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Uncovering and classifying 
the role of driven nodes in control 
of complex networks
Yuma Shinzawa1, Tatsuya Akutsu2* & Jose C. Nacher1*

The widely used Maximum Matching (MM) method identifies the minimum driver nodes set to control 
biological and technological systems. Nevertheless, it is assumed in the MM approach that one driver 
node can send control signal to multiple target nodes, which might not be appropriate in certain 
complex networks. A recent work introduced a constraint that one driver node can control one target 
node, and proposed a method to identify the minimum target nodes set under such a constraint. 
We refer such target nodes to driven nodes. However, the driven nodes may not be uniquely 
determined. Here, we develop a novel algorithm to classify driven nodes in control categories. Our 
computational analysis on a large number of biological networks indicates that the number of driven 
nodes is considerably larger than the number of driver nodes, not only in all examined complete 
plant metabolic networks but also in several key human pathways, which firstly demonstrate the 
importance of use of driven nodes in analysis of real-world networks.

Recently, controllability approaches have been suggested to address control in complex  networks1,2 and have also 
been widely used to study many real- world problems from cell biology to technological  systems3–14. In particular, 
Liu et al. studied the minimum set of driver nodes in the context of structural controllability of linear complex 
 networks1. One of their main results was that the minimum set of driver nodes can be computed in polynomial 
time using a reduction to the maximum matching (MM) problem on bipartite graphs. Structural controllability 
states the fundamental conditions such that a system can become  controllable1,15. In the context of linear time-
invariant dynamics, a system can be defined by the following equation:

where the N × N matrix A elements are the interacting parameter weights between N nodes. In other words, 
it determines the network of interactions between the system elements. The vector �x(t) = (x1(t), ..., xN (t))

T 
describes the state of the system with N nodes. An input N ×M matrix B determines the coupling between 
the external controller (driver node) and the controlled node (driven node), where M ≤ N  . Finally, the time-
dependent input vector �u(t) = (u1(t), ..., uM(t))T is used to control the system. These nodes are called driver 
nodes. As a result, the system is said to be controllable “if it can be driven from any initial state to any desired final 
state in finite time”. Each row of B contains at most one non-zero element, which means that each node receives 
signal from at most one driver node.

Hence, matrices A and B are defined to be structured matrices such that their elements are either fixed zeros 
(absence of interactions) or independent free parameters (weights). Lin stated that the system (A, B) is structur-
ally controllable if it is possible to choose the free parameters in A, B such that the system (A, B) is controllable in 
the traditional notion, i.e. the system satisfies the Kalman’s rank condition (rank C = N)1,15, where the matrix C is 
defined as C = (B, AB, A2B,…, AN−1 B). This means that if the system is controllable for a given set of parameters, 
then its controllability holds for almost any other parameter  set15,16. Structural controllability is, therefore, very 
important because it enables us to determine controllability for systems whose interacting weights are typically 
unknown, such as most complex biological systems. Liu et al. demonstrated that it is possible to by-pass the 
computation of the rank C, by computing instead the maximum matching in the network, which determines the 
minimum number of inputs or driver nodes needed to achieve control of the network.

d �x(t)

dt
= A�x(t)+ B�u(t)
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Several works have also explored the maximum matching approach in network controllability and categorized 
the types of controls into those caused by source nodes, external dilations and internal dilations, and by using 
these metrics could classify the real network into several control  profiles17,18.

The maximum matching (MM) approach works well in many cases but has some drawbacks when controlling 
real systems. The MM method assumes that, under certain conditions, one driver node can send control signal 
to many other target  nodes1. We refer such target nodes to driven nodes. This assumption may not be practical 
in certain kinds of complex systems, especially in the control of biological networks. To be precise, it may lead 
to predict a different number of driver nodes and driven nodes in real-world networks.

It is worth noting that our definition of a driven node is based on the work by Pequito et al. which provided 
an algorithm to determine the minimum number of driver nodes under the condition that each driver node 
can send signal to exactly one  node19. We also refer such nodes (that receive signals) as driven nodes. Therefore, 
this suggests that the MM-based algorithm by Liu et al. does not give the minimum number of driven nodes in 
the above sense.

However, analyses on large-scale real-world networks have not been done before to examine, quantify and 
compare both the numbers of driver nodes and driven nodes. Note that while Liu et al. analysed the number 
of driver nodes in many real-world networks, real data analyses were not compared to those computed using 
single-signal driver node constraint as discussed above.

The main contributions of this paper are as follows:

(1) Compare the minimum number of driver nodes according to the MM method and that of driven nodes 
in large scale biological networks using techniques developed by Pequito et al. that determine the number 
of driver nodes under the condition that each driver node can send signal to exactly one  node19. To be 
precise, we quantify the difference between the number of driver nodes and that of driven nodes in real-
world networks for the first time through extensive computational experiments using a large number of 
biological networks, including human metabolic pathways and plant metabolic networks classified into 
four major lineages. The results indicate that the number of driven nodes is considerably larger than the 
number of driver nodes, not only in all examined complete plant metabolic networks but also in several 
key human pathways.

(2) Develop a novel method to classify nodes into critical, intermittent, redundant categories for driven nodes. 
The method was obtained by combining knowledge from previous  works19,20. It is well-known that the 
minimum set of driver nodes is not necessarily unique and there may be multiple  solutions1–21. Similar 
problem exists in the identification of driven nodes. To address this issue, we develop a new algorithm that 
efficiently identifies and classifies all nodes uniquely into three control categories, namely critical, intermit-
tent and redundant nodes. Critical driven nodes appear in all possible solutions. Intermittent driven nodes 
are included in at least one solution. Redundant nodes are those nodes that do not appear in any solution. 
We also utilize this novel algorithm to further clarify the differences between driver nodes and driven 
nodes in real-world networks. The results again suggest that driven nodes are more suitable for analysing 
biological networks than driver nodes.

It is worth noting that some works have characterized networks using a minimum control topology (MCT), 
in which the nodes and edges are classified terms of the fraction of nodes and edges that are always, sometimes, 
or never a part of an  MCT22. However, there is no algorithm that identifies control categories for driven nodes.

Consider the network shown in Fig. 1a. Following the MM approach, it is sufficient to add one driver node 
d1, as shown in Fig. 1b. However, we need connections from d1 to all original nodes (i.e., v1, …, v4), which means 
that d1 should send control signals to all nodes. This explains the theoretical existence of “super-driver” nodes or 
“super-drugs”, i.e., a node (drug) that controls (binds) to all or multiple nodes (proteins). However, this type of 
multi-signal driver (dm) node is not plausible as a drug because it would result in many undesired side effects. 
Although this issue was also observed by Cowan et al.16, it has not received sufficient attention by the research 
community. However, the importance of self-loops and cycles to determine control profiles of profiles of complex 
networks was investigated in several  works17,18.

To cope with this issue, a recent work introduced a constraint that one driver node can control one target 
node (i.e. driven nodes), and proposed a polynomial-time algorithm to identify the minimum number of target 
nodes under such a  constraint19. The importance of the minimization of driven nodes was also highlighted in 
a recent  review23. We followed their  work19 to develop a novel algorithm to identify critical driven nodes in the 
real-worlds networks. Note that for downstream control, in the case that there are linear chains, downstream sig-
nals are not necessary. As shown in Fig. 1d–f, in some cases it is necessary if the downstream becomes a branch.

To efficiently control networks, the existence of loops and their positions in the network play key roles in both 
the minimum driver set problem and the minimum driven node set problem. Note that several works have shown 
the importance of self-loops and cycles to control a network in the context of the MM  approach17,18. In particular, 
these features are important to determine the control profiles of complex networks. However, these works do not 
provide a technical or algorithmic method to determine or minimize the number of driven nodes in a network. 
On the other hand, and as stated above, Pequito et al. proposed a theoretical method for this  calculation19. The 
network in Fig. 1c can be controlled using two driver nodes d1 and d2 with nodes v1 and v3 as driven nodes 
(Fig. 1d). By adding a single loop in node v2, both the driven set and driver set sizes are decreased to 1 (Fig. 1e). 
Furthermore, the addition of a single edge increases again the size of the driven and driver sets (Fig. 1f).

Indeed, a loop is closely related to the concept of the cactus in the structural controllability theory of  Lin15. 
A subgraph consisting of an incoming edge and a directed loop is called a bud. Then, a cactus is a connected 
subgraph composed of a directed path (called a stem) plus buds, where the root of each bud must be a node 
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in a stem or a node in a loop in another bud. The impact of stems and cycles on minimum control structures 
has been  discussed19. Notably, Czeizler et al. also studied the minimum driven set  problem24,25. However, their 
models are different from ours: they considered the target controllability problem. Indeed, in their model, both 
the minimum driver set problem and the minimum driven set problem are NP-hard. The difference between 
driver  nodes15 and driven  nodes19 rises when there are multiple cacti beginning with loops. These cacti can be 
controlled by using a single driver  node15. Each cactus should have one driven  node19 (or, equivalently, in the 
case that one driver node can directly control only one driven node, which is equivalent to the case that each 
column of B has at most one non-zero element).

To illustrate the mathematical problem, we set up a small synthetic network (Fig. 1g). The minimum weight 
maximum bipartite matching can be computed in polynomial time using Hungarian algorithm among  others19. 
However, for ease of implementation, we describe an Integer Linear Programming (ILP) based method in the 
Supplementary Information file. The algorithm identifies three driven nodes (red) controlled by only one driver 
node d1 (Fig. 1h–j and Supplementary Fig. S1 online). This example shows that as long as there are many cycles 
in a network, the number of driven nodes tends to be much larger than the number of driver nodes. However, 
the driven nodes method was not applied to the analysis of large-scale real world networks.

The structure of the paper is as follows. In this study, we compiled data corresponding to a set of 84 human 
metabolic pathways and another large set of 70 plant metabolic networks. We then compute the numbers of 
driven and driver nodes and examine the differences. Next, we apply the developed new algorithm (see “Methods” 
section) to identify control categories for driven nodes and discuss the results.

Figure 1.  (a) Example of an original network with loops. (b) Using the MM theory, the entire network can be 
controlled by a single driver node (d1). Outgoing control signals are denoted in wavy blue arrows. (c) Example 
of a network without loops. (d) The network is controlled by driver nodes d1 and d2). (e–f) By adding a loop, the 
number of driver nodes decreases. (g) Example of an original network G(V,E). SCC denotes Strongly Connected 
Component. (h) Bipartite Graph (VL, VR, EB) and its bipartite matching (blue edges). (i) Stems and a bud 
obtained from the matching. The green edge (v5, v7) does not correspond to a matching but is included in a bud. 
(j) A single multi-signal driver node d1 controls three driven nodes (red). The computation of the MM may lead 
to a number of driver nodes that is smaller than that of the driven nodes.
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Results
Analysis of driven nodes in human metabolic pathways. To demonstrate that the computation of 
the MM leads to a number of driver nodes that is smaller than that of the driven nodes in natural systems, we 
collected a large number of directed biological networks, including many human metabolic pathways and 70 
plant metabolic networks. First, a total of 84 human metabolic pathways, organized into 11 main metabolic 
functional pathways, were downloaded from the KEGG  database26 (see SI Table S1 Excel file). The metabolic 
pathways are bipartite networks. Therefore, in this analysis, a total of 165 chemical compound and chemical 
reaction-centric unipartite networks were constructed and analysed independently. We then applied the pro-
posed ILP for minimum weight maximum matching algorithm to identify the number of driven nodes in each 
pathway (see “Methods” section). The number of driver nodes was also calculated for comparison. The results 
show that at least 18 chemical compound networks (green) and 6 chemical reaction pathways (yellow) revealed 
a non-zero difference between the number of driver and driven nodes (see Table 1). This result suggests that at 
least one driver node sends more than one signal to control more than one driven node (chemical compound 
or reaction), mostly because of the existence of loops or cycles in the network. As an example, Fig. 2a shows the 
pentose and glucuronate interconversion pathway. This pathway is controlled by three nodes: two single-signal 
driver nodes ds and one multi-signal driver node dm (grey nodes). However, five driven nodes are identified 
(red nodes). Therefore, there is a difference between the number of driven and driven nodes. Another example 
shows the ascorbate and aldarate metabolism in Fig. 2b. This pathway is controlled by one single-signal driver 
node ds and by one multi-signal driver node dm (grey nodes). Four driven nodes (4) are identified (red nodes). 
Therefore, the number of driver nodes is smaller than that of the driven nodes, supporting our main hypothesis. 
As shown in Table 1, carbohydrate metabolism shows a large concentration of pathways in which the identified 
driven chemical compounds are located. 

For the chemical compound networks, the total difference between driven and driver nodes is 24 chemical 
compounds. These compounds are multi-signal driven nodes, that is, they are driven by dm nodes (drivers that 
send more than one outgoing signal) (see the column driven-driver in Table 1). These chemical compounds 
participate in many other functional pathways in human metabolism (see Fig. 2c and Supplementary Table S2 
online), especially in biosynthesis of secondary metabolites and carbon metabolism, including disease pathways 
such as central carbon metabolism in cancer. For shared functional pathways details of driven chemical reactions 
see Supplementary Table S3 online. The analysis identified five major human pathways, namely carbohydrates, 
lipids, nucleotide, amino-acid, and co-factor and vitamin pathways, in which 8 driven chemical reactions are 
controlled by drivers that send more than one outgoing signal (see Table 1).

We then performed a gene ontology analysis on some of the identified driven genes (see Supplementary 
Table S4 online) that encode enzymes in these chemical reactions. Genes NQO1 and ACO1 (reactions R02964 
and R01900) belong to major cofactors and vitamins metabolism and carbohydrate metabolism, respectively, 
and are associated with several important biological processes. ACO1 is responsible for intestinal absorption, 
post-embryonic development and regulation of translation functions. ACO1 is expressed and located in Golgi 
apparatus and cytoplasm. RNA binding are among the shared molecular functions. Next, NQO1 is responsible 
for several biological functions from aging to multiple responses to oxidative stress, electrical stimulus, estra-
diol, and ethanol among others. It is expressed at the cytosol and cytoplasm as well as in the neuronal cell body. 
Main molecular functions are RNA binding among others (see Supplementary Table S4 online for details on the 
biological functions of all identified driven genes).

The fact that the identified driven chemical compounds and reactions, that are controlled by multi signal 
driver nodes, are largely shared by many key pathways highlights the importance of developing controllability 
methods that do not provide a different number of driver and driven nodes. As shown above, chemical com-
pounds and reactions controlled by drivers that send more than one outgoing signals play relevant functions in 
the human metabolism, and therefore they should be controlled specifically by driver nodes with single-outgoing 
signals.

Identification of critical driven nodes in human metabolic pathways. As stated above, the iden-
tification of driven nodes is not unique and it may consist of multiple solutions. Therefore, it is appropriate to 
define driven control categories such as critical, intermittent and redundant in a similar way that it was estab-
lished for driver nodes in previous  research1–21. They are defined as follows:

A critical driven node appears in all minimum driven node sets. An intermittent driven node appears in some 
but not all minimum driven node sets. A redundant node does not appear in any minimum driven node set.

To identify these unique driven categories, we proposed a novel algorithm using ILP techniques (see “Meth-
ods” section for details).

Figure 3a,b show that same pathways as shown in Fig. 2a,b with nodes classified according to driven control 
categories. While the pentose and glucoronate interconversion metabolism (Fig. 3a) reveals one critical driven 
node (orange), the ascorbate and aldarate metabolism (Fig. 3b) shows two critical driven nodes (orange). Blue 
denotes intermittent driven nodes and white indicates redundant driven nodes. In both pathways, approximately 
the 50% of nodes are classified as intermittent driven nodes.

The identified critical chemical compounds (265) participate in many distinct functional pathways in human 
metabolism (see Fig. 3c). Moreover, some pathways shared by driven chemical compounds that are controlled 
by multi-signal drivers (dm) are also shared by the critical driven set. Interestingly, biosynthesis of secondary 
metabolites and carbon metabolism, including carcinogenesis pathways, together with microbial metabolism 
in diverse environments are among the pathways largely shared by the identified critical driven chemical com-
pounds. (see Figs. 2c and 3c).
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Table 1.  The analysis of human pathways reveals a non-zero difference between the number of driver and 
driven nodes in 18 chemical compound networks (green) and 6 chemical reaction networks (yellow) (see 
Supplementary Table S1 online for complete results). From left to right, the columns indicate: pathway name, 
KEGG database pathway ID, and the type of network (compound network or chemical reaction (enzymes) 
network), numbers of nodes N, driver nodes (Dr), driven nodes (Dn) and the observed difference between 
driven and driver nodes (Dn–Dr). The numbers of identified critical (C), intermittent (I) and redundant (R) 
nodes are also shown.
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The complete analysis of control categories in all human metabolome reveals that most pathways contain 
several critical driven nodes (see Tables 1 and S6 for the full list). For example, amino sugar and nucleotide sugar 
metabolism is a key pathway inside the global carbohydrate metabolism. This pathway contains 37 chemical 
compounds, and among them, 9 compounds are critical driven nodes. The numbers of intermittent and redun-
dant driven nodes identified by our proposed algorithm are also indicated in Tables 1 and S6.

Analysis of driven nodes in plant metabolic networks. From the Plant Metabolic Network 
 Database27,28, we collected 70 plant metabolic networks classified into four major groups in the plant lineage: six 
green algae, two early land plants and angiosperms subdivided into seventeen monocots and forty-four eudicots. 
The plant pathway analysis was performed using an enzyme/reaction-centric network. First, the results show a 
systematic difference between the number of driver and driven nodes in all examined networks, without excep-
tion. The difference oscillates from 4 to 18 (see Table S5). A histogram for each plant lineage is also shown in 
Fig. 4a. We then computed the average of the difference in the number of driven and driver nodes in each plant 
lineage (Fig. 4b). The average value tends to increase with evolutionary time, from the fundamental green algae 
and early basal plant lineages to more complex and modern angiosperms, including monocots and eudicots, 
although the tendency is small. This result implicitly suggests an increase in the number of loops and cycles 
during lineage evolution.

Identification of critical driven nodes in plant metabolic networks. By using the developed critical 
driven algorithm, we performed a statistical analysis on the critical, intermittent, and redundant driven enzyme 
sets controlled by multi-signal driver (dm) nodes. The fraction of critical, intermittent and redundant driven 
nodes for each major plant lineages are shown in Fig. 4c. The results show that the critical fraction is much 
smaller (less than 6%) than those of redundant and intermittent nodes. In contrast, the fraction of redundant 
nodes is the larger one. From an evolutionary viewpoint, the number of critical driven nodes tends to slightly 
decrease from green algae and basal plants to modern angiosperms.

The Enzyme Commission (EC) number specifies the type of enzyme-catalysed reactions and can be classi-
fied into seven major functional  groups29. The functional distribution of all control critical enzyme set shows, 
in general, similar plant lineage-related abundances of critical, intermittent, redundant driven nodes across 
evolutionary lineages (see Figs. 5 and 6).

Figure 2.  (a) The pentose and glucuronate interconversion pathway is controlled by three nodes: two single-
signal driver nodes ds and one multi-signal driver node dm (grey nodes). There are five driven nodes denoted 
in red. |driven|-|driver| = 5–3 = 2. (b) The ascorbate and aldarate metabolism is controlled by one single-signal 
driver node ds and by one multi-signal driver node dm (grey nodes). There are four driven nodes denoted in red. 
|driven|-|driver| = 4–2 = 2. (c) The identified 24 chemical compounds driven by dm nodes (drivers that send more 
than one outgoing signal) participate in many other functional pathways in the human metabolism, including 
disease pathways such as central carbon metabolism in cancer. Metabolic maps IDs correspond to the KEGG 
database metabolic pathway annotation.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9627  | https://doi.org/10.1038/s41598-021-88295-4

www.nature.com/scientificreports/

Figure 3.  Networks (a, b) show that same pathways as shown in Fig. 2a,b with nodes classified according to 
driven control categories using the proposed algorithm. (a) While the pentose and glucoronate interconversion 
metabolism reveals one critical node (orange), (b) the ascorbate and aldarate metabolism shows two critical 
nodes. Blue circles denote intermittent driven nodes and white circles indicates redundant driven nodes. (c) 
The identified critical driven chemical compounds (265) are shared by many other functional pathways in the 
human metabolism.

Figure 4.  (a) The histogram for each plant species of the difference between number of |driven|–|driver| nodes 
in each plant lineage and (b) its average per plant lineage. The average value tends to increase with evolutionary 
time. (c) The fraction of critical, intermittent and redundant driven nodes for each major plant lineage.
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Figure 5 shows the fraction RC
E =

∑

i
NC
E,i/

∑

i
NC
i  which is defined as the number of nodes in each control 

category C (critical, intermittent and redundant) and in each EC functional group E computed for each species 
i NC

E,i divided by the number of nodes in each control category C for each species i NC
i  and computed for all 

species i in each plant lineages. This metric captures which EC class is more abundant for each plant lineage and 
control category. For example, in a complete plant linage, EC-3 (hydrolases) and EC-1 (oxidoreductases) enzymes 
tend to be more engaged in critical driven control. Moreover, this pattern is conserved across lineages. In contrast, 
EC-2 (transferases) enzyme class tends to be more dominant among those enzymes engaged in intermittent and 
redundant roles.

Supplementary Fig. S3 online shows the fraction FCE =
∑

i
FCE,i/L where FCE,i = NC

E /NE,i . This metric is defined 

as the number of nodes in each control category C (critical, intermittent, and redundant enzymes) and in each 
EC functional group E, NC

E  , and divided by the number of nodes in each EC functional a group and species i, 
NE,i , and averaged for all species (L) in each plant lineage ( FCE  ). Differently from Fig. 5, this metric captures the 
relative abundance of enzymes in each control category for each EC class. Therefore, the sum of the fractions for 
the three control categories gives 1 for each EC class. Among all EC classes, and in fair agreement with Fig. 5, 
EC-3 class tends to have the largest fraction of critical driven enzymes. It is remarkable that some EC-classes 
such as EC-5 (isomerases) and EC-6 (ligases) are composed of enzymes with lowest participation in critical roles.

Enrichment analysis. We performed an enrichment analysis on the EC-classes for each plant lineage. We 
first evaluated the fraction of enzymes identified for a given driven control category (T) (critical, intermittent 
and redundant) and present in a given EC functional class (P) NP

T divided by the total number of enzymes identi-
fied for the given category (T) NT , which leads to f PT = NP

T /NT . We then computed the fraction of enzymes that 
belong to a given enzyme class NP divided by the total number of nodes N in a given plant metabolic network 
f P = NP/N . Then the enrichment factor for a control category T in a given functional class (P) is given by 
EPT = ln(f PT /f

P).

Figure 5.  The distribution of critical, intermittent and enzymes according to each EC class and normalized for 
each plant lineage. Each fraction captures which EC class is more abundant for each plant lineage and control 
category.
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Next, the statistical significance of the enrichment or depletion of the identified critical, intermittent and 
redundant driven enzymes in each EC class was evaluated using Fisher’s exact test. The two-tailed exact p-values 
are denoted in each bar using the following notation: * p ≤ 0.05 , **p ≤ 0.01,***p ≤ 0.001 . The results are shown 
in Fig. 6. In agreement with results shown in Fig. 5 and Supplementary Fig. S3, the EC-3 (hydrolases) class 
tends to have the largest statistical enrichment ( p ≤ 0.001 ) for critical driven enzymes. This enrichment is also 
conserved across evolutionary lineages. In contrast, EC-2 in all lineages and EC-5 and EC-6 classes for mono-
cots and eudicots groups show the largest depletion of critical driven enzymes ( p ≤ 0.001 ). However, EC-5 
(isomerases) class shows a positive enrichment of intermittent driven enzymes across lineages so the enzymes are 
actively engaged in control roles. Interestingly, it also shows the largest depletion of redundant driven enzymes 
( p ≤ 0.001 ) except for basal land plants.

Although a large fraction of the driven reactions, controlled by driver nodes that send more than one outgoing 
signals, were identified in isolated components (see Fig. 7), we also identified enzymes located in the main com-
ponent controlled by multi-signal driver nodes. This finding suggests that additional driven nodes are required 
to control subcomponents, which is also ignored in the maximum matching-based approach.

Discussion
The MM method has been widely applied to cell biology and technological systems. However, the MM assumes 
that one driver node can send control signal to many other nodes. This assumption may not be practical in certain 
kinds of complex systems, especially in the control of biological networks. Indeed, our extensive data-driven 
analysis of metabolic pathways demonstrates that the MM approach leads to a number of driver nodes that is 
smaller than that of the driven nodes. As we have discussed, this difference increases with the number of cycles 
and loops in the network. Moreover, those driven nodes controlled by multi-signal driver nodes, are associated 

Figure 6.  Enrichment or depletion of driven enzymes associated with each control category and classified 
into EC classes. The fraction of enzymes in each control category and EC class is normalized for each control 
category. This fraction captures the abundance of enzymes for each EC class in each control category. The 
results are shown for each plant lineage. The statistical significance of the enrichment or depletion of the 
identified critical, intermittent and redundant driven enzymes in each EC class is evaluated using fisher’s exact 
test. The two-tailed exact p-values are denoted in each bar using the following notation: * p ≤ 0.05 , **p ≤ 0.01 , 
***p ≤ 0.001 . A detailed list of the exact p-values is shown in Table S7.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9627  | https://doi.org/10.1038/s41598-021-88295-4

www.nature.com/scientificreports/

to important biological functions or are largely shared by other functional pathways. Therefore, controllability 
models that add constraints to the MM to cope with the difference of the number of driver and driven nodes 
are necessary. This is the first work that shows the importance of use of driven nodes in analysis of real-world 
networks.

On the other hand, we have presented a novel algorithm that uses the concept of control categories to deter-
mine uniquely driven nodes. We then applied this algorithm to determine critical driven nodes in metabolic 
pathways. The analysis was used to assess the biological functions of specific critical driven nodes in metabolic 
pathways. To our best knowledge, this is the first algorithm that enables us to efficiently identify critical driven 
nodes in large real-world networks.

Clearly, the method based on MM works very well in many real systems, in particular, as discussed above, in 
those in which the number of loops or cycles is small. Therefore, this work does not aim to criticize the maxi-
mum matching-based approach but to complement it. We hope that this work stimulates further studies on the 
structural controllability analysis of complex networks in more practical and feasible settings.

Methods
Driven nodes algorithm. Our study is based on the work by Pequito et al.19 to identify the minimum set 
of driven nodes. Here we review their algorithm, which is referred to as IdentifyDriven(G(V,E)) where G(V,E) is 
a given directed network and V = {v1, …, vn}. The purpose of the algorithm is to output a minimum set of driven 
nodes VD for a given G(V,E).

(1) Let Ni (i ∈ {1, . . . ,β }) be the set of nodes in the ith non-top linked SCC (strongly connected component), 
that is, an SCC without an incoming edge from another SCC (including the case of single node).

(2) Construct a set of new nodes U = {1, . . . , uβ} , which is to be used in a bipartite graph constructed in STEP 
(3).

(3) Construct a bipartite graph B(VL, VR, EB) by

(4) Give weight − 1 (resp., weight − 2) to each edge (xi, yj) (resp., (ui, yj)).
(5) Compute a maximum matching M with the minimum weight (the total weight of matched edges is mini-

mum under the condition of the maximum number of edges).
(6) Let DR = {yi1,…,yik} (⊆ VR) be the set of nodes matched with uis and non-matched nodes in VR with respect 

to M (see Fig. 1g–j).
(7) Return VD = {vij | vij ∈ DR } as a minimum set of driven nodes.

VL = {x1, . . . , xn} ∪ U ,

VR = {y1, . . . , yn},

EB = {
(

xi , yj
)

|
(

vi , vj
)

∈ E} ∪ {
(

ui , yj
)

|ui ∈ U , vj ∈ Ni}.

Figure 7.  Network visualization of the Aramanthus hypochondriacus plant, commonly known as prince’s 
feather, that belongs to the eudicot plant lineage. Left: Identified driven enzymes are denoted in red. Right: 
Identified critical, intermittent, and redundant driven enzymes are denoted in orange, blue and white, 
respectively.



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9627  | https://doi.org/10.1038/s41598-021-88295-4

www.nature.com/scientificreports/

The necessity of uis is illustrated in Supplementary Fig. S1 online, which shows that it is difficult to determine 
the driven node(s) if we do not use uis.

The minimum weight maximum bipartite matching can be computed in polynomial time using Hungarian 
 algorithm19. However, for ease of implementation, we describe an ILP based method in the Supplementary 
Information file.

Novel algorithm for identification of critical driven nodes. Here, we present our novel algorithm to 
determine critical/intermittent driven nodes and the remaining redundant nodes. We define critical/intermit-
tent driven nodes and redundant nodes as below.

Critical node: appearing in all minimum driven node sets.
Intermittent node: appearing in some but not all minimum driven node sets.
Redundant: not appearing in any minimum driven node set.
The following is a procedure (TestRedundant(vi)) to decide whether or not a given node vi is a redundant 

driven node for a given graph G(V,E).
(see Fig. 8 and Supplementary Fig. S2 online).

(1) Construct (VL, VR, EB) as in STEP (1)-(4) of IdentifyDriven(G(V,E)).
(2) Delete all edges connected to yi.
(3) If yi is in a non-top linked SCC, delete edges from uj where uj corresponds to the SCC. (This operation 

implicitly means that (uj, yi) is added to M.)
(4) Compute a maximum matching M with the minimum weight, and then determine the driven nodes as in 

Step (6)-(7) of IdentifyDriven(G(V,E)). If the number of driven nodes increases, return TRUE. Otherwise, 
return FALSE.

Note that Step (2) puts a constraint that vi must be the first node in a stem.
The following is a procedure (TestCritical(vi)) to decide whether or not a given node vi is a critical driven 

node for a given graph G(V,E).

(1) If there is no vj such that (vj, vi) ∈ E with vj  = vi , vi is critical. Otherwise, do Steps (2)–(7).
(2) Construct (VL, VR, EB) as in STEP (1)–(4) of IdentifyDriven(G(V,E)).
(3) For all vj ∈ V such that (vj, vi) ∈ E, do Steps (4)–(6)
(4) Compute a maximum matching M with the minimum weight under the condition that (xj, yi) appears in 

M.
(5) Determine the driven nodes from M as in STEP (6)–(7) of IdentifyDriven(G(V,E)).
(6) If the number of driven nodes does not increase, return FALSE.
(7) Return TRUE.

Note that Step (4) puts a constraint that vi cannot be the first node in a stem. If we use Hungarian algorithm, 
we can implement Steps (3)–(7) by applying it repeatedly for each xj connected to yi with deleting the edges 
connected to xj and the edges connected to yi. If we use ILP, we can implement Steps (3)–(7) by adding the fol-
lowing constraint on vi:

∑

(vj ,vi)∈E

zj,i = 1

Figure 8.  Illustration of the novel algorithm for critical/redundant driven nodes identification. (a) Original 
network. (b, c) Example of TestRedundant(vi) procedure. Dashed edges are those deleted at Step (2) of 
TestRedundant(vi). (d, e) Example of TestCritical(vi) procedure. Red edges are those that are forced to put in M 
at Step (4) of TestCritical(vi). Red nodes indicate driven nodes. Blue edges denote matching link.
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Note also that the intermittent driven nodes are obtained by removing the critical driven nodes and the 
redundant nodes from V.
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