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Strayfield calculation 
for micromagnetic simulations 
using true periodic boundary 
conditions
Florian Bruckner*, Amil Ducevic, Paul Heistracher, Claas Abert & Dieter Suess

We present methods for calculating the strayfield in finite element and finite difference micromagnetic 
simulations using true periodic boundary conditions. In contrast to pseudo periodic boundary 
conditions, which are widely used in micromagnetic codes, the presented methods eliminate the 
shape anisotropy originating from the outer boundary. This is a crucial feature when studying the 
influence of the microstructure on the performance of composite materials, which is demonstrated 
by hysteresis calculations of soft magnetic structures that are operated in a closed magnetic loop 
configuration. The applied differential formulation is perfectly suited for the application of true 
periodic boundary conditions. The finite difference equations can be solved by a highly efficient Fast 
Fourier Transform method.

Micromagnetic simulation are often used for the characterization of magnetic materials with a certain micro-
structure. Since the magnetic samples are very large, only a small part of the material can be simulated. A naive 
truncation of the magnetic domain would lead to strong shape anisotropy originating from surface effects. Peri-
odic boundary conditions (PBCs) allow to eliminate this influence of the surface by modeling periodic images 
of the primary supercell.

Most well-known micromagnetic finite difference simulation packages like  OOMMF1, MuMax32, magnum.
fd3, magnum.af4 and  Fidimag5 calculate the demagnetization field without PBCs using an analytic expression 
of the demagnetization tensor of homogeneously magnetized  cubes6 combined with an efficient FFT method 
making use of the convolution  theorem7. Since this method is based on an integral formulation of the mag-
netic strayfield equations, incorporating PBCs requires the summation over an infinite sum of periodic images. 
Solutions have been proposed for 1D and 2D  problems8,9, however an extension to 3D is not possible since the 
occurring sums are not absolutely convergent. Using point-dipoles instead of finite magnetized cubes seems to 
overcome this limitation and allows true 3D periodic boundary  conditions10. In contrast to true PBCs which 
require an infinite summation, some codes use pseudo PBCs where the summation is truncated after a finite 
number of periodic  images2,3. Apart from the easier implementation those methods are well suited for systems 
of intermediate size, where a finite number of periodic images is sufficient to model the complete sample. This 
principle has even been applied to FEM simulation where it is called macro-geometry11. Since finite element 
calculations are based on the differential form of the strayfield equation (real) PBCs can be directly applied by 
providing a proper cell-connectivity which represents the periodic structure.

We propose the application of PBCs for 3D problems based on a differential form of the strayfield equations 
both for finite elements (FE) and finite differences (FD). We focus on the efficient strayfield calculation because it 
is the most time-consuming part of micromagnetic simulations. Due to the long-range interaction the strayfield 
is usually solved using integral formulations. Since we use a differential formulation, the discretization using 
FE or FD with PBCs is straightforward, however it requires the solution of a sparse system of equations. In case 
of FD the use of a Fourier space method allows direct inversion of the system and offers a significant speed up.

Strayfield calculation using PBCs
The magnetic strayfield h of a given magnetization m can be calculated by means of magnetostatic Maxwell’s 
equations. Since the magnetic strayfield is curl-free a scalar potential formulation can be used:

(1)�u = divm,
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where u is the magnetic scalar potential and the magnetic field can be calculated as h = −∇u . Proper boundary 
conditions need to be defined in order to obtain a unique solution.

If the magnetization is localized in a magnetic region � ⊂ R
3 the problem is called an open-boundary prob-

lem with u = O( 1r ) as r → ∞ . Since the boundary condition are not known at the surface of the magnet, direct 
use of the differential formulation (1) would require the discretization of an (infinite) air domain outside of the 
magnet. Accurate and efficient methods for solving open-boundary problems are often based on a correspond-
ing integral formulation. In finite-element micromagnetics, the strayfield is usually solved in the differential 
form (1) and a hybrid method by Fredkin and  Koehler12 is used in order to resolve the boundary conditions 
on the magnetic surface by means of the boundary element method. In finite-difference micromagnetics, the 
direct integration of the strayfield  tensor6 combined with an efficient FFT based convolution is commonly used.

When dealing with large periodic structures, only a fraction of the magnetic sample can be discretized. 
Assuming open-boundary conditions is no longer valid in this case. Instead, a periodic magnetization can be 
assumed (see Fig. 1) and thus PBCs can be used as proper boundary conditions for u.

Finite element discretization. The finite element formulation is based on the weak form of the differen-
tial equation (1)

with proper test functions φi . ∂� would be the domain boundary with a corresponding unit normal n . In case 
of PBCs those surface intergrals vanish, because there is no physical domain boundary. For the application of 
PBCs a mapping of boundary nodes to their periodic images needs to be provided in order to eliminate the cor-
responding degree of freedoms. We used finite element packages FEniCS13 or firedrake14 (via firedrake-periodicity), 
which offer capabilities to define PBCs.

One difficulty when dealing with PBCs in FEM is the creation of a periodic mesh. Sophisticated periodic grain 
structures can be created with neper (see for example Fig. 2). Compared with a finite difference discretization the 
finite element model provides a better geometry representation, but requires the solution of an (unstructured) 
sparse system of equations, which significantly increases execution time by some orders of magnitude.

Finite difference discretization. The finite difference method is based on a rectangular Nx × Ny × Nz 
mesh. In order to use an efficient FFT method for the solution of the occurring system of equations, we assume 
that the mesh is equidistant. Thus the index set (i, j, k) is sufficient to identify each vertex of the mesh.

In the following, we use the convention that u and div (m) are defined on the grid vertices, whereas m and h are 
defined at the cell centers (see Fig. 3). In the case of PBCs, the number of grid points and cell centers are equal 
and the cell centers form a shifted grid.

(2)
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ui,j,k = u(xi,j,k)

( divm)i,j,k = ( divm)(xi,j,k)

mi,j,k = m(xi,j,k +�x/2)

hi,j,k = h(xi,j,k +�x/2)

Figure 1.  Magnetization configurations in case of (a) open-boundary conditions and (b) periodic boundary 
conditions.
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The chosen convention allows to use central differences and leads to the following discrete approximations of 
the continuous differential operators

Using these sparse discrete operators allows to solve the discrete version of Eq. (1)

Efficient implementation using a fourier space method. The discrete system (5) can be solved 
directly, as it has to be done in the finite element method. Due to the regular (and equidistant) grid, the FD 
system can also be solved in Fourier space, where all differential operators become algebraic and the system can 
be directly inverted.

The potential ui,j,k can be represented by means of the corresponding Fourier-space potential ũi,j,k using the 
Discrete Fourier Transform (DFT)

(4)
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(5)(�u)i,j,k = ( divm)i,j,k .

Figure 2.  Periodic grain structure with periodic FEM mesh created with neper.

Figure 3.  Finite difference grid used for the discretization of u and div (m) (on vertices) as well as m and h (on 
cell centers).
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where  is the imaginary unit and the wave-vectors kl , km , and kn are defined by

A similar Ansatz is used for the other fields m , and h . When substituting the Fourier-space representation (6) into 
the definition of the discrete operators (4) the spatial indices i, j, k only occur within the exponent, which results 
in a simple multiplicative phase factor for all neighbouring cells. Simplifying all occurring prefactors finally yields

One can see that the non-local terms within the operator lead to local pre-factors within Fourier-space. Using 
the fact that the Fourier basis functions are linearly independent of each other, allows to explicitly express the 
Fourier coefficients of the strayfield h̃l,m,n as a function of the Fourier coefficients of the magnetization m̃l,m,n:

Note that evaluation of ũ0,0,0 , which represents the constant part of the potential, would lead to a division by 
0. However it can be set to zero since it has no influence on the magnetic field.

Due to the use of the FFT, the resulting algorithm is very efficient. Compared with the non-periodic FFT 
strayfield calculation, which is based on the integral formulation, the assembly and storage of the demagnetiza-
tion tensor can be avoided. Since no zero-padding is necessary the system size gets even smaller in case of PBCs. 
As a further optimization one can use a real-FFT, since the input magnetization as well as the resulting strayfield 
is purely real-valued. This leads to a further speedup by a factor of 2, as well as to a reduced storage size. The 
presented method is well suited for parallel execution on modern GPUs.

The FD method has been implemented within the micromagnetic code magnum.af and can be used on CPU 
or GPU, respectively. The FE method utilizing true PBCs has been implemented using magnum.pi. Table 1 sum-
marizes timings of the strayfield calculation using the presented methods.

Numerical experiments
The presented method is validated by comparison with analytical calculations. The trivial case of a homoge-
neously magnetized bulk material leads to zero demagnetization field according to Eq. ((1)) since divm = 0 
everywhere.

A non-trivial solution can be found for an infinite number of infinitely extended thin-films with thickness d1 
and a spacing between each thin-film of d0 . Each thin-film is magnetized perpendicular to the film plane (in −x 
direction) with a saturation magnetization of Ms . Due to symmetry considerations the resulting field only points 

(6)

kl =
2π l

Nx
, km =

2πm

Ny
, kn =

2πn

Nz

(7)
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in the perpendicular direction, which reduces the problem to one dimension. Since the magnetization is constant 
inside of the thin-film and zero outside, one can again assume divm = 0 in both regions. Thus the resulting 
potential is a piecewise linear function u(x) = aix + bi for x ∈ �i , where i ∈ (0, 1) denotes the domain index.

Considering the jump-conditions of the magnetic scalar potential

leads to a0 − a1 = Ms , where [[.]] denotes the jump across the domain boundary. Periodicity and continuity 
of the potential furthermore yields a1d1 + a0d0 = 0 , where d0 and d1 are the thickness of the thin-film and the 
spacing layer, respectively. Putting everything together yields

Note that in the limit d0 → ∞ one ends up with the well known result for a single infinite thin-film with a field 
−Ms inside of the film and 0 outside. It is remarkable that while a single thin-film shows no external field, an 
infinite number of films do. The calculated fields and the corresponding potential is visualized in Fig. 4 and 
compared with simulation results using the presented FD method.

The performance of the presented method should be further demonstrated by the calculation of the hysteresis 
loop of a soft-magnetic-composite (SMC) material. The material consists of isolated particles, with each particle 
itself consisting of several magnetic grains. The simulation is restricted to a primary cell containing only one 
magnetic particle, consisting of 3× 3× 3 grains with a size of 300 nm × 300 nm × 300 nm , as well as a non-
magnetic interparticle layer (see Fig. 5). PBCs are used to mimic interparticle interactions and to avoid surface 
effects. The width of the interparticle layer wgap is varied and its influence on the magnetic hysteresis is studied.

For the FE model a (non-equidistant) regular mesh is used. Each dimension is divided into N = 3Ni + 1 
parts, where Ni is the number of divisions of each grain. The grid spacing within the grains is constant, whereas 
the thickness of the interparticle layer can be adjusted as desired. In contrast, the FD discretization requires 
using an equidistant grid, which limits the possible interparticle thicknesses to integer divisors of the grain-size. 
Furthermore many FFT libraries require that largest prime factor of the system size is smaller than a certain 
value. This is based on the fact, that the FFT performs best for system sizes N = 2M for integer M. Performance 

[[u]] = 0
[[

∂u

∂n

]]

= M · n

a0 =
Ms

1+ d0/d1
a1 = −

Ms

1+ d1/d0

Table 1.  Timing comparison for the FFT strayfield calculation on a cubic N × N × N grid. tfdcpu (s) was 
calculated on a Quad-Core Intel i7-5600U CPU @ 2.60GHz using Numpy’s real-FFT transformation, while tfdgpu 
(s) was calculated on a Tesla V100 GPU using OpenCL. tfemcpu  shows the timings of a FE discretization solved on 
the same CPU using a standard gmres/ilu method.

N N
3

t
fd
cpu (s) t

fd
gpu (s) t

fem
cpu  (s)

10 1000 0.0013 0.0014 0.005

50 125,000 0.0361 0.0015 1.310

100 1000,000 0.2660 0.0022 17.33

160 4096,000 1.3463 0.0088 –

220 10648,000 4.2463 0.0166 –

260 17576,000 9.6362 0.0547 –

Figure 4.  Comparison of the proposed FD method with analytical results for an infinite number of infinitely 
extended thin-films.
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decreases dramatically (more than one order of magnitude) if system sizes with much higher prime-factors are 
 used2. This general limitation of the FD method also results in very large system sizes for small width of the 
inter-particle layer and makes the more flexible FE method still competitive.

The used material parameters can be found in Table 2. The magnetic anisotropy axes within the 27 
grains are randomly distributed. A homogeneous external magnetic field is applied and linearly varied from 
−100 mT to 100 mT with a frequency of 100 MHz . The resulting hysteresis loops for FE and FD method can 
be found in Fig. 6. It can be seen that a larger interparticle layer leads to a smaller hysteresis and thus reduces 
the hysteresis losses of the material. The dramatic influence of self-demagnetization without using true PBCs is 
demonstrated in Fig. 7. Due to the strong demagnetization effects, the external field range needs to be extended 
to −2.5 T to 2.5 T . Without PBCs the subtle effect of varying interparticle layer widths is superimposed by a 
much stronger finite size-effect, which additionally depends on the shape of the boundary. Since the influence 
of the boundary can be subtracted out only in average, extracting the desired macroscopic material properties 
will be much harder and less accurate.

The FE and FD simulations with true PBCs have been performed with magnum.pi, or magnum.af, respec-
tively. The FD simulations without PBCs have been performed with magnum.af and validated with MuMax3 . 
The FD simulations using pseudo PBCs have been performed with MuMax3.

Conclusion
The importance of using true PBCs for the calculation of material properties without the influence of surface 
effects has been pointed out. An efficient FFT-based FD strayfield calculation providing true 3D PBCs has been 
presented. This method perfectly complements methods for 1D and 2D periodic boundary conditions. Those 

Figure 5.  Simplified geometry of the SMC material consisting of 3× 3× 3 magnetic grains separated with one 
non-magnetic interparticle layer (dark blue). The size of each grain is 300 nm× 300 nm× 300 nm , whereas the 
interparticle thickness is varied.

Table 2.  Micromagnetic material parameters used within the magnetic grains as well as for the non-magnetic 
interparticle layer. The easy axes of the uniaxial anisotropy are randomly distributed.

Magnetic grains Interparticle layer

Magnetic polarization

Js ( T ) 1.5 0.0001

Exchange constant

A (J/m) 10× 10−12 0.0

Uniaxial anisotropy constant

Ku ( J/m
3) 8× 103 0.0

Damping constant

α 1.00 1.00
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Figure 6.  Hysteresis curves of the SMC material for varying interparticle widths wgap using true PBCs 
implemented with the (a) FE method and (b) FD method.

Figure 7.  Finite difference hysteresis curves of the SMC material for interparticle widths wgap = 23.08 nm with 
different boundary conditions. Without true PBCs the external field range has to be extended to ±2.5 T , in order 
to fully saturate the material.
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methods are based on integral formulation and cannot be extended to the 3D case. The discretization using finite 
elements is straightforward and may provide benefits for more complicated geometries. Even for the provided 
test case it allows a more flexible choice of the interparticle width wgap.
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