measurements or extraordinary conditions, may have a strong effect on selection (or omission) of variables. 
Here we addressed these issues by “dummy coding” quantitative measurements to nominal variables which rep-
resent top or lowest quintiles for specific values. Although such thresholding may influence the selection due to 
loss of information, we in fact observed that most known ordinal/continuous predictors for mortality in dialysis 
patients passed our selection criteria (i.e. hsCRP, hemoglobin, creatinine, triglycerides, IL-6, YKL-40, AST). 
However, one notable exception is serum albumin, which was not retained despite a well-documented correla-
tion in the literature. Decreased albumin levels are both observed as part of malnutrition as well as inflammation 
(anti-acute phase protein), also summarized as dialysis-associated inflammation-malnutrition complex36. There 
is also a known negative correlation between IL-6 and albumin37,38. Other retained predictors are also associated 
with inflammation-malnutrition in ESRD patients, such as hsCRP, creatinine or lipids36. It is therefore likely 
that, next to the thresholding approach, such predictors have additionally diminished the explanatory value 
of albumin for mortality prediction, as has been reported previously39. A similar collinearity of hsCRP with 
IL-640,41 may have reduced the predictive value of the former in the case of infection-associated mortality, yet 
it was selected as a predictor for all-cause mortality where more events were available and potentially due to its 
described additional role as a predictor of malnutrition42.

We strongly assume that including more patients in the derivation cohort would further improve factor selec-
tion, while in our study this dataset was relatively small (i.e. 317 patients). Having a larger cohort would also allow 
to include variable interactions in order to identify subgroup-specific effects, something that was not accounted 
for in our approach. Further limitations of our study are missing values for some of the variables and unknown 
cause of death for some of the patients. We expect that a relevant portion of missing values, as these were set to 
the reference level (see “Methods”), will reduce the selection stability of a variable and therefore typically lead 
to a more conservative selection. An additional conceptual limitation is that only the variables at baseline could 
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be used in the current analysis. Yet, the evolution of biomarkers over time in dialysis patients and the course of 
chronic kidney disease may provide additional important insights and improve predictive performance.

In summary, we successfully applied techniques of statistical learning as an exploratory approach to high-
dimensional data from a cohort of dialysis patients. Despite the relatively modest number of patients, we thereby 
could retrieve most of the established risk markers and additionally identify promising candidates for novel 
predictors. The described techniques can be considered complementary, yet not as competitors to widely-applied 
and state of the art hypothesis-driven approaches. Similar techniques, as they become more accessible, may 
gain importance in routine exploratory study analysis in order to gain additional insights into the underlying 
risk-determining factors.

Methods
Subjects/study population and data collection.  The clinical trial was registered under ClinicalTrials.
gov identifier: NCT01152892. For detailed information please refer to the study protocol12. In brief, we included 
stable HD patients who were at least 18 years of age, had an HD vintage of at least 90 days, and provided written 
and informed consent. Malignant disease with a life expectancy shorter than 2 years had been the only relevant 
exclusion criterion. The present study included 475 patients, for whom sufficient unthawed sera were available 
for cytokine quantification. The study was approved by the ethics committees of the Klinikum rechts der Isar, 
Technical University Munich, and by the Bavarian State Board of Physicians. It was performed in accordance 
with the Declaration of Helsinki.

Age, patient characteristics, dialysis modalities, comorbidities and medication were assessed from medi-
cal records. Comorbidities were recorded at inclusion and updated during the 2 years follow up as previously 
described5,43. An adapted CCI was calculated according to Liu et. al.13 (version without ESRD cause).

Cause of death was attributed to the following domains: cardiovascular, infection associated and other (or 
unknown) of which the cardiovascular domain had been prespecified in the study protocol12. For further details 
also see Lorenz et al.5 Medical records and interviews of attending physicians, and relatives were used by the 
ISAR study physician board to ascertain death and assigned each case an underlying cause of death. When no 
agreement on cause of death could be reached the cause of death was defined as unknown (n = 28).

Serumbiochemistry and functional studies.  Serum was collected prior to a midweek dialysis session at 
inclusion and after the exclusion of active infection. Patients that had undergone surgery within the past 2 weeks 
were included at a later timepoint. Serum was centrifuged after 30 min of resting at room temperature, aliquoted 
and stored at – 80 °C. Routine laboratory analyses were assessed by International Organization for Standardi-
zation–certified laboratories. YKL-40 levels were measured in duplicates using a commercial enzyme-linked 
immunosorbent assay (ELSIA) kit (R&D Systems, Inc., Minneapolis, MN). The remaining inflammatory media-
tors were assessed using BD Flex-sets (Becton Dickinson, Heidelberg, Germany) on a FACS Canto II (Becton 
Dickinson) and BD Diva software (Becton Dickinson) according to manufacturer’s instructions. Theoretical 
limits of detection were indicated by the manufacturer between 0.6 and 1.6 pg/mL.

Ambulatory 24-h blood pressure (BP) and pulse wave velocity (PWV) measurements were carried out as 
previously described44 using a Mobil-O-Graph 24 h-PWA (I.E.M. GmbH, Stolberg, Germany). Retinal vessel 
analysis was performed using Static Vessel Analyzer (Imedos Systems UG, Jena, Germany). Fundus images of one 
eye were gathered and classified into four categories according to quality. Two images with the highest qualitative 
category were analyzed and means of central retinal arteriolar (CRAE) and central retinal venular equivalent 
(CRVE) as well as arteriolar-to-venular diameter ratio (AVR) were calculated as previously described45.

Statistical analyses.  Statistical analysis was performed in R version 3.6.346.
In order to be able to test the selected predictors on patients whose data was not used for variable selection, we 

split the cohort into a derivation and confirmation datasets. To this end we performed 1000 random splits in the 
ratio of 2/3 to 1/3 and calculated for each split the p-value for difference in the matching variables (age, adapted 
CCI, gender, IL-6 and mortality as indicated in Table 1) using Chi-squared test for nominal and Mann–Whitney 
test for ordinal or continuous variables. We then selected the split where the two groups were most likely similar 
(based on where the lowest p-value of the tests was the highest).

For stable variable selection we applied elastic net regularized regression on the derivation subcohort on all 
predictors listed in Table S1 simultaneously. In order to address possible non-linearity, ordinal and continuous 
variables (with the exception of age for which a linear relationship can be expected and which was expressed in 
decades) were dummy coded as “high” and “low” group by assigning for each patient whether he falls into the 
top or bottom quintile for the specific variable. Ties were assigned randomly. Values not falling into top or bot-
tom quintile and missing values were assigned 0 in both dummy variables. Missing values in nominal variables 
were also assigned to the reference category (meaning absence of a potential risk factor).

In a first step we performed elastic net10 Cox regression separately for all-cause mortality, cardiovascular and 
infection-associated mortality with 20-fold cross-validation using 15 equally spaced alpha values in the range 
of 0 to 1 (here alpha = 0 equals ridge regression and alpha = 1 equals lasso regression). We selected for each 
alpha the lambda with the lowest cross-validation error (Figure S1a). We then selected for each regression the 
non-zero alpha value with the lowest cross validation error (vertical dashed lines in Figure S1a). Alpha of zero 
would not result in any variable selection (as it equals ridge regression) and was therefore not chosen. Next, we 
used the chosen alpha values in a stability selection approach as described by Meinshausen et Bühlmann11 and 
implemented in R by Sill et al.47 For this preselection approach as a means of hypothesis generation we used 100 
subsamples of the derivation cohort, a “weakness” of 0.8 and a (maximal) per-comparison error rate of 10%. All 
variables passing the selection criteria are reported in Table 2.
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For spline fitting we used penalized splines48,49 with four degrees of freedom. For the analysis in Fig. 4 and 
Figure S2 one outlier with AST of > 600 U/l and ALT > 900 U/l (suggestive of acute hepatopathy) was removed.

The multivariable Cox model for all-cause mortality (Fig. 4b, Figure S2 and Fig. 5b) contained the following 
predictors (as described previously5): age, gender, BMI, adapted CCI, history of MI, rheumatic disease, laboratory 
parameters (phosphate, calcium, albumin), Kt/V, HD (not hemodiafiltration), usage of central venous catheter 
for dialysis, oral anticoagulation, IL-6 (ln-transformed) and YKL-40 (ln-transformed). The multivariable model 
for cardiovascular mortality contained: age, gender, BMI, adapted CCI, history of MI, rheumatic disease, usage 
of central venous catheter for dialysis, ultrafiltration per kilogram of dry weight, IL-6 (ln-transformed) and 
YKL-40 (ln-transformed). The model for infection-associated mortality contained age, gender, BMI, adapted 
CCI, history of MI, Albumin, usage of central venous catheter for dialysis, hsCRP (ln-transformed) and IL-6 (ln-
transformed). For other mortality causes we used a minimal model which included: age, gender, BMI, adapted 
CCI and IL-6 (ln-transformed).

Time-dependent ROC analysis for Cox regression was performed by first fitting uni- (Fig. 5a) or multivari-
able (Fig. 5b) models to a bootstrap sample of the total study population and then calculating incident/dynamic 
AUCs50 on the out of bootstrap sample. The bootstrap procedure was performed 1000 times and the resulting 
AUCs were averaged per month. For multivariable analysis missing values were randomly sampled from the 
available values for the respective variable and a total of 25 thus imputed datasets were generated. AUCs for each 
of these datasets were calculated as described above (these are presented as dots in Fig. 5b).
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