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An analytic solution of full‑sky 
spherical geometry for satellite 
relative motions
Soung Sub Lee1 & Christopher D. Hall2*

Herein, an exact and efficient analytic solution for an unperturbed satellite relative motion was 
developed using a direct geometrical approach. The derivation of the relative motion geometrically 
interpreted the projected Keplerian orbits of the satellites on a sphere (Earth and celestial spheres) 
using the solutions of full‑sky spherical triangles. The results were basic and computationally faster 
than the vector and plane geometry solutions owing to the advantages of the full‑sky spherical 
geometry. Accordingly, the validity of the proposed solution was evaluated by comparing it with other 
analytic relative motion theories in terms of modeling accuracy and efficiency. The modeling accuracy 
showed an equivalent performance with Vadali’s nonlinear unit sphere approach, which is essentially 
equal to the Yan–Alfriend nonlinear theory. Moreover, the efficiency was demonstrated by the lowest 
computational cost compared with other models. In conclusion, the proposed modeling approach 
illustrates a compact and efficient closed‑form solution for satellite relative motion dynamics.

The dynamic models of the satellite relative motion are diverse and the developed solutions have paid attention 
to the performance of the dynamic model, such as computational complexity, accuracy, types of perturbations, 
and model assumptions. The main focus of these dynamic models has been on the study of formation flying and 
rendezvous and docking maneuvers of satellites. For these applications, the satellite relative motion theories began 
with the equations of motion derived by Clohessy and  Wiltshire1. The reference satellite orbit was assumed to 
be circular, and the relative orbit coordinates were small compared with the reference orbit radius; hence, the 
resulting equation of motion was linearized.  Lawden2 found an improved form for the relative motion, includ-
ing reference orbit eccentricity.  Carter3 later extended Lawden’s solution. Subsequently,  Kechichian4 developed 
the exact formulation for a general elliptic orbit to analyze the relative motion in the presence of J2 potential 
and atmospheric drag. However, the resulting equations were required to use numerical integration over time. 
Sedwick et al.5,6 applied the J2 potential forcing function to the right-hand side of Hill’s equations. Schweighart 
followed these equations and found analytic solutions.  Melton7 later developed an approximate solution, thereby 
expanding the state transition matrix in powers of eccentricity with a time-explicit representation.

Accordingly, numerous theories of satellite relative motion have been added to the literature in the last 
decades. A brief survey was published by Alfriend and  Yan8, who compared and evaluated various relative 
motion theories: Hill’s equations, the Gim–Alfriend state transition  matrix9, the small-eccentricity state transition 
 matrix8, the non-J2 state transition  matrix8, the unit sphere approach (USA)10, and the Alfriend–Yan nonlinear 
 method11. Their evaluation of the results showed that the USA and the Yan–Alfriend nonlinear method present 
the highest accuracy for all eccentricities and relative orbit sizes. The USA was proposed by Vadali, who achieved 
the exact analytic expression in terms of differential orbital elements for relative motion problems. Alfriend and 
Yan applied the geometrical method to the nonlinear relative motion. The method was employed in long-term 
prediction of mean orbital elements, including nonlinear J2 effects, and in transforming Hill’s frame. Most of 
the abovementioned relative motion theories have been developed using the formation flying concept for sta-
tion keeping.

Recently, a comprehensive survey and assessment of satellite relative motion dynamics models was conducted 
by Joshua  Sullivan12. This comparative study provided an extensive overview of the currently available literature 
and assessed the newly developed relative motion solutions, adding to the comparisons of Alfriend and Yan: the 
curvilinear Hill–Clohessy–Wiltshire (HCW)  model13, the quadratic Volterra  model14,  GAMSTM15,  KGDSTM16, 
and the Biria–Russell Vinti  method17. The goal of this paper is to study several key features of the dynamics 
models paying attention to dynamical state representations, model assumptions, types of perturbations, accuracy, 
and computational complexity. Finally, several meaningful comparative results are presented.
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In previous works, the analyst was forced into analytic approaches using vector terms rather than spherical 
geometry because of the singularity problem. However, these problems have been eliminated by solutions of 
full-sky triangles and plugged into computer programming languages for many years. This study aims to develop 
a solution for relative motion dynamics by direct geometrical interpretation using the advantages of full-sky 
spherical geometry solutions. Spherical geometry now makes computer implementation quite simple, and this 
has been discussed in Ref.18.

To derive the equations of motion, the approach geometrically interprets the projected base and the target 
satellite Keplerian orbits on a sphere (Earth and celestial spheres) with the spherical trigonometry solutions. The 
resulting equations are expressed as azimuth and elevation angles with their derivatives representing the relative 
angular position and velocity of the target satellite with respect to the base satellite. Subsequently, the azimuth 
and elevation angles are then transformed into the associated rectangular coordinates for the relative position 
and velocity vectors in the base satellite centered frame. The proposed solution is validated by modeling accuracy 
and efficiency compared with those of the exact analytic dynamic models of the satellite relative motion theories.

Keplerian orbit in spherical coordinate systems
We project a Keplerian orbit on a celestial sphere using spherical coordinates. The Keplerian orbit is commonly 
specified by the classical orbital elements for state representations in  space19. The six orbital element sets are as 
follows:

The semi-major axis, a, and the eccentricity, e, listed as the first two elements above describe the orbit size 
and shape, respectively, while Ω, i, and ω define the orbit plane orientation. The final classical orbital element 
is the true anomaly, ν, which determines the object’s current angular position relative to the perigee. Figure 1 
illustrates the orbit elements Ω, i, ω, and ν, which are angle-related orbit elements that describe the Keplerian 
orbit from the center of the Earth.

A spherical coordinate system in space can be used to represent the Keplerian orbit projected on a sphere. 
In Fig. 2, Î  axis is along the vernal equinox direction and the K̂ axis is in the direction of the north pole, and 
then the elevation angle, δ′ , defines the angle between the straight line from the center of the Earth to O′ and the 
projection of this line on the Î Ĵ  planeThe angle between this projection and the Î  axis is defined as the azimuth 
angle, α′ . The formulas for α′ and δ′ can be expressed as follows in terms of the angle-related orbital elements if 
we represent the projected Keplerian orbit by α′ and δ′:

Angles α′ and δ′ and the radial distance, r, of the object determine the spherical coordinate system in space. The 
radial distance, r, is written as follows in terms of ν:

If we represent the position of the object in the rectangular coordinate system, the spherical coordinate system 
is transformed by the following relations:

(1)[a, e,�, i,ω, ν]

(2)
α
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δ
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(3)r =
a
(
1− e2

)

1+ ecosν

(4)r�I�J �K =




rcosδ

′
cosα

′

rcosδ
′
sinα

′

rcosδ
′





Figure 1.  Keplerian orbit elements.
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Angles α′ and δ′ are expressed in the next section in terms of the angle-related orbit elements using direct geo-
metrical interpretations.

Geometrical relative orbit modeling
In this section, we geometrically derive the relative position and the velocity vectors of a target satellite relative 
to the base satellite. The subscript B denotes the base satellite while subscript T denotes the target satellite.

The Keplerian orbits of the two satellites are projected on a sphere for geometrical interpretation, as seen in 
Fig. 3. PB and PT denote the orbit poles of the satellites. The dotted lines on the sphere represent the projected 
Keplerian orbits of the two satellites and the solid line represents an equatorial plane. The intersection point, IP , 
is defined as the projected crossing point of the two orbit planes on the surface.

Note 1 In spherical geometry, intersection points always exist between great circle arcs on the sphere if they do 
not have the same inclinations.

The relative position of the target satellite, T, with respect to the base satellite, B, is given by the azimuth angle, 
α, and the elevation angle, δ. Angle α is perpendicular to angle δ through point H.

Figure 2.  Projection of a Keplerian orbit on a celestial sphere.

Figure 3.  Geometry for modeling the relative motion on the surface of a sphere.
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We introduce the argument of latitudes for the transformation between the classical orbital elements and the 
angular positions on the sphere. The argument of latitudes, uB,T , measures the arc lengths from the ascending 
nodes to the current satellite angular position. On the sphere, uB,T can be expressed as

where the arc lengths φj and θj represent the distance from the ascending nodes, �j , to the intersection point, 
IP , and from IP to the satellite’s current angular position, respectively. For the derivation of the satellite relative 
motion, a key parameter is the relative inclination, iR , which is the angle between two orbit planes at IP . We use 
the spherical triangle ��B�T IP to compute iR . Because iR is not equal to the difference between two inclinations 
of the orbits (i.e., iR  = iT − iB ), we must apply the law of cosines for angles to the triangle:

where, the relative ascending node, ∆Ω, is defined as follows:

We first derive α and δ for the target satellite relative to the base satellite in terms of the angle-related orbit 
elements Ω, i, ω, and ν. The general solutions for spherical triangles are given in Ref.18. The spherical triangle 
��B�T IP in Fig. 3 is taken to solve φB and φT . Figure 4 shows a detailed view of the spherical triangle. We apply 
the law of sines to the spherical triangle to compute sinφB:

Applying the law of cosines for angles to the spherical triangle ��B�T IP , we find another geometrical rela-
tionship to compute cosφB:

Dividing Eqs. (8) by (9) and applying the full-sky trigonometry solutions give

To compute sinφT , the law of sines is also applied to the spherical triangle seen in Fig. 4:

Using the law of cosine for angles, we also obtain

Dividing Eqs. (11) by (12) results in

Now we consider the spherical triangles on the surface of the sphere with ∆Ω = 0. In this case, we construct a 
celestial sphere having the pole PB of the base satellite as a geographical pole, shown in Fig. 5. The celestial sphere 
has two spherical triangles, �PBPTT and �THIP . Note that the angle �PBPTIP is always 90°, regardless of the 
inclination of the satellites. The angle T PBIP is equivalent to the angle θT by applying the law of sines. Hence, 
the angle PBPTT is obtained by subtracting θT from 90°. The arcs PTT and PB H are always 90°. Thus, the arc PB 
T can be found by subtracting δ from 90°.

The elevation angle δ is derived from the spherical triangle �PBPTT . By applying the law of cosines for sides 
to the spherical triangle, we find that

(5)uj = φj + θj = ωj + νj j = B,T

(6)cosiR = cosiBcosiT + siniBsiniTcos��

(7)�� = �T −�B

(8)sinφB =
sin��siniT

siniR

(9)cosφB =
cos(180− iT)+ cosiBcosiR

siniBsiniR

(10)φB = atan2[sin��siniBsiniT,−cosiT + cosiBcosiR]

(11)sinφT =
sin��siniB

siniR

(12)cosφT =
cosiB + cos(180− iT)cosiR

sin(180− iT)siniR

(13)φT = atan2[sin��siniBsiniT, cosiB − cosiTcosiR]

Figure 4.  Spherical triangle for computing ∅B and ∅T.
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Thus, angle δ is obtained by

The azimuth angle α is found by applying the law of cosines for sides twice to the spherical triangle �THIP , 
resulting in the following equations:

and

Substituting cosδ from Eqs. (16) into (17), we obtain

Thus, angle α applying the full-sky trigonometry solutions is derived by

Using the definition of the argument of latitudes in Eq. (5), angles α and δ are expressed as

Note 2 The quadrant ambiguity problem is avoided by using the ATAN2 built-in function in computer program-
ming languages for φB,φT ,α , in order to cover the full range of 0° to 360°.

For a simple analysis of satellite relative motion, angles α and δ can be directly used to determine the angular 
position of the target satellite with respect to the base satellite. In Eq. (20), ν is the only time-dependent variable, 
and the derivatives of α and δ are obtained using:

The angle δ in Eq. (20) is a composite function and the derivative of δ for Eq. (21) is computed using the 
chain rule. The relative motion of the target satellite can be described using the previously calculated α and δ 
in the rectangular coordinates. The orbit radius of the base satellite is rB and the target satellite orbit radius is 

(14)
cos(90◦ − δ) = cosiRcos90

◦ + siniRsin90
◦cos(90◦ − θT)

sinδ = siniRsinθT

(15)δ = sin−1[siniRsinθT]

(16)cosθT = cosδcos(θB + α)+ sinδsin(θB + α)cos90◦

(17)cosδ = cosθTcos(θB + α)+ sinθTsin(θB + α)cosiR

(18)tan(θB + α) =
sinθTcosiR

cosθT

(19)α = −θB + atan2[sinθTcosiR, cosθT]

(20)
α = (φB − ωB − νB)+ atan2[cosiRsin(ωT + νT − φT ), cos (ωT + νT − φT )], 0

◦ ≤ α < 360◦

δ = sin−1[siniRsin(ωT + νT − φT )], −90◦ ≤ δ ≤ 90◦

(21)α̇ = cosiR

(
1+ tan

2δ
)
v̇T − v̇B

δ̇ = siniRcos(α + νB + ωB − φB)v̇T

Figure 5.  Geometry for computing α and δ with ∆Ω = 0.
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rT . We introduce the base satellite rotating frame, FR , to describe the relative motion of the target satellite with 
respect to the base satellite. The center of the Earth is set as the origin, and the orientation of FR is given by the 
unit vectors ê1, ê2, andê3 . The direction of the unit vector ê1 is set to the orbit radius of the base satellite, while ê3 
is perpendicular to the orbit plane of the base satellite. The unit vector ê2 is then computed following the right-
hand rule. FR is mathematically described by the unit vectors as follows:

Superscript × denotes a skew-symmetric 3× 3 matrix associated with a 3× 1 column matrix. If x is a 3× 1 
matrix, x = [x1x2x3]T , then:

The position vectors of the base and target satellites can be written as the vector components in FR:

The relative position vector −→r  of the target satellite in the base satellite centered frame, FC (with the base 
satellite as the origin), is derived by vector subtraction of the position vectors from Eq. (24):

The relative velocity vector −→v  is obtained by the time derivatives of Eq. (25):

where the derivatives of r and ν of the satellites are (Schaub and  Junkins19)

The relative equations of motion [Eqs. (25) and (26)] are an exact analytic solution for satellite relative motions 
plugging in the variables of Eqs. (20) and (21). The only assumption is that no perturbations are acting on the 
satellites.

The resulting solutions, we collectively call herein as geometrical relative orbit modeling (GROM), are 
obtained by the direct geometrical method using full-sky spherical geometry. GROM has the following explicit 
advantages: first, the angular values ( α, δ, α̇, δ̇ ) are useful for the angle-only measurement analysis or tracking 
problems between satellites without any coordinate transformation; and second, the solutions provide a com-
paratively simpler form for the dynamic model of relative orbits. For comparison, this study introduced the USA 
(see Online Appendix for this approach)10, which nonlinearly maps orbital elements to the relative position and 
velocity in the same manner as GROM. The two solutions consisted of trigonometric functions as orbital element 
terms. Table 1 presents a comparison of the formula complexity of the solutions.

The GROM is expressed in compact form with the ATAN 2 inverse trig function, and the USA represents 
analytic expressions in terms of differential orbital elements, along with the direction cosine matrix of the chief 
and deputy satellites.

(22)

ê1 = rB
|rB|

ê3 = r
×
B
ṙB∣∣r×

B
ṙB

∣∣

ê2 = e
×
3
ê1

(23)x× =
[

0 −x3 x2
x3 0 −x1
−x2 x1 0

]

(24)
−→r B = (rB00)

T

−→r T = (rTcosδcosαrTcosδcosαrTsinδ)
T

(25)
⇀
r =

(
x
y
z

)
=

(
rT cosδcosα − rB

rTcosδsinα
rT sinδ

)

(26)
⇀
v=

�
ẋ
ẏ
ż

�
=




ṙT cosδcosα − rT δ̇sinδcosα − rT α̇cosδsinα − ṙB

ṙT cosδsinα − rT δ̇sinδsinα+rT α̇cosδcosα
ṙT sinδ + rT δ̇cosδ





(27)ṙj =
√√√√

µ

aj

(
1− e2j

) ejsinνj, v̇j =

√
µaj

(
1− e2j

)

r2j
, j = B,T

Table 1.  Formula complexity of the two solutions.

GROM USA

The solution is comparatively simple (49 trigonometry functions) This requires an efficient method for simple-form expressions (82 
trigonometry functions)
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Model evaluations
We first evaluate the modeling accuracy to determine the validity of the GROM solution. To evaluate the mod-
eling accuracy, three relative motion theories are introduced: Hill’s  equation19, the classical two-body problem 
(CTBP)20, and the USA. The USA has been evaluated to have the lowest index in terms of accuracy of satellite 
relative motion equivalent to the Yan–Alfriend nonlinear  method8,10.

Model accuracy. This section evaluates the relative errors of GROM using the modeling error index which 
is an effective tool for evaluating the accuracy of relative motion  theories8. In Eq. (28), 

−
x j and xj are the relative 

position and velocity vectors of the reference and proposed model, respectively:

where j represents each sample point of a relative orbit. The weighting matrix W uses the Earth-value units as 
shown in Eq. (29):

where Re is the Earth’s radius of 6378.14 km and n is the mean motion of satellite. The modeling error index is 
written as follows:

The modeling error index evaluates the relative errors of GROM in comparison to Hill’s equation and USA, 
relative to the reference orbit model of CTBP. The analytic solutions of USA and CTBP describe the kinematically 
exact relative motion of satellites, which brings about negligible quantities of relative errors upon simulation. 
We use k-digit rounding arithmetic when finding the solutions, yj and 

−
y j , to ignore computational uncertainties 

such as round-off errors. The k-digit rounding arithmetic is obtained by terminating the value of the solution 
at k decimal digits.

For numerical simulations, the orbit elements of the base satellite in Table 2 are chosen, and the orbit element 
differences, �oe , of the target satellite are used as the following values:

Figures 6 and 7 show the modeling error index using the six-digit rounding arithmetic solution with various 
relative distances and eccentricities. As shown in the figures, the index of GROM is exactly the same as that of 
USA, representing index values of  10−6 with respect to the reference orbit model. A modeling error index of the 
order of  10−3 is sufficiently small, providing a reasonable confidence regarding the  modeling21.

Therefore, the GROM solution provides an accurate representation for all relative orbit sizes and eccentrici-
ties. In the case of the Hill’s equation, the solution shows modeling indexes of nearly  101 at small orbit element 
differences, which means sufficient accuracy for small relative orbit sizes and eccentricities. As expected, however, 
the index values gradually grow with increasing orbit size and eccentricity.

Model efficiency. This section compares CTBP of a vector solution, and USA of a nonlinear mapping solu-
tion similar to GROM, to evaluate the computational cost of GROM. In tests, we used MATLAB (R2013b) run-
ning on an 8th Intel Core i5 8265U (3.4 GHz) with 8 GB memory. The CPU time comparison of each solution is 
clearly implementation-dependent on the researcher. To fairly evaluate the comparison of solutions, each solu-
tion was coded efficiently, and a simple least squares linear regression and method was applied for a more robust 
comparison. Generally, the relationship between iterations, 

∼
N , and CPU time, 

∼
T , is roughly linear. However, it is 

not exact linear. Along with the parameters in Table 2, five iterations, were performed with a time step 0.1 s and 
a time span(sec) below:

(28)yj = Wxj , yj = Wxj

(29)W = diag

(
1

Re
,
1

Re
,
1

Re
,

1

Ren
,

1

Ren
,

1

Ren

)

(30)
�j =

yTj yj

yTj yj
− 1

� = max
j=1..m

∣∣�j
∣∣

(31)
�oe = [�a�e0.10.20.010.0]

�a = [0.00.0010.0050.010.10.55]
�e = [0.00.000010.000050.00010.00050.050.1]

Table 2.  Parameter of the orbit elements.

Orbit elements Value Units

a 7000 km

e 0.001 –

i 30.0 deg

Ω 120.0 deg

ω 0.0 deg

M0 0.0 deg
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Iteration and CPU time are evaluated by the following linear model:

The computational cost of each solution is compared by the slope m value and the least squares method is 
used to calculate the slope of the best fit line. Table 3 shows the coefficient m*, normalized with respect to the 
value of GROM. GROM is nearly 7% and 25% more efficient than USA and CTBP, respectively.

A numerical example was used to study the effect of the satellite relative motion under the influence of J2 
perturbations, through which we demonstrated the modeling efficiency of GROM. Using the time-explicit orbital 
elements in the analytic solutions provides a simple method of investigating the difference between unperturbed 
and J2-perturbed models for the satellite relative motion. The first-order J2 perturbation causes secular changes 

(32)Ñ = [10100003000050000100000]

(33)T̃k = mÑk , k = 1, . . . , n

Figure 6.  Index Comparison for various relative distances.

Figure 7.  Index Comparison for various eccentricities.

Table 3.  Comparison of analytic solution efficiency.

Method GROM USA CTBP

Normalized coefficient (m*) 1.0000 1.0711 1.2524
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in the ascending node, Ω, argument of perigee, ω, and mean anomaly, M. The time-explicit representations of 
the first-order J2 perturbation are presented as  follows10:

We use the following values in the time-explicit orbit elements: p = a(1 − e2), J2 = 0.00108263.
The numerical simulation coded to iterate the solutions at each time step runs over a period of 20 days using 

the orbit elements for the base satellite shown in Table 2. The orbit element differences are chosen as the fol-
lowing values:

Table 4 shows that the maximum differences between the relative position and velocity of the solutions are 
3.8729 km and 0.0041 km/s over 20 days, respectively. However, each of the analytic solution results in different 
CPU times; thus, the GROM solution is approximately 1′40′ ′ and 5′57′ ′ faster than the USA and CTBP solutions, 
respectively.

Conclusions
Herein, we developed an analytic solution for the unperturbed satellite relative motion using a direct geometrical 
approach on a sphere. The derivation of this geometrical approach is straightforward, and the resulting solu-
tions provide a complete analytic form for relative motion dynamics with the full-sky solutions covering the 
range of 0°–360°. The accuracy of the proposed GROM solution equals that of the exact relative motion theories 
of CTBP and USA. In particular, in terms of the modeling efficiency, GROM is approximately 7% and 25% 
more efficient than USA and CTBP, respectively. Consequently, using full-sky spherical geometry, the proposed 
GROM approach facilitates simpler equations of motion and higher computational speed compared with the 
other methods.
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