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Machine learning‑based mortality 
prediction model for heat‑related 
illness
Yohei Hirano1*, Yutaka Kondo1, Toru Hifumi2, Shoji Yokobori3, Jun Kanda4, 
Junya Shimazaki5, Kei Hayashida6, Takashi Moriya7, Masaharu Yagi8, Shuhei Takauji9, 
Junko Yamaguchi10, Yohei Okada11, Yuichi Okano12, Hitoshi Kaneko13, Tatsuho Kobayashi14, 
Motoki Fujita15, Hiroyuki Yokota3, Ken Okamoto1, Hiroshi Tanaka1 & Arino Yaguchi16

In this study, we aimed to develop and validate a machine learning‑based mortality prediction model 
for hospitalized heat‑related illness patients. After 2393 hospitalized patients were extracted from 
a multicentered heat‑related illness registry in Japan, subjects were divided into the training set for 
development (n = 1516, data from 2014, 2017–2019) and the test set (n = 877, data from 2020) for 
validation. Twenty‑four variables including characteristics of patients, vital signs, and laboratory test 
data at hospital arrival were trained as predictor features for machine learning. The outcome was 
death during hospital stay. In validation, the developed machine learning models (logistic regression, 
support vector machine, random forest, XGBoost) demonstrated favorable performance for outcome 
prediction with significantly increased values of the area under the precision‑recall curve (AUPR) 
of 0.415 [95% confidence interval (CI) 0.336–0.494], 0.395 [CI 0.318–0.472], 0.426 [CI 0.346–0.506], 
and 0.528 [CI 0.442–0.614], respectively, compared to that of the conventional acute physiology 
and chronic health evaluation (APACHE)‑II score of 0.287 [CI 0.222–0.351] as a reference standard. 
The area under the receiver operating characteristic curve (AUROC) values were also high over 0.92 
in all models, although there were no statistical differences compared to APACHE‑II. This is the first 
demonstration of the potential of machine learning‑based mortality prediction models for heat‑
related illnesses.

Rising global temperatures owing to excessive carbon dioxide emissions or heat island effect caused by urbaniza-
tion have been endangering human health  worldwide1,2. Increase in the aging population, which is vulnerable to 
the health effects of heat, has also enhanced the occurrence of heat-related  diseases3. Although a large number 
of studies over the decades has revealed the epidemiology, risk factors, and preventative management of such 
diseases, reducing the occurrence of heat-related illness is challenging because it requires solutions by society as a 
whole, such as installation of air conditioners for the elderly or low-income citizens. In fact, numerous instances 
of hospitalization and eventual death of patients suffering from heat-related illness continue to be recorded. 
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During 2014–2018, death due to heat-related illnesses in the United States was reported to be an average of 702 
per  year4. In this background, medical practitioners are continuously challenged to generate high quality of care 
for heat-related illness.

The most important treatment for heat-related illness is rapid and effective cooling. There are various cool-
ing strategies such as cold-water immersion, administration of cold fluids, application of ice packs or wet gauze 
sheets, fanning, and cooling  suits2,5. In addition, more invasive methods are selected for critical patients, such 
as an intravascular cooling device or extracorporeal circulatory support  system6,7. Occasionally, artificial ven-
tilation, hemodialysis, or liver transplantation might be necessary for organ  support8,9. However, it is difficult 
for clinicians to optimize therapeutic intervention according to individual patient conditions. The availability 
of clinical prognostic tools could be helpful in deciding these treatment options. Furthermore, the prognostic 
model could be used retrospectively to assess the quality of care for heat-related illness.

In recent years, prognostic tools using machine learning have been widely developed and applied in medicine, 
as they often outperform conventional prediction  methods10. In contrast, a machine learning-based mortality 
prediction model for heat-related illness has not been developed previously. In this study, we aimed to develop 
and validate machine learning-based mortality prediction models for use in hospitalized patients with heat-
related illnesses.

Methods
Data sources and ethical approval. The data for this retrospective cohort study were obtained from 
the “Heatstroke study” database in Japan. A heatstroke study was undertaken by the Japanese Association for 
Acute Medicine (JAAM) to clarify the epidemiology of heat-related illness in Japan. The data were manually 
recorded by a staff member or medical doctor at each participating hospital using specific record sheets. From 
2014, patients with heat-related illness who were admitted to the hospitals were included in the heatstroke study, 
except for the period 2015–2016, in which the heatstroke study was not conducted. Diagnosis of heat-related 
illness was based on the judgement of the clinician in each participating hospital. Thus, data from the heatstroke 
studies in 2014 and 2017–2020, from 109 to 142 participating hospitals, were extracted for our study. The heat-
stroke study has been described  elsewhere11,12.

The heatstroke study protocol was approved by the ethics committee of Showa University Hospital. Patient 
information was de-identified before being provided for use in this study. The requirement for patient informed 
consent was waived, as this was an observational study using anonymous data. The current study was conducted 
in accordance with the Declaration of Helsinki.

Study population. Overall, 2855 patients with heat-related illness were identified from the heatstroke study 
data in 2014 and 2017–2020. Of these, 285 patients were excluded because they were not hospitalized or no 
information was available regarding their hospitalization. Further, cases with cardiac arrest at hospital arrival 
and incomplete data regarding survival outcome were excluded. In total, the data of 2393 patients hospitalized 
with heat-related illness met the inclusion criteria. Finally, the subjects were classified into two groups: training 
set (n = 1516, data from 2014, 2017–2019) and test set (n = 877, data from 2020) (Fig. 1).

Outcome and variable selection. In this study, the outcome was set as death during hospital stay. From 
the heatstroke study database, 24 variables with missing values below 25% of all samples were extracted as pre-
dictor features for the outcome. These variables were age, sex, location at the onset (indoor or outdoor), vital 
signs (systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, and body temperature), total 
Glasgow coma scale (GCS), peripheral oxygen saturation  (SpO2), and laboratory data [pH, base excess, hema-
tocrit, platelet count, blood urea nitrogen (BUN), creatinine, total bilirubin, aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), creatine kinase, sodium, potassium, glucose, and prothrombin time/interna-
tional normalized ratio (PT-INR)] at patients’ hospital arrival. Missing data were imputed from the median of 
each variable.

Development of machine learning models. Four kinds of machine learning models including logistic 
regression, support vector machine, random forest, and XGBoost were trained by using variables selected for 
mortality prediction in the training set. First, feature scaling to normalize the range of independent variables 
was accomplished. In the process of training, tenfold stratified cross-validation was used to avoid overfitting of 
the model. In short, the training data were partitioned into 10 stratified subsets. Subsequently, 9 subsets (90% 
of training data) were used to train the model, and the remaining subset (10% of training data) was used for the 
validation. These training and validation processes were repeated 10 times with each of the subsets used once as 
a validation dataset, allowing us to obtain 10 estimates of predictive accuracy, which were averaged to obtain a 
single estimate. Because our data were imbalanced for the outcome, we used cost-sensitive learning. In addition, 
optimization of hyperparameters (values that control the machine learning process) was performed for each 
model (Supplementary Table 1).

To assess the feature importances for the model development, Gini importances were computed as the nor-
malized total reduction of the criterion brought by the feature for random forest and XGBoost models. For the 
logistic regression model, absolute values of standardized beta coefficients were described.

Validation of developed machine learning models. The performance of the developed machine learn-
ing models was validated using the test data; this process was independent of the algorithm training process. 
We compared these models with the conventional acute physiology and chronic health evaluation (APACHE)-II 
score as the reference standard for prediction of the outcome. The area under the receiver operating characteris-
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tic curve (AUROC), the area under the precision-recall curve (AUPR), sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accuracy were measured as the performance indicators. To 
observe the correlation between predicted and observed probabilities of mortality during hospital stay, we cre-
ated calibration plots in the test set.

Libraries for data analyses and machine learning. To present the patient data, the mean with stand-
ard deviation (SD) or median with interquartile range (IQR) was used for the numerical variables. For categori-
cal variables, counts with percentages were reported. For comparison analysis between two samples, the t-test 
and Mann–Whitney U test were used for the means and medians of samples, respectively. The frequencies were 
compared using the chi-square test. The two-sided significance level for all tests was set at 5% (p < 0.05). Patient 
characteristics were analyzed using the SciPy (version 1.5.2) with Python (version 3.7.4 in Anaconda 2019.10). 
Development of machine learning models was employed by Scikit-learn (version 0.21.3) with Python.

Results
Characteristics of study subjects. The baseline characteristics of the included patients are shown in 
Table 1. The mean age of all included patients was 65 ± 22 years, and 70.4% of the patients were men. Outdoor 
heat-related illness accounted for 54.9% of all patients. The mortality rate during hospital stay was only 5.2%, 
indicating that the analyzed dataset was highly imbalanced for the outcome. In comparison between training 
and test dataset, there were significant differences for age, location at the onset, body temperature,  SpO2, pH, 
BUN, creatinine, total bilirubin, creatine kinase, and sodium. However, most of these differences appear to be 
clinically irrelevant.

Assessment of variable importances for the model development. Absolute values of standardized 
beta coefficients for logistic regression, as well as feature importances for random forest and XGBoost models, 
were assessed and the results were shown in Fig. 2. In all machine learning models assessed, total GCS score at 
patients’ hospital arrival was the most essential variable for the prediction of mortality during hospital stay. Both 
AST and ALT levels in blood were ranked in the top 5 important features in all models. The other key variables 

Data from heat stroke study 

(2014, 2017-2020) 

n =2855 

Hospitalized heat stroke patients  

n =2570 

285 Excluded:  
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Figure 1.  Flow diagram of patient inclusion procedure.
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to develop the models were  SpO2 and base excess for the logistic regression, PT-INR and systolic blood pressure 
for the random forest, and  SpO2 and systolic blood pressure for the XGBoost.

Comparison of the accuracy of the models and the reference standard in cross‑validation of 
the training dataset. The training accuracy of machine learning models as the results of cross-validation 
were 0.852 [SD 0.048] in the logistic regression, 0.841 [SD 0.030] in the support vector machine, 0.918 [SD 0.023] 
in the random forest, and 0.946 [SD 0.008] in the XGBoost. In contrast, the training accuracy of APACHE-II 
score was low with 0.773 [SD 0.067].

Performance analysis of the developed models and the reference standard in the test data‑
set. Figure 3 presents the receiver operating characteristic (ROC) curves and the precision-recall (PR) curves 
with AUROC and AUPR values of the developed machine learning models and APACHE-II score. Validation 
of our developed machine learning models showed reliable performance in predicting mortality of heat-related 
illness, with AUROC values of 0.922 [95% confidence interval (CI) 0.868–0.975] for the logistic regression, 0.920 
[CI 0.866–0.974] for the support vector machine, 0.925 [CI 0.872–0.977] for the random forest, and 0.926 [CI 
0.874–0.978] for the XGBoost. However, these models could not show statistically significant differences com-
pared to the APACHE-II score with AUROC values of 0.867 [CI 0.801–0.934].

In contrast, there were significantly increased values of AUPR in all developed machine learning models 
(0.415 [CI 0.336–0.494] for logistic regression, 0.395 [CI 0.318–0.472] for support vector machine, 0.426 [CI 
0.346–0.506] for random forest, and 0.528 [CI 0.442–0.614] for XGBoost) compared to APACHE-II score (0.287 
[CI 0.222–0.351]).

The confusion matrix and evaluation measures such as sensitivity, specificity, PPV, NPV, and accuracy of the 
prediction models are shown in Table 2. The logistic regression model demonstrated highest sensitivity of 0.851 
[CI 0.749–0.953] and NPV of 0.990 [CI 0.983–0.997] among evaluated classifiers. On the other hand, specificity, 

Table 1.  Baseline characteristics of the study population. All categorical variables are shown as n (%). 
Continuous variables are shown as mean ± standard deviation or median (interquartile range). GCS Glasgow 
coma scale, SpO2 peripheral oxygen saturation, BUN blood urea nitrogen, AST aspartate aminotransferase, 
ALT alanine aminotransferase, PT-INR prothrombin time-international normalized ratio, APACHE acute 
physiology and chronic health evaluation.

Variables All (n = 2393) Missing Training data (n = 1516) Test data (n = 877) P value

Age (years) 65 ± 22 3 64 ± 22 68 ± 21 < 0.01

Gender (male) 1678 (70.4%) 9 1060 (70.0%) 618 (71.1%) 0.78

Location at the onset (outdoor) 1290 (54.9%) 45 853 (57.8%) 437 (50.1%) < 0.01

Vital signs at hospital arrival

Systolic blood pressure (mmHg) 126 ± 31 34 126 ± 32 125 ± 31 0.24

Diastolic blood pressure (mmHg) 75 ± 21 50 75 ± 21 75 ± 21 0.48

Heart rate (beats/min) 105 ± 28 21 105 ± 29 105 ± 28 0.83

Respiratory rate (/min) 25 ± 9 200 25 ± 9 24 ± 9 0.28

Body temperature (℃) 38.1 ± 1.6 214 38.1 ± 1.8 38.2 ± 1.6 0.03

Total GCS 14 (10–15) 44 14 (10–15) 14 (10–15) 0.99

SpO2 (%) 97 ± 4 70 97 ± 5 97 ± 3 0.02

Laboratory data

pH 7.42 ± 0.1 415 7.42 ± 0.1 7.41 ± 0.2 < 0.01

Base excess (mmol/L) − 2.2 ± 4.7 464 − 2.3 ± 5.2 − 2.3 ± 5.3 0.32

Hematocrit (%) 40.8 ± 7.3 67 40.8 ± 7.2 40.9 ± 7.8 0.49

Platelet count [unit ten thousand (/μL)] 22.7 ± 14.0 68 23.0 ± 16.4 22.3 ± 9.3 0.87

BUN (mg/dL) 29.7 ± 20.8 43 28.6 ± 19.3 31.9 ± 23.3 < 0.01

Creatinine (mg/dL) 1.8 ± 1.6 30 1.8 ± 1.6 1.9 ± 1.6 0.02

Total bilirubin (mg/dL) 1.2 ± 0.9 86 1.1 ± 0.9 1.2 ± 1.0 < 0.01

AST (IU/L) 72 ± 177 30 73 ± 194 71 ± 147 0.11

ALT (IU/L) 44 ± 104 29 45 ± 111 42 ± 93 0.51

Creatine kinase (IU/L) 1155 ± 4231 74 1011 ± 3633 1477 ± 5218 < 0.01

Sodium (mEq/L) 140 ± 7 41 139 ± 7 140 ± 8 < 0.01

Potassium (mEq/L) 4.2 ± 0.9 45 4.2 ± 0.9 4.1 ± 0.8 0.19

Glucose (mg/dL) 162 ± 84 183 162 ± 94 165 ± 75 0.13

PT-INR 1.2 ± 1.9 582 1.3 ± 2.7 1.1 ± 0.3 0.56

APACHE-II score 13 (8–21) 15 13 (8–21) 13 (9–21) 0.63

Mortality during hospital stay 124 (5.2%) 0 77 (5.1%) 47 (5.4%) 0.77
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Figure 2.  (A) Absolute values of standardized beta coefficients for the logistic regression model. (B) Feature 
importances of variables for the random forest model. (C) Feature importances of variables for the XGBoost 
model. Asterisk shows the feature in a positive correlation to the survival outcome. Location (outdoor/indoor)* 
and gender* refer to outdoor location and male are positive correlation to the survival outcome, respectively. 
GCS Glasgow coma scale, AST aspartate aminotransferase, ALT alanine aminotransferase, SpO2 oxygen 
saturation, BUN blood urea nitrogen, PT-INR prothrombin time/international normalized ratio.

Classifiers AUROC [95% CI] P value
(vs APACHE-II)

AUPR [95% CI] P value
(vs APACHE-II)

APACHE-II score 0.867 [0.801 to 0.934] 0.287 [0.222 to 0.351]

Logistic regression 0.922 [0.868 to 0.975] 0.21 0.415 [0.336 to 0.494] 0.01

Support vector machine 0.920 [0.866 to 0.974] 0.23 0.395 [0.318 to 0.472] 0.04

Random forest 0.925 [0.872 to 0.977] 0.18 0.426 [0.346 to 0.506] < 0.01

XGBoost 0.926 [0.874 to 0.978] 0.17 0.528 [0.442 to 0.614] < 0.01

Figure 3.  Comparison of ROC curves, PR curves, AUROC, and AUPR among the developed machine-learning 
models and APACHE-II score for mortality prediction. ROC Receiver operating characteristic, PR precision-
recall, AUROC area under the receiver operating characteristic curve, AUPR area under the precision-recall 
curve, APACHE acute physiology and chronic health evaluation, CI confidence interval.
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PPV and accuracy were highest in XGBoost model with 0.999 [0.996–1.001], 0.875 [0.646–1.104], and 0.953 
[0.936–0.965], respectively.

Probability calibration curves. Probability calibration curves of prediction models in validation were 
described in Supplementary Fig. 1. All models were not well-calibrated, indicating that the uncertainty of the 
predicted probability. XGBoost was underestimated, whereas APACHE-II, logistic regression, support vector 
machine, and random forest were overestimated for the outcome probabilities.

Discussion
To our knowledge, the current study is the first to develop and evaluate a machine learning-based prediction 
model for the prognosis of heat-related illness. In summary, we selected 24 clinical predictors for mortality of 
heat-related illness from the Japanese heatstroke database. After training these variables using several machine 
learning algorithms of logistic regression, support vector machine, random forest, and XGBoost, validation of the 
developed models demonstrated reliable performance with reasonably high AUROC. In comparison of AUPR, 
all models showed significantly superior performances than APACHE-II as a reference standard.

Heat-related illness can be severe, such as heatstroke, and is induced by an excessively hot and humid 
 environment2. Therefore, it is certain that avoiding such an environment would be the best strategy to reduce 
the poor outcome of this disease. In fact, there has been growing evidence that the environment predisposes 
people to heat-related illness; in addition, the risk factors for heatstroke have been  identified13,14. On the other 
hand, there are few studies on the prognosis of patients who actually develop  heatstroke15,16. Owing to the lack of 
a specific mortality prediction tool for heat-related illness, general scoring systems for critically ill patients, such 
as sequential organ failure assessment (SOFA) and APACHE-II scores, have been commonly used to estimate 
the severity of this  disease12,17. The development of specific and reliable prognostic models for heat-related ill-
nesses is anticipated so that clinicians can make an informed decision for optimized treatment. In this context, 
the current study shows its importance and strength.

Recent evidence has shown the effectiveness of machine learning methods in the development of predictive 
models in  medicine18,19. Similarly, we successfully developed a good prognostic model for heat-related illness by 
using a machine learning algorithm in this study. Referring to the AUROC values, our developed models could 
not show statistical superiority over the conventional APACHE-II score, even if the models demonstrated higher 
AUROC values over 0.92 compared to that of APACHE II score with 0.87. However, the current study included 
only 877 patients for the validation cohort. The limited sample size and lack of statistical power might be the 
reason why we were not able to find statistical differences in AUROC. More importantly, our data was imbal-
anced for the outcome with only 5.4% in validation. In the evaluation of performance for imbalanced dataset, 
AUPR is more appropriate than AUROC because it was specifically fitted for the detection of rare events. Thus, 
significantly higher AUPR values in the developed models than APACHE-II have encouraged the effectiveness 
of machine learning to detect rare cases of mortality in heat-related illness. However, calibration plots showed 
underestimated or overestimated prediction for outcome probability, indicating that these models should be 
used only for the classification problem.

Our prediction model has the potential to be used in clinical practice. Given that we used only laboratory data 
and clinical findings at the time of hospital presentation as the predictor variables, the prediction might be used 
by clinicians as a reference tool for early treatment selection, including internal cooling and cardiopulmonary 
bypass for severe heat-related illness, which require huge medical costs. Furthermore, the model might be used 

Table 2.  Comparison of the confusion matrix and evaluation measures among prediction models. 95% 
confidence interval were shown in brackets. PPV Positive predictive value, NPV negative predictive value.

Predict death Predict survival Sensitivity Specificity PPV NPV Accuracy

APACH-II score

Death 39 8 0.830 [0.722–
0.937]

0.778 [0.750–
0.807]

0.175 [0.125–
0.225]

0.988 [0.979–
0.996]

0.781 [0.752–
0.808]Survival 184 646

Logistic regression

Death 40 7 0.851 [0.749–
0.953]

0.848 [0.824–
0.873]

0.241 [0.176–
0.306]

0.990 [0.983–
0.997]

0.848 [0.823–
0.872]Survival 126 704

Support vector machine

Death 37 10 0.787 [0.670–
0.904]

0.846 [0.821–
0.870]

0.224 [0.161–
0.288]

0.986 [0.977–
0.995]

0.843 [0.817–
0.866]Survival 128 702

Random forest

Death 27 20 0.575 [0.433–
0.716]

0.941 [0.925–
0.957]

0.355 [0.248–
0.463]

0.975 [0.964–
0.986]

0.924 [0.902–
0.938]Survival 49 781

XGboost

Death 7 40 0.149 [0.047–
0.251]

0.999 [0.996–
1.001]

0.875 [0.646–
1.104]

0.954 [0.940–
0.968]

0.953 [0.936–
0.965]Survival 1 829
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retrospectively to assess the quality of care for the treatment of heat-related illness. However, we should not use 
the machine learning model as a definite tool to decide treatment withdrawal.

Notably, body temperature at hospital arrival was not ranked as the highest top five of the mortality predic-
tors selected for machine learning development. In contrast, multiple organ dysfunction indicators were widely 
chosen, namely, Glasgow coma scale for dysfunction of the central nervous system, systolic blood pressure 
for circulatory dysfunction,  SpO2 for respiratory dysfunction, AST and ALT for hepatic failure, PT-INR for 
coagulopathy, and base excess for metabolic disorders. Inclusion of multiple organ injury markers as param-
eters is similar to general severity scoring models such as SOFA and APACHE II  scores20,21; however, variables 
specifically selected for mortality prediction of heat-related illness might lead to better improvement of predic-
tive performance than the conventional methods. For example, the liver is a common site of tissue injury in 
heatstroke and causes poor  outcome22,23. In our machine learning models, AST and ALT levels at hospital arrival 
were regarded as important predictive values, whereas total bilirubin was included as a hepatic injury indicator 
in SOFA and no information of hepatic injury in APACHE-II; this difference may affect the predictive ability. 
In addition, renal dysfunction is relatively common in  heatstroke17,24. Creatinine level is included in the SOFA 
and APACHE II scores; however, it was not mainly regarded as the one of important predictors for mortality in 
our machine learning models, suggesting that complications of renal dysfunction in heat-related illness might 
not be a strong factor for poor outcome.

Although several variables such as preexisting medical conditions and coagulation abnormalities were recog-
nized as risk factors for the occurrence or poor outcome of  heatstroke25–27, they were not used in the development 
of our machine learning models because of the huge amount of missing data in the dataset. The performance of 
the model might improve if these variables are available for machine learning in the future structured dataset.

Our study has several limitations. First, our prediction model cannot be generalized for application on a global 
scale. Heat acclimatization can occur in response to heat stress; thus, vulnerability and severity of a heat-related 
illness can differ depending on the climate in different countries. As we used the Japanese registry database for 
both training and validation of the model, external validation using databases from foreign countries should 
be performed in the future. Second, we imputed missing values from the median of each variable. This method 
is widely used, and is a simple way to impute missing data; however, it could generate bias. Third, the results of 
evaluation measures for our prediction model demonstrated a wide range of confidence intervals, indicating 
the uncertainty of the model. This can be attributed to the inadequate total sample size and rare occurrence of 
outcome (death during hospital stay). However, it is difficult to accumulate data for heat-related illness owing 
to its seasonal and geographic characteristics. In fact, to our knowledge, there are no larger databases with 
clinical parameters, including laboratory testing data for heat-related illness, than our heatstroke study registry. 
Further accumulation of data for such illness is crucial to increase the certainty of the machine learning predic-
tion model. Fourth, we did not focus on the neurologic sequelae of surviving heatstroke patients, which is an 
important complication of the  disease28. Although we could not obtain information on the neurological prog-
nosis to be assessed, survival without sequelae should be the primary goal of treatment in real-world practice 
and thus might exhibit a more significant outcome for the prediction. Fifth, APACHE-II score is not specific 
to heat-related illness, therefore our study does not guarantee the superiority of machine learning models over 
simple statistical models which was specifically developed for heat-related illness. Finally, there would be a 
criticism that machine learning models need a computing device to calculate the results, and a separate model 
just for the patients with heat-related illnesses would not be realistic. As our selected features were mostly vital 
signs, laboratory data, and patient background, we suggest the use of machine learning model as a plugin to 
the electrical hearth record, after the completion of further improvement in the performance and prospective 
studies for external validation in the future.

Conclusions
In conclusion, a novel mortality prediction model for patients hospitalized with heat-related illness was developed 
using a machine learning technique. Although further improvement in the performance quality with increased 
sample size or inclusion of important variables, as well as prospective validation in a clinical setting are needed, 
our study demonstrated for the first time the potential of machine learning-based prediction models for heat-
related illness.
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