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Support vector regression‑based 
QSAR models for prediction 
of antioxidant activity of phenolic 
compounds
Ying Shi

The Support vector regression (SVR) was used to investigate quantitative structure–activity 
relationships (QSAR) of 75 phenolic compounds with Trolox‑equivalent antioxidant capacity (TEAC). 
Geometric structures were optimized at the EF level of the MOPAC software program. Using Pearson 
correlation coefficient analysis, four molecular descriptors [n(OH), Cosmo Area (CA), Core‑Core 
Repulsion (CCR) and Final Heat of Formation (FHF)] were selected as independent variables. The QSAR 
model was developed from the training set consisting of 57 compounds and then used the leave‑one‑
out cross‑validation (LOOCV) correlation coefficient to evaluate the prediction ability of the QSAR 
model. Used Artificial neural network (ANN) and multiple linear regression (MLR) for comparing. The 
RMSE (root mean square error) values of LOOCV in SVR, ANN and MLR models were 0.44, 0.46 and 
0.54. The RMSE values of prediction of external 18 compounds were 0.41, 0.39 and 0.54 for SVR, ANN 
and MLR models, respectively. The obtained result indicated that the SVR models exhibited excellent 
predicting performance and competent for predicting the TEAC of phenolic compounds.

Phenolic compounds are natural products and can be extracted easily from many  plants1. They show exten-
sive biological activities such as anti-hepatotoxic2,  antitumor3, anti-inflammatory4,5 and antioxidant  activity6–8. 
Among them, antioxidant activity depends mainly on the  structure9–11, so numerous researcher establish many 
quantitative structure–activity relationships (QSAR) models to investigated the antioxidant activity of flavonoids 
and interpret the relationship between phenolic compounds structure and their antioxidant  activity12–16, the 
optimized QSAR model is helpful for researchers to design and synthesize antioxidants. Because of the complex 
relationship between phenolic compounds structure and antioxidant activity, simple linear models are insufficient 
to explain the effect of structural parameters on antioxidant  activity17,18. Therefore, it is essential to use machine 
learning algorithms such as multiple linear regression (MLR), artificial neural networks (ANNs) to improve the 
predictability of  QSAR19,20. Djeradi et al. have used Fukui indices and MLR method for prediction antioxidant 
activity of DPPH test of 24 flavonoids, the square of correlation coefficient  (R2) of their model is 0.81621. Cerit 
et al. have used a multilayer perceptron (MLP) ANN to predict the effect of ferric ion on the antioxidant capac-
ity of phenolic, the average errors of prediction of the training set and validation sets are 8.5 and 10.1%22. Li 
et al. have used MLP-ANN model to predict the antioxidant activity of polysaccharides in DPPH test and used 
sensitivity analysis to interpret the effect of the input variables on the target  values23. Petar et al. and Fatemi et al. 
have used ANN and MLP-ANN QSAR models to evaluate the contribution of the quantum mechanical molecular 
descriptors to the Trolox-equivalent antioxidant capacity (TEAC) in an optimized ANN  model19,24. Although the 
prediction accuracy of ANN is higher than MLR, most of the current ANN methods used to predict antioxidant 
activity are more like a black box that has overfitting risk and lead to unreliable predictions. Besides, it comprises 
a single hidden layer with an arbitrary activation function that must be bonded.

In addition to the above algorithm, support vector regression (SVR) is a useful machine learning algorithms 
that can be used to solve linear and nonlinear  problems25, especially for small sample sizes. It has been proved to 
be suitable for the QSAR analyses of  flavonoids26, drug activity prediction and  design27. For instance, Minaoui 
et al. have used support vector regression to investigate the relationship between structure and activity of 38 
cyclicurea derivatives, inhibiting HIV protease. In their work, each molecule is described by four descriptors, 
and the parameters of the SVR model are optimized by grid optimization. Then they compared the  R2 and RMSE 
values of the prediction results of MLR, ANN, and SVR methods. The obtained results show that the SVR model 
has better qualities and better generalization capabilities than other methods. By evaluating the contribution of 
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the molecular descriptors to the model established by the SVR, they also found that the molar volume and dipole 
moment parameters of the compounds take the most relevant part in the molecular description and controlling 
the biological activity of cyclic-urea  derivatives28.

In addition to modelling methods, a reliable QSAR models also need to select appropriate variables, the 
QSAR models usually using topological and quantum mechanical parameters. Density functional theory (DFT) 
is an accurate but time consuming method for calculating electronic structure  parameters29. While the Semi-
empirical Hamiltonians method can obtain reliable molecular parameters for building QSAR models in a more 
time-efficient  way30, especially when there is a lack of experience in selecting descriptors.

This study use Semi-empirical Hamiltonians (PM7, MOPAC 2016) to obtain molecular descriptors, then use 
Pearson correlation coefficient analysis for selecting molecular descriptors, then use the SVR method to develop a 
QSAR model to predict the antioxidant activity of 75 phenolic compounds. For comparing the prediction ability, 
ANN and MLR methods are used to build the QSAR models, too.

Materials and methods
Methods. Support vector regression (SVR). As a statistical learning method, SVR uses a kernel function 
(including the linear kernel function (LKF), the polynomial kernel function (PKF), and the radial basic function 
(RBF) kernel function) to map the vectors into a higher dimensional feature space. By introducing an alternative 
loss function and kernel function, SVR can be applied to linear regression of the target variable in this space. 
For detailed information on the optimal regression function and related Lagrangian expressions, see Refs.20,31.

Leave one out cross‑validation (LOOCV). LOOCV process: first, each sample in the training dataset will be 
removed, and then use the remaining samples to build a model and predict the target value of the removed 
sample. In this work, the reliability was evaluated by LOOCV, and used tenfold-cross-validation (tenfold-CV) to 
search for the optimal kernel function type and corresponding  parameters32,33.

Sensitivity analysis (SA). Sensitivity analysis is often used to obtain the influence degree of variables on the tar-
get variable. SA can provide an effective method to characterize the uncertainties between characteristic param-
eters and  models34,35. Based on the straightforward characteristics of SA, it was used in this work to explain the 
influence of parameters on TEAC.

Model accuracy. To obtain appropriate kernel function and capacity parameter C, insensitive loss function 
ε and the corresponding parameters gamma g of the kernel function in this computation, the least root mean 
square error (RMSE) and correlation coefficient R were used as the evaluation  criterion20. RMSE is defined as 
follows:

where n is the number of total samples, ei and pi are the experimental value and the predicted value of sample i, 
respectively. Generally, the smaller RMSE means the better expected predictive ability.

The prediction power of the training set and test set also validated by statistical parameters of correlation 
coefficient  (Q2)36,37,  Q2 is defined as

All the methods calculated on the ExpMiner Software (version 2.1.1.0, Laboratory of Materials Data Mining, 
Department of Chemistry, College of Sciences, Shanghai University, China).

Data sets. 75 phenolic compounds and TEAC values. The antioxidant activity (TEAC values,  ABTS·+ assay) 
of 75 phenolic compounds were obtained from a study by Cai et al.38, The data set was randomly divided into the 
training set (57 phenolic compounds, ~ 75%) and the testing set (18 phenolic compounds, ~ 25%).

Molecular descriptors. The molecular descriptors of each phenolic compound were calculated by MOPAC soft-
ware with EF geometry optimization and PM7 Semi-empirical Hamiltonians (MOPAC2016, J.J.P. Stewart, Stew-
art Computational Chemistry, Colorado Springs, CO, USA).

The name and molecular descriptors of phenolic compounds were given in Table S1.

Results
Descriptor selection and data set. Due to the existence of irrelevant or redundant features redundancy 
of the parameters, it is necessary to select the parameter most relevant to the target variable, especially when 
the sample set is small. The purpose of feature selection is to select a variables subset of n features from the set 
of m obtained variables (n < m) without significantly reducing the predictive ability of the  model27. In this work, 
the total number of calculated molecular descriptors was eight. Used Pearson correlation selection modules to 
select descriptors (ExpMiner software), then the most significant three descriptors were selected. Since n(OH) 
is a critical variable and easy to get, added it to the variables. Finally, a total of four descriptors were chosen to 
construct the QSAR models, the descriptions of descriptors are shown in Table 1.

(1)RMSE =

√

∑n
i=1 (pi − ei)

2

n

(2)Q2 = 1−

∑

(ei − pi)
2

∑

(ei − pmean)
2
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Grid‑search for parameter optimization. In the modeling process, the parameters of the model were 
selected by grid search method, and the parameters of the lowest RMSE were found with three different kernel 
functions (RBF, PKF and LKF kernel function), that is, the optimal parameters.

By tenfold cross-validation in the grid-search process, RMSE values were calculated with capacity parameter 
(C, C = 1–500, step = 10) and e-insensitive loss function parameter (ε, ε = 0.01–0.1, step = 0.01)) with LKF and 
PKF, C (C = 1–500, step = 10), ε (ε = 0.01–0.1, step = 0.02) and Gamma (g, g = 0.5–1.5, step = 0.1) with RBF kernel 
function. The minimum RMSE values of RBF, PKF and LKF kernel function were 0.41, 0.45 and 0.50, respectively 
(see Supporting Information Fig. S1). Hence, the optimal SVR model is SVR-RBF kernel function with C = 121, 
ε = 0.07, g = 0.6 and the corresponding equation is:

where αi − αi* is the Lagrange coefficient corresponding to the 24 support vectors, the correlation coefficient 
between the predicted value and the experimental value is 0.967, as shown in Fig. 1.

LOOCV result of SVR‑QSAR model. LOOCV was used to verify the reliability of the predictive ability 
of the QSAR Model. The same parameters were used to model with SVR, ANN and MLR to predict the TEAC 
values of 57 phenolic compounds (training set), then used the LOOCV method to examine their respective 
generalization capabilities (Fig. 2). The experimental values, predicted values of the training set and the test set 
are given in Table 2. The correlation coefficient  (R2) between the predicted TEAC values and the experimental 
TEAC values of LOOCV are 0.904, 0.897 and 0.856 in SVR, ANN and MLR models. The results of  Q2 obtained 
by the three modelling methods are similar to those of  R2 (Table 3). The RMSE value of prediction of the test 
set in SVR is slightly higher than that of ANN, but the SVR model has the lowest predict RMSE of LOOCV, it is 
suggested that the generalization ability of SVR was superior to ANN and MLR in this work. From the results of 
residual, SVR is relatively stable in the whole data range, but the residuals of ANN and MLR are larger when the 
TEAC values are near 1.5 and 0.

Sensitivity analysis (SA) of SVR‑QSAR model. Sensitivity analysis was used for analysis the correla-
tion of molecular descriptors with TEAC, From Fig. 3, it can be suggested that the value of TEAC increased with 
the increase of n(OH) and CA, decreased with the increase of CCA and FHF. Further analysis showed that the 
order of the descriptors’ influence on TEAC in descending is n(OH) > CA > FHF > CCR.

Discussion
The QSAR model based on SVR. In LOOCV test, SVR is superior to ANN and MLR. In the test set, the 
prediction ability of SVR is better than that of MLR, and is basically equal to that of ANN. From the result of 
residual error, SVR also shows good stability of prediction ability. However, the selection of kernel function and 

(3)TEAC =
∑

(αi − αi
∗)× exp[−0.6× (|X− Xi ∗ |)

2] + 0.758

Table 1.  Molecular descriptors involved in the QSAR models.

Molecular descriptor Description

n(OH) Number of OH groups

CA Cosmo area

CCR Core–core repulsion

FHF Final heat of formation

Figure 1.  Correlation of experimental and predicted activity of agonists using Eq. (3).
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the optimization of parameters in SVR modelling were more time-consuming than ANN and MLR. There may 
be other more suitable parameters outside the scope of the gridding parameter selection. However, SVR is still a 
kind of regression method with higher accuracy, and it can be used for the establishment and analysis of QSAR 
models. In the future, further algorithm optimization can be carried out to shorten the kernel function selection 
and grid parameter selection process.

The relationship between TEAC and molecular descriptors. Sensitivity analysis in the SVR-QSAR 
model had shown that four characteristic parameters significantly affect the TEAC of phenolic compounds 
(Fig. 3).

Based on the hydrogen transfer mechanisms in the antioxidant process, an increase in hydroxyl groups means 
more hydrogen atoms that can be transferred, thereby increasing the TEAC  value39. Core-Core Repulsion is 
relevant to molecular size, the shorter bond length means the larger CCR value. Some studies have shown that 
changes in CCR value affect the rate of intermolecular  reactions40,41. In this work, the lower CCR value was ben-
eficial to increased antioxidant activity of phenolic compounds. As for the Final heat of formation value, which 
reflects the stability of the molecule, a more stable molecule lead to lower antioxidant activity. The effect of Cosmo 
Area on TEAC is opposite to that of Core-Core Repulsion, large Cosmo Area lead to better antioxidant activity.

Compare the previous similar research based on the DFT parameters (minimum bond dissociation enthalpy 
(BDE(min)), HOMO and LUMO energies of the neutral species, ionization potential (IP), and dipole moment 
of the neutral species)42,43. This work reveals the potential modelling and prediction capabilities of the model 
use parameters obtained by Semi-empirical Hamiltonians, which is more time-efficient.

Applicability domain analysis. If a QSAR model is to be used for screening new compounds, the domain 
of application of this QSAR model must be  defined28. The leverage hi of a compound can be used for judging the 
compound is in the domain or not, which is defined as follows:

where xi is the descriptor vector of the considered compound and x is the descriptor matrix derived from the 
training set. The superscript T refers to the transpose of the matrix/vector. The warning leverage h* is fixed at 
3(p + 1)/n, where n is the number of training compounds and p is the number of model parameters. In this model, 
the value of h* is 0.263. A leverage greater than the warning leverage h* means that the predicted response may 
not be reliable.

The plot of leverage and standard residuals for the SVR-QSAR model is shown in Fig. 4. As shown in the Wil-
liams plot (Fig. 4), hi values of all the compounds in the training and test sets are lower than the warning value 
(h* = 0.263). The training set has great representativeness, and none of the compounds is particularly influential 

(4)hi = xTi (x
Tx)

−1
xi(i = 1 . . . n)

Figure 2.  Experimental vs predicted activities of TEAC in LOOCV test and external test set of (A) SVR (using 
RBF kernel), (B) ANN, and (C) MLR. The plot of predicted residuals vs experimental values of TEAC of (D) 
SVR, (E) ANN and (F) MLR.
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No. Experimental TEAC/mM TE

Predicted TEAC/mM TE

SVR ANN MLR

1 1.56 0.821 0.425 0.603

2 0.93 0.379 0.129 0.197

3 0.82 0.513 0.08 0.204

4 0.007 0.259 0.04 − 0.508

5 1.22 0.89 0.603 0.897

6 0.037 0.41 0.422 0.25

7 0.025 0.456 0.298 0.256

8 0.028 0.462 0.281 0.251

9 0.092 0.359 0.414 0.209

10 0.005 0.261 − 0.165 − 0.518

11 5.29 4.57 4.808 4.24

12 3.71 4.62 4.99 3.76

13 3.04 3.20 3.24 3.05

14 2.39 2.35 2.67 2.06

15 2.02 1.80 1.71 1.82

16 2.18 2.19 2.22 2.11

17 1.56 1.02 1.73 1.06

18 0.707 − 0.145 0.107 0.186

19 2.42 2.52 2.49 2.36

20 1.93 1.40 1.45 1.60

21 1.43 0.826 0.435 1.40

22 2.18 2.35 2.57 2.35

23 0.081 0.608 0.619 0.948

24 1.47 1.49 1.55 1.37

25 0.083 0.656 0.318 0.705

26 0.003 − 0.195 0.09 − 0.536

27 0.098 0.358 0.195 0.509

28 0.104 0.358 − 0.006 0.503

29 0.000 − 0.284 − 0.246 − 0.544

30 0.101 0.642 0.491 0.947

31 0.072 − 0.344 − 0.182 − 0.04

32 0.005 − 0.217 − 0.026 − 0.537

33 5.25 5.00 5.44 4.22

34 6.14 5.37 5.97 6.74

35 2.14 1.47 1.32 1.66

36 1.62 1.75 1.94 1.42

37 0.558 0.863 0.858 0.756

38 0.002 0.574 − 0.03 − 0.503

39 1.18 0.821 0.378 0.854

40 0.164 0.166 − 0.023 − 0.018

41 0.001 0.2 − 0.021 − 0.506

42 0.253 0.509 0.566 0.841

43 0.104 − 0.443 0.182 0.048

44 0.209 0.719 0.624 1.048

45 1.93 1.13 1.09 1.62

46 1.07 0.483 0.376 0.925

47 0.548 0.496 0.6 0.937

48 0.076 0.486 0.587 0.884

49 0.069 0.501 0.582 0.928

50 0.068 0.511 0.528 0.886

51 0.077 0.465 0.537 0.905

52 0.076 0.507 0.517 0.955

53 0.072 0.606 0.512 0.953

54 0.105 − 0.341 0.031 − 0.029

55 0.009 − 0.162 − 0.098 − 0.525

Continued
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No. Experimental TEAC/mM TE

Predicted TEAC/mM TE

SVR ANN MLR

56 0.105 0.318 0.263 0.254

57 0.124 0.204 0.259 0.876

58 1.31 0.995 0.812 0.938

59 1.15 0.903 0.812 0.94

60 5.95 5.87 6.05 5.06

61 2.68 3.28 3.13 3.04

62 1.59 2.29 2.08 2.34

63 1.12 1.30 1.21 1.63

64 1.79 2.43 2.17 2.34

65 0.001 0.110 − 0.179 − 0.463

66 0.097 0.524 0.608 0.889

67 0.077 0.543 0.511 0.671

68 2.53 2.57 2.13 2.39

69 1.35 0.649 0.666 0.732

70 0.383 0.246 0.261 0.204

71 0.003 − 0.357 − 0.191 − 0.527

72 0.308 0.423 0.582 0.778

73 1.62 1.30 1.23 1.56

74 0.068 0.501 0.581 0.924

75 0.073 − 0.388 − 0.158 − 0.208

Table 2.  Predicted TEAC with different methods using LOOCV (No. 1–57) and test set (No. 58–75).

Table 3.  RMSE and the squared correlation coefficient  (R2 and  Q2) of antioxidant activity prediction in 
LOOCV and test set of three models (SVR, ANN and MLR).

SVR ANN MLR

LOOCV

RMSE 0.440 0.464 0.539

R2 0.904 0.897 0.856

Q2 0.903 0.892 0.855

Test set

RMSE 0.410 0.386 0.536

R2 0.925 0.931 0.861

Q2 0.917 0.927 0.859

Figure 3.  TEAC vs n(OH), CA, FHF and CCR by SA.
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in the model space. The standardized residual of compound number 12 was slightly larger than three standard 
deviation units (3 s), which may be due to its different antioxidant activity mechanism.

Conclusions
In this study, an SVR-QSAR model of 75 phenolic compounds TEAC values was developed. The Pearson cor-
relation coefficient method was employed in the parameter selection process in QSAR model development. 
Satisfactory prediction results were obtained using four parameters calculated by Semi-empirical Hamiltonians 
PM7. Although the SVR-QSAR model shows good stability of prediction ability, the SVR still has some shortcom-
ings, such as selecting kernel function and the optimization of modeling parameters were more time-consuming 
than ANN and MLR. There may be other more suitable parameters outside the scope of the gridding parameter 
selection. Continuous optimization algorithms can be used in the future to reduce the time-consuming of the 
SVR-modelling process. Gupta et al. have done a series of work in this  field44–47, they proposed a new uncon-
strained convex minimization problem formulation equivalent to the Lagrangian dual of the 2-norm twin support 
vector regression (TSVR), using the proposed formulation on synthetic and real-world datasets demonstrates 
a significant increase in learning speed with better accuracy in performance in accordance with the classical 
support vector regression and twin support vector  regression47. Therefore, in order to obtain a better and faster 
SVR model in the subsequent work, it is necessary to continuously optimize the algorithm.
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