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Experimental and computational 
evaluation of cyclic solvent 
injection in fractured tight 
hydrocarbon reservoirs
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Multi-fractured horizontal wells have enabled commercial production from low-permeability (‘tight’) 
hydrocarbon reservoirs but recoveries remain exceedingly small (< 5–10%). As a result, operators 
have investigated the use of solvent (gas) injection schemes, such as huff-n-puff (HNP), to improve oil 
recovery. Previous HNP laboratory approaches, classified primary as ‘flow-through-matrix’ and ‘flow-
around-matrix’ typically (1) are not fully representative of field conditions at near-fracture regions and 
(2) require long test times, even when performed on fractured cores. The objectives of this proof-of-
concept study are to (1) design and implement a new experimental procedure that better reproduces 
HNP schemes in near-fracture regions and (2) use the results, simulated with a compositional lab-
calibrated model, to explore the controls on enhanced hydrocarbon recovery in depleted tight oil 
plays. Performing multiple  CO2 and (simplified) lean gas HNP cycles, the integrated experimental and 
simulation approach proposed herein achieves the ultimate recovery factors in a significantly shorter 
time frame (25–50%) compared to previous studies. The integrated experimental and computational 
approach proposed herein is valuable for core-based evaluation of cyclic solvent  (CO2,  CH4) injection 
in tight hydrocarbon reservoirs for (1) hydrocarbon recovery and (2) subsurface greenhouse  (CO2,  CH4) 
gas disposal/storage applications.

Hydrocarbon liquid-rich shale plays are currently the hottest unconventional reservoir targets in North America. 
However, the majority of development has focused on primary depletion with multi-fractured horizontal wells, 
and hydrocarbon liquid recovery is projected to be low (˂5–10%). Further, the current recovery process is 
inefficient in the majority of tight oil plays, and does not offer a solution to reducing greenhouse gas emissions. 
A potential solution is to inject  CO2, or reinject produced (lean/rich) gas recovered from the reservoir, or a 
combination of both, back into multi-fractured horizontal wells for the purpose of simultaneously increasing 
liquid hydrocarbon recovery (condensate or oil), and reducing greenhouse gas  (CO2,  CH4) emissions. The cyclic 
solvent injection process, commonly referred to as huff-n-puff (HNP), with  CO2 and/or lean gas as the ‘solvent’, 
is a potentially attractive mechanism for co-optimization of greenhouse gas sequestration and enhanced oil 
recovery (EOR) because, unlike solvent (e.g.  CO2) flooding and water-alternating-gas flooding (e.g.  CO2-WAG) 
(dedicated injection and producing wells) scenarios, large expenditures on specialized facilities, in-field pipe-
lines and well conversions are unnecessary. Despite these advantages, industry requires critical data, evaluation 
methods, and supporting simulation studies in order to make a decision on whether to invest capital in piloting 
the HNP process in their operated wells/fields.

A summary of the theory behind the HNP process in tight hydrocarbon systems is provided in Supplementary 
Appendix S1 online. There are now numerous studies of improved oil recovery in a variety of North American 
tight oil reservoirs that have examined the feasibility of incremental oil recovery using gas  injection1–6. These 
studies have primarily focused on  numerical2,3,6 or laboratory-based  approaches1,7–9. Laboratory-based studies 
are important for assessing (1) the key mechanisms controlling injected gas transport into the reservoir, and 
miscibility with the  oil7,8,10 and (2) the influence of operational parameters including injection pressure/time, 
soaking time, production pressure/time—among other factors (e.g. PVT)—on recovery  performance7,11. Further, 
laboratory-based analyses are required to (1) understand the underlying physics and (2) constrain simulation 
models used for HNP schemes. By matching the laboratory results (e.g. recovery factors, oil/gas production) 
using rigorous fine-scale numerical simulation models, critical parameters that can be used in evaluating field-
scale EOR pilots may be obtained.
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The experimental studies of cyclic solvent injection in tight hydrocarbon systems performed to date are 
extensive, providing much insight into the fundamental mechanisms and controlling factors, but have some 
limitations (Supplementary Table S1 online). The majority of previous laboratory studies have been performed 
on core plug samples with permeability values down to the microdarcy/millidarcy  range12,13 until now, very few 
laboratory-based  studies8,14–17 have been conducted on tight hydrocarbon systems with permeability values down 
to the nanodarcy range (a common permeability range for unconventional hydrocarbon reservoirs). Further, 
the laboratory methodologies are primarily focused on intact (‘unfractured’) core plug samples using either 
the ‘flow-through-matrix’12,18,19 or ‘flow-around-matrix’1,20,21 schemes, which do not realistically represent the 
fracture-matrix contact or sequences associated with a typical cyclic solvent injection (HNP) process. While 
seminal works have been conducted to mimic HNP process on fractured  cores7,8, the fractures were created 
outside of the coreholder either fully using  saw7 or partially using drilling  bits8 (combined with hydraulic fractur-
ing under stress inside coreholder). These approaches, though more representative, are prone to the creation of 
stress-induced micro-fractures, particularly in organic-rich shales (the primary target plays for field-scale HNP 
application). If present, these micro-fractures, the apertures of which may be below the detection limit of CT/
micro-CT scan particularly for larger cores, could act as ‘by-pass’ flow paths along and in between the primary 
fractures, causing overlap between different mechanisms. The representative replication of HNP mechanism, 
de-coupled from flooding mechanism, is a challenge in experimental HNP studies. Multi-fracture geometries, 
though more representative of subsurface condition, may provide a combination of flooding and HNP mecha-
nisms under laboratory conditions with an elevated effective permeability due to the proximity between saw-cut 
fractures or hydraulically-induced primary fracture and the artificially-induced micro-fractures. In addition, 
previous laboratory-based HNP experiments were typically not simulated using a compositional (lab-calibrated) 
model. More importantly, the experimental durations of previous laboratory techniques are extensively long, 
even for fractured cores (typically 15–20 h per  cycle7,8). This limitation hinders the experimental throughput, 
and the capacity for characterizing the HNP mechanisms/controls over diverse experimental conditions in a 
timely fashion.

In order to represent the core-based HNP process at ‘near-fracture’ conditions from locally depleted tight oil 
reservoirs, a new set of experiments are designed herein whereby core-flooding is performed on core plug samples 
that have been artificially fractured in a process analogous to “in-situ” fracturing. In previous work by Ghani-
zadeh et al.22,23, it was demonstrated that (gas) fracture permeability could be measured on the intact core plug 
samples after artificial fractures were created in the rock under stress through application of differential stress in 
a conventional biaxial coreholder (Fig. 1). This method is designed to create the fracture inside the coreholder 
under stress by gradually increasing the axial load while keeping the radial load constant, until an axial splitting 
(i.e. fracture) is induced in the core plug (presumably) along the weakest plane (e.g., existing bedding lamination, 
etc.). While this approach (biaxial rather than shear) does not fully capture the complexity of natural fractures 
induced under sub-surface conditions, it is expected to mimic the “in-situ” fracturing conditions (i.e. fracturing 
under stress) better compared to the conventional methods (e.g., Brazilian test) in which the fracture is created 
artificially outside of the coreholder using uniaxial stress. This approach has enabled the measurement of tight 
rock unpropped/propped fracture permeability/conductivity23, and fracture  compressibility24 under “in-situ” 
stress and as a function of effective stress.

In this work, a new workflow is proposed for core-based HNP experiments in fractured core plug samples 
as follows (Supplementary Fig. S1 online): (1) an intact core plug sample is first fractured under stress through 
application of differential stress inside the coreholder (no use of saw or drill bit); (2) the fractured core plug is 
saturated with oil by re-injecting formation oil back into the sample using liquid pump; (3) gas (e.g.  CO2, lean 
gas) is injected into the sample and allowed to soak, to mimic the injection and soaking periods of a field-scale 
HNP scheme; (4) the injected gas is then re-injected in the upstream end at high pressure, and the effluent is 

Figure 1.  Use of biaxial coreholder to induce fractures in core plugs under stress and measure gas fracture 
permeability (a); example of core plug sample (Duvernay Formation, western Canada) fractured under 
differential stress in biaxial coreholder (b); example of unpropped fracture permeability measurements (c). 
Modified after Ghanizadeh et al.23 and Zhang et al.24.
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measured at the downstream end. This set of experiments is expected to be more representative of ‘near-fracture’ 
conditions because (1) gas and liquid flow occurs through an actual “induced” fracture along the core plug 
sample, and (2) “in-situ” stress, and stress variation regimes during injection, soaking and flow is reproduced.

Core-flooding experiments require careful design in terms of the length of the injection, soaking and produc-
tion periods, injected fluid volumes and pressures, and frequency of effluent sampling, among other considera-
tions. Core-based simulation, when combined with actual measurements, has proven to be significantly helpful 
in our previous studies for developing new fluid flow experimental  techniques25,26 and evaluating the impact of 
micro-scale heterogeneities on lab-based petrophysical and geomechanical  data27. One of the novelties of this 
work is the optimization of the experimental HNP design by simulating the experiments using a compositional 
numerical simulator, with the core plug as the reservoir, prior to the actual tests. The simulator takes into account 
the various mechanisms (e.g. multi-phase advection through fracture, diffusion through matrix, oil solvation, 
etc.) that are expected in a core-based HNP experiment. Simulation of the experiments beforehand “de-risks” 
the tests, improving the chance of success (i.e. higher recovery). This aspect is beneficial for experimental design, 
particularly considering the overwhelming number of possible operational combinations (e.g. injection/produc-
tion pressure/time, soaking time, gas type, etc.) that can be chosen for a given core-based HNP test. Apart from 
experimental design optimization, compositional numerical simulation is used in this work to history-match each 
cycle, enabling the fundamental controlling mechanisms to be explored after the experiments are completed. As 
a continuation of a previous work focused on  CO2  HNP28, the current study is the first to couple experimental 
and modeling approaches for core-based comparison of  CO2 and (simplified) lean gas HNP performance in 
low-permeability fractured reservoirs.

Numerical simulation: prior to experiments
In order to assist with the experimental design prior to conducting the actual tests, and to select the optimum 
experimental conditions (leading to highest recovery), numerical simulations were implemented to simulate the 
expected oil recovery during the first four cycles of  CO2 HNP experiments. Based on previous laboratory fluid 
analysis  results6, a 7-component equation of state (EOS) was developed using tNavigator (version 20.1: https:// 
rfdyn. com/ tnavi gator/). The mole fractions of the fluid components in the model were obtained by performing a 
two-phase flash to represent the dead oil sample used in the experiment. The composition of flashed oil at room 
conditions (1 atm, 25 °C) indicates that the majority of components are C5 to C12 (Supplementary Table S2 
online). The phase envelope of the (simulated) dead oil is shown in Supplementary Fig. S2 online.

A numerical model was built prior to the  CO2 HNP experiment using the petrophysical properties of the 
 intact29 and  fractured24 twin core plug samples to represent the matrix and fracture system in the simulation 
(Supplementary Fig. S3 online). This cuboid model was designed to have a similar surface area and pore volume 
as the actual cylindrical core plug samples used in this study. The model included 20 × 1 × 18 global cells in the 
x, y and z directions, respectively. The fracture-hosting cells were refined by logarithmic spacing to accurately 
model the flow towards the surface of an embedded fracture with a width of ~ 0.003 cm. The simulations were 
conducted using an effective gas diffusion coefficient (D) of 7 ×  10–4  cm2/s for the  CO2 component  only30. The 
oil effective diffusion coefficient was set to be an order of magnitude smaller than the gas diffusion coefficient. 
Additionally, a uniform initial oil saturation = 100% and matrix porosity = 2.8% were assumed for the core plug 
sample. The stress-dependent  matrix29 and fracture (formation oil) permeability (Supplementary Appendix S2 
online), both derived from laboratory analysis, were employed to further constrain the flow simulations.

Nearly 1000 compositional simulation runs were performed to determine an optimal design for the  CO2 HNP 
experiment. The parameters were selected using manual sensitivity analysis with the objective of optimizing the 
performance of core-based huff-n-puff process (i.e. higher oil production/recovery over shorter period). The 
effective diffusion/dispersion coefficients and the fracture aperture were selected as the primary input parameters 
for optimizing the experimental conditions because they were highly uncertain and the most impactful on oil 
production/recovery. Matrix permeability was also adjusted slightly but only within the range previously reported 
for other (Duvernay shale) twin core plug samples with similar porosity and organic/inorganic  composition31. 
Two-phase (gas/liquid) relative permeability data, obtained for tight siliceous  samples29 from the Western Cana-
dian Sedimentary Basin were also among the initial selected parameters to constrain the simulation. However, 
for near-miscible scenarios (the case herein), its impact was determined to be insignificant based on repeated 
simulations  (CO2) using another set of relative permeability curves obtained for other tight  formations32. The 
numerical simulations were used to determine Minimum Miscibility Pressure (MMP) between  CO2 and the 
“in-situ” (dead) oil, as well as the duration of gas injection, injection pressure, soaking and production periods. 
As for the simplified lean gas HNP tests, similar experimental conditions (i.e. injection time/pressure; soaking 
time; and production time) were applied without performing the “prior to experiment” simulations, in order 
to obtain a direct comparison between the two HNP EOR schemes  (CO2 vs. simplified lean gas). In addition to 
experimental design, the simulation models used for experimental design were also used to history match the 
experimental oil recovery data after the actual experiments with  CO2 and simplified lean gas were completed.

While ideal, there are considerable numerical complexities/challenges associated with using small grid blocks 
in the available commercial reservoir simulators for miscible/near-miscible scenarios where diffusion/dispersion 
is included. Using a fully implicit scheme to include the effective diffusion/dispersion coefficient as an input, 
precautions were taken when selecting the grid blocks to (1) ensure the gridding is small enough to effectively 
capture the associated physics and avoid numerical dispersion as much as possible, and, (2) avoid simulation 
failure due to very small grid blocks. The small explicit fracture in the numerical simulation model was rep-
resented by grid blocks as small as 0.003 cm that can be optimally simulated (i.e. without any failure) by the 
available commercial reservoir simulators. The near-fracture grids were further refined to around 0.04 cm with 
larger grids up to a maximum of ~ 0.18 cm in the regions far away from the fracture.

https://rfdyn.com/tnavigator/
https://rfdyn.com/tnavigator/
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Experiments
Experimental setup. The experimental setup for the cyclic solvent (gas) injection includes a high-pressure 
fluid injection pump, gas  (CO2, lean/rich gas) cylinder, fluid transfer cylinders, high-pressure coreholder, pres-
sure transducers, produced oil sample collector, gas flowmeter, gas sampling cylinders and various valves to 
control the flow in and out of the coreholder (Fig. 2). The coreholder is capable of applying a confining pressure 
up to 10,000 psi to mimic in-situ stress conditions. The confining pressure can be applied in radial and axial 
directions, independently (i.e. biaxial coreholder). Using the high-pressure (5000 psi) pump, oil and liquefied 
 CO2 stored in the transfer cylinders can be injected into the coreholder at either constant flow rate or constant 
pressure conditions to perform liquid permeability and HNP experiments. The injection pressure and produc-
tion pressure between two ends of the coreholder are monitored and recorded by two separate pressure trans-
ducers with an accuracy of ± 0.025% of full scale (0–6000 psi). The produced liquid and gas samples are separated 
in the oil sample collector that consists of a measurement tube with graduated volume (0.01 cc). Cumulative oil 
production is recorded using the sample collector while the gas production is measured using a gas flowmeter 
(0–1,000 ml/min flow rate range). The produced gas samples are collected in a gas sampling cylinder (0–500 
psi pressure range) during HNP experiments for compositional analysis. In this experimental setup, the down-
stream dead volume was comprised of the volume within a capillary tube (0.55–0.8 cc) and the dead volume 
(~ 0.20 cc) associated with a needle valve (technically inevitable).

Experimental workflow and procedure. The key steps/experiments for core-based HNP, reproduced 
from Song et al.28, were as follows:

 1. The liquid permeability device used for steady-state liquid flow tests was calibrated using previously-
designed in-house permeability standards (micro-capillaries embedded into impermeable acrylic plugs, 
references within Song et al.28). To pass the calibration, the measured permeability values should be 
within ± 15% of the calculated permeability value.

 2. A core plug sample with a cemented lamination occurring its entire length was selected (see “Rock sample 
preparation: fracturing under stress”).

 3. Helium porosity was measured on the core plug sample (using the helium pycnometry technique combined 
with calipered dimensions).

 4. The core plug sample is assembled into the core-holder and estimated “in-situ” stress is applied, followed 
by a leak test at about 500 psi higher that the highest working pressure for HNP tests.

 5. A fracture was created along the length of the cemented lamination artificially inside of the coreholder 
by keeping the radial stress constant while increasing the axial stress stepwise—this approach is gener-
ally expected to result fracture creation under stress which is more similar to the subsurface conditions, 
compared to creating fractures outside the coreholder, as discussed  previously22,23.

 6. Unpropped fracture permeability and compressibility with gas  (N2,  CH4) was measured under loading 
(i.e. stepwise increase of effective stress; representative of primary depletion) and unloading (i.e. stepwise 
decrease of effective stress; representative of injection) paths using the steady-state gas flow technique. The 
gas permeability values were measured after each incremental increase in axial/radial stress conditions 

Figure 2.  Schematic of the experimental setup designed and built in-house for the cyclic solvent (gas) injection 
(HNP) experiments.
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and repeated within 12-h time intervals under similar experimental conditions until a constant value 
(within experimental error range) was achieved—the axial/radial stress should be increased (during load-
ing) or decreased (during unloading) only after constant permeability values are reached (as a result of 
‘stress creep’). Details of unpropped/propped fracture permeability/conductivity23 and unpropped fracture 
 compressibility24 evaluations are provided elsewhere.

 7. The fractured core plug sample was saturated with formation (dead) oil through application of a constant 
oil pressure of 1500 psi for 5 days—the fractured core plug sample was evacuated for 48 h prior to oil 
saturation to remove the air in the matrix and fracture.

 8. The oil was thoroughly removed from the dead volumes and the fracture after oil saturation and before 
the gas injection tests to minimize the error on the original oil-in-place (OOIP) calculations.

 9. The core plug sample was removed from the coreholder and the mass was measured to allow the calcula-
tion of oil saturation and OOIP using helium porosity data obtained previously (step 3).

 10. The unpropped fracture permeability (and compressibility) was measured with liquid (formation oil) under 
loading and unloading paths using the steady-state liquid flow technique. The liquid permeability values 
were measured after each incremental increase in axial/radial stress conditions and repeated within 12-h 
time intervals under similar experimental conditions until a constant value (within experimental error 
range) was reached. To examine the impact of flow rate on fractured oil permeability, oil was injected into 
the fractured core plug sample at different flow rates (0.5–1.5 cc/min) under varying effective stress condi-
tions (500–3800 psi). Darcy’s law was used to determine the liquid (oil) permeability of the fractured core 
plug under each flow rate and effective stress conditions.

 11. CO2 or simplified lean gas were injected into the core plug sample at a constant pressure, followed by 
a soaking period (1 h) for each cycle of the HNP process—during  CO2 HNP cycles, liquefied  CO2 was 
injected into coreholder from the inlet end with a constant pressure of 1340 psi for 1 h until reaching the 
miscible condition, while during the lean gas HNP cycles, simplified lean gas was injected into the core-
holder from the inlet end with a constant pressure of 1280 psi for 1 h. Prior to  CO2 HNP experiment, the 
minimum miscibility pressure (MMP) between the Duvernay (dead) oil and  CO2 was estimated from the 
slim tube simulation and found to be about 1028 psi. This MMP was also consistent with the values pre-
dicted from correlations. Using the slim tube simulation results, a constant  CO2 injection pressure of higher 
than 1028 psi (i.e. 1340 psi) was employed in the  CO2 HNP experiments to avoid immiscible conditions. 
Similar experimental conditions were applied during the lean gas HNP process for better comparison of 
the recovery performance.

 12. The gas (e.g.  CO2 or lean gas)/oil mixture was produced by decreasing downstream pressure to atmospheric 
pressure for a specific period of time (0–4 h, depending on the cycle) until the point where recovery factor 
was lower than 1–2% of OOIP.

 13. Produced gas and oil were sub-sampled after selected steps for compositional analysis.
 14. Steps 11–13 were repeated for multiple cycles, measuring oil and gas production for each step, and oil/

gas composition after selected steps—in total, six and four cycles of  CO2 and lean gas HNP tests were 
performed herein, respectively.

During the  CO2 HNP process, initially, four cycles of HNP experiments were conducted under the experi-
mental conditions described herein. However, in order to evaluate the impact of varying experimental conditions 
on the oil recovery, a cycle (#5) with shorter injection time (0.5 h), no soaking and a shorter production time 
(1 h) was employed. Thereafter, keeping the injection and production conditions identical to those of cycle #5, an 
additional cycle (#6) was conducted with 1 h of soaking to further evaluate the effect of soaking time on recovery 
performance. During the simplified lean gas HNP process (cycle #1–4), similar experimental conditions were 
applied as the first four cycles of  CO2 HNP process described above (e.g. 1 h of gas injection, 1 h of soaking and 
4 h of production) for direct comparison of the EOR performance using the two different gases.

Results
CO2 vs. simplified lean gas HNP. Based on the measured oil recovery after each cycle (Fig. 3a), it is evi-
dent that the majority of oil recovery (up to 80%) occurs during the first two cycles either for the  CO2 or lean gas 
HNP (4 cycles in total). Further, time-dependent pressure data (Figs. 3b, 4) indicate that there is a pressure drop 
during each soaking period for  CO2 HNP tests, likely due to  CO2 dissolution into the formation oil. However, a 
very minor pressure drop is evident for the lean gas HNP experiment. For cycles #1 to #4 of the  CO2 HNP, which 
were conducted under identical experimental conditions, the rate and magnitude of the observed pressure drop 
decrease with each cycle. The impact of operational conditions on the performance of core-based HNP (with 
 CO2, as example) is discussed in Supplementary Appendix S3 online. 

The observed pressure drops are partly controlled by the effective diffusion/dispersion process (next section), 
which is a form of dissolution, as proposed before for other gas/liquid diffusion/dispersion models (e.g. Crank 
 197533). The substantial pressure drops for  CO2 are due to larger  CO2 effective diffusion/dispersion coefficient 
according to the simulation results, that are generally in agreement with the orders of  CO2 and lean gas (i.e.  CH4) 
dissolution in typical dead oil samples (2–3  times34 higher for  CO2 compared to  CH4).

There are still considerable experimental challenges associated with the accurate determination of oil recov-
ery during cyclic gas injection in low-porosity rocks. The experimental error and uncertainty in recovered oil 
volumes and recovery factors are discussed in detail in Supplementary Appendix S4.

History matching: post experiments. Several parameters were modified in the base simulation mod-
els to match the measured oil recovery profiles. History matching was conducted manually to achieve the 
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‘best-match’ because there were numerical challenges to complete the history matching using other assisted 
approaches (e.g. Adaptive Differential  Evolution35 and Bayesian Optimization  methods36). The latter observation 
is attributed to (1) the small grid block thickness (as small as 0.003 cm), (2) the complexity of the compositional 
simulation for near-miscible conditions, (3) large pore volumes and transmissibility differences between the 
simulation cells (due to the presence of fracture), and (4) most importantly, including effective dispersion/diffu-
sion coefficient as an input parameter for simulations.

The preliminary (manual) history matching results indicate that a reasonable match can be achieved for 
both  CO2 and lean gas HNP processes (Fig. 5) by changing the effective diffusion/dispersion coefficients and 
increasing the fracture width for both models (Supplementary Table S3 online). For the  CO2 injection, it was 
assumed that  Doil = 0.1  Dgas.

For the  CO2 HNP test (Fig. 5), the sharp increase in oil recovery observed during the first cycle can only be 
matched with the simulator by allowing more  CO2 to flow into the system. The sharp increase could be caused 
by additional mixing of  CO2 and the (dead) oil at the injection face of the core. An attempt was made to test this 
hypothesis with the numerical model by adding an additional set of vertical grid blocks on the injection side of 

Figure 3.   (a,b) Oil recovery and injection/production pressures (4 cycles) as a function of (elapsed) time for 
the  CO2 and lean gas HNP cycles performed on twin core plug samples (a).  CO2 data are adopted from Song 
et al.28 while lean gas data are generated in this work. Pressure decay profiles for  CO2 and lean gas in an enlarged 
view (b).

Figure 4.  Cumulative gas production and injection/production pressures as a function of (elapsed) time for the 
 CO2 and lean gas HNP cycles performed on the twin core plug samples (4 cycles).  CO2 data are adopted from 
Song et al.28 while lean gas data are generated in this work.
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the core with large permeability and adjustable pore volumes. However, this approach resulted in instabilities in 
the compositional simulations. A simpler approach was then tried, which involved increasing the fracture width 
to permit enough  CO2 to flow into the core plug sample.

For the lean gas HNP simulations (Fig. 5), the PVT model was re-constructed from 7 pseudo-components 
(applied in  CO2 HNP simulation) to 11 pseudo-components where  C1 and  C2 were considered to be separate 
components in the simulation. The initial matrix permeability was slightly adjusted to about 30 nd due to the 
high effective stress (1300 psi; 8.96 MPa) applied prior to the start of gas injection. Similar to the  CO2 HNP test 
analysis, the fracture width of the core plug was also increased to allow more gas to flow into the system. For the 
simulation results, it was found that the slope of the oil recovery curve was sensitive to the effective diffusion/
dispersion coefficients of other components. Therefore, the coefficients of a few other components were also 
modified for both the  CO2 and lean gas injection cases in order to achieve the “best-match” between experiments 
and simulation model.

The history-matched model indicates that, while the oil recovery for cycle #1 can be matched reasonably 
well, there is a slight mismatch between measured and simulated oil recoveries at the beginning of cycles #2 to 
#4 for both  CO2 and lean gas. The observed mismatch could be attributed to inherent differences between the 
nature of experiment and the simulation. In numerical simulation, the produced oil contribution to improved 
recovery is accounted for as soon as the oil is produced from the core in the simulation. During actual experi-
ments, however, the produced oil may become ‘trapped’ in the facture or dead volume of the experimental setup 
instead of flowing out into the sample collector. The remaining oil content, that is associated with an earlier (i.e. 
previous) cycle, may therefore become part of the produced oil in accompanying subsequent cycle, leading to a 
sharp and sudden (as a result of abrupt pressure drop) increase in (experimental) recovery profiles at the begin-
ning of cycles #2 to #4 for  CO2 and lean gas HNP processes.

Note using a ‘manual’ history matching process (as opposed to an ‘assisted’), it was not possible to achieve 
the “best-match” for all pressure decay profiles for such small system including diffusion/dispersion process. As 
such, the “best-match” model remains only an approximation. However, while an approximation, the simulated 
pressure decay profiles (Fig. 6a,b) are capable of predicting higher pressure decay for  CO2 than lean gas during 
the soaking period (in agreement with the experimental data), highlighting the importance of the effective diffu-
sion/dispersion process on cyclic gas injection. Due to the possibility of gas compression in the system as a result 
of the nature of the experiments (i.e. higher gas volumes injected/produced over larger drawdowns compared 
to intact cores), the recorded gas volumes were treated with caution, and therefore, the cumulative gas recovery 
was not considered in the history matching process.

Discussion
The previous laboratory studies represent a step change in the thinking around experimental evaluation of core-
based HNP process through suggesting alternative flow  geometries7,20, use of large-scale samples/fractures7 and 
combining ‘outside-of-coreholder’ drilling and advanced core-based hydraulic fracturing under stress inside 
the coreholder to induce  fractures8. However, the current work is unique due to (1) the proposed methodology 
used for creating fractures under stress and (2) its integrated experimental and simulation approach in which 
a compositional model is calibrated to laboratory data (porosity, matrix/relative permeability, etc.). To our 
knowledge, this study is the first to fully couple fracturing under stress and EOR approaches with predictive 

Figure 5.  Comparison between experimental and simulated oil recovery as a function of time for the  CO2 and 
lean gas HNP cycles (#1 to #4). Note the last two cycles (#5 and #6; see Supplementary Appendix S3 online) 
for  CO2 HNP are not simulated because (1) they were not simulated before the experiments and (2) they did 
not result in significant additional recovery.  CO2 data are adopted from Song et al.28 while lean gas data are 
generated in this work.
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fine-tuned simulation models for the purpose of comparing the cyclic gas injection performance of  CO2 and lean 
gas—two primary components of greenhouse gases—in fractured hydrocarbon systems. Compared to previous 
experimental approaches, the method proposed herein reproduces ‘near-fracture’ conditions better because (1) 
fractures are created under stress along the weakest mechanical plane, (2) the actual sequence associated with 
a HNP cycle is mimicked (injection, soaking and production), (3) gas and liquid flow occur through an actual 
induced fracture (analogous to a hydraulic fracture created ‘in-situ’ during a stimulation treatment), and (4) “in-
situ” stress, and stress variation regimes during injection, soaking and flow are reproduced. Recovery factors of 
45% and 30% of OOIP were obtained after four cycles of HNP experiments performed on twin Duvernay Shale 
core plug samples using  CO2 and lean gas, respectively. While there may be discrepancies between laboratory- 
and field-scale recovery factors due to differences between laboratory and field conditions (e.g. dead vs. live 
 oil8, reservoir heterogeneity, etc.), the observed difference between  CO2 and lean gas recovery is in agreement 
with those reported previously in the literature using “flow-through-matrix” or “flow-around-matrix” scenarios 
(Table 1). Very importantly, however, in contrast to previous laboratory studies performed on intact/fractured 
cores (Supplementary Table S1 online), these ultimate recovery factors could be achieved in only 24 h as a result 
of 1) employing a fractured core plug (i.e. higher surface area) and 2) optimal simulation-aided experimental 
design. Our integrated workflow therefore provides the opportunity for repeating multiple cycles over a relatively 
short period of time on a given core plug sample in the laboratory. This in turn provides significant time/cost-
savings compared to previous approaches, allowing important results to be turned around much more quickly. 
Note, using the simulations performed prior to the tests, the experimental time scales were selected with the 

Figure 6.  Comparison between experimental and simulated pressure decay profiles for  CO2 (a) and lean gas 
(b).

Table 1.  Comparison of core-based HNP experiments with  CO2 and lean gas in tight oil/gas formations. 
a Simplified lean gas (85%  CH4 + 15%  C2H6) is used in the tests. b Pure lean gas (100%  CH4) is used in the tests.

Formation Porosity (%) Permeability (md) Method Gas type Oil recovery (%) References

Middle Bakken (USA) 4.4–5.4 0.008–0.1 ”Flow-around”
Lean  gasa  > 90

37
CO2  > 90

Lower Bakken (USA) 3.8 0.005 ”Flow-around”
Lean  gasa 27

CO2 32

Wolfcamp (USA) 8.5 0.0003–0.0005 ”Flow-around”
CO2 65

14

Lean  gasb 30–40

Middle Bakken (USA) 4.5–8.1 0.002–0.04 ”Flow-around”

CO2  ~ 95
38Lean  gasa  ~ 95

Lean  gasb 92
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criteria of achieving higher oil production/recovery while shortening the total duration of the injection-soaking-
production cycles (not achieving e.g. complete pressure equilibrium after each cycle, etc.).

Besides improved recovery, one of the advantages of using greenhouse gases (e.g.  CO2 and lean gas) as sol-
vents is that a portion of the injected gas could be sequestered/trapped in the reservoir via dissolution in the 
oil, adsorption on the rock surface, amongst other mechanisms. Optimizing the balance between improved 
hydrocarbon liquid recovery and underground  CO2 storage is among future challenges ahead of unconventional 
hydrocarbon industry due to suppressed commodity prices and associated environmental concerns. Thanks to its 
fast throughput, one of the advantages of the ‘flow-through-frac’ method, proposed herein, is that experimental 
designs and conditions leading to this optimal balance, which in turn can be used to inform field testing, can 
be determined quickly. For the  CO2 HNP experiments performed herein, only a minor fraction (about 25 cc) 
of  CO2 was dissolved in the Duvernay (dead) oil under the prevailing conditions compared to the large amount 
of injected  CO2 (> 5000 cc). The small dissolution is primarily due to low production pressure (i.e. atmos-
pheric) used in the current experiments, leading to low  CO2 solubility. Designs to achieve the optimal balance 
of improved hydrocarbon recovery and underground greenhouse gas storage will be discussed in future studies.

Samples
Rock samples. The selected core plugs for this study were twin samples obtained from the same well and 
depth. These samples (1.5″ diameter, 2″ length) were drilled parallel to bedding from a 2/3 slabbed core obtained 
from a vertical well drilled into low-permeability intervals of the Duvernay Formation (Alberta, western Can-
ada). A comprehensive series of geochemical, petrophysical and geomechanical analyses were previously per-
formed on sample pieces and twin core plug samples obtained from the same well and  depth29,39, serving as 
an important reference point for the current study. The analyzed samples have the following geochemical and 
petrophysical properties based on the sub-samples taken from the vicinity of these two core plugs: total organic 
carbon (TOC) content: 4.26 wt.%; clay content: 33.3%; quartz content: 44.7%; carbonate content: 12.4%; helium 
porosity: 2.1–3.3%; slip-corrected gas  (N2) permeability (1.25·10–4 md; 900 psi effective stress). Detailed descrip-
tions of the experimental procedures for the determination of TOC content, mineralogical composition, helium 
porosity, and slip-corrected gas  (N2) permeability are provided  elsewhere22.

The core plug samples used in this study were analyzed under “as-received” conditions. “As-received” in the 
context of this work means that the sample was tested without any further treatment (e.g. cleaning/drying) in 
the laboratory after drilling.

Rock sample preparation: fracturing under stress. The representativeness and repeatability of the 
fracture creation procedure is one of the main challenges associated with experimental HNP studies. The 
‘quality’ of the induced fractures is important for core-based HNP data evaluation and history-matching. The 
assumption of the cubic geometry, that is the basis of the data evaluation and simulation for fractured cores, 
can be violated depending on the roughness and orientation of the induced fractures. Larger errors in property 
estimates are associated with deviated fractures (from the core axis) with rougher surfaces.

In this work, the fractures were created along cemented laminations (bedding planes) of core plugs. Cemented 
laminations are commonly formed parallel to the bedding planes that are perpendicular to the direction of 
sedimentation, creating planes of weakness. Unlike creating “smooth” saw-cut surfaces, the creation of fractures 
along weak planes under stress ensures that the fracture conditions are representative of the subsurface fracturing 
process and can be considered relatively repeatable.

To increase the representativeness and repeatability of the ‘flow-through-frac’ technique, preferentially, those 
core plugs that contain a visible laminations and/or cemented micro-fracture should be drilled from the full 
core (or 2/3 slabbed core) for the tests (Fig. 7). As an example, for Duv 1–1, a series of CT scans were collected 
in a commercial laboratory to investigate the presence of laminations and/or pre-existing micro-fractures inside 
the core plug. A primary micro-fracture was detected along the length of the core plug sample (Figs. 7a–c). This 
micro-fracture, which extends from top to bottom of the core plug, occurs along a mechanically weak plane 
which is prone to fracturing under differential stress.

Fluids. The formation (dead) oil sample was collected from an active producing field in the Duvernay For-
mation (western Canada). The formation oil was fully dewaxed with 0.1 micron filters at 25 °C in a commercial 
laboratory prior to experiments. The analyzed oil sample has the following physical properties (25 °C, 14.7 psi): 
density: 0.823; viscosity: 2.043 cP; and compressibility: 6.5·10–6  psi−1. The  CO2 gas used in the  CO2 HNP experi-
ments was at research grade with a purity of 99.998%, and the simplified compositional lean gas (80%  CH4 + 20% 
 C2H6) used in the lean gas HNP experiment was prepared by a commercial vendor in Calgary, Alberta, Canada.

The objective in this research was to evaluate the proof-of-concept experiments for cyclic gas injection at 
‘near-fracture’ conditions in locally depleted tight oil reservoirs (i.e. with large drawdowns in near-fracture region) 
that presumably completed the primary recovery process. As such, dead oil samples (as opposed to live oil) were 
used for HNP experiments without performing any primary recovery tests prior to the HNP tests.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9497  | https://doi.org/10.1038/s41598-021-88247-y

www.nature.com/scientificreports/

Received: 9 November 2020; Accepted: 5 April 2021

References
 1. Hawthorne, S. B. et al. Hydrocarbon mobilization mechanisms using CO2 in an unconventional oil play. Energy Proc. 63 (2014).
 2. Kanfar, M. S., Ghaderi, S. M., Clarkson, C. R., Reynolds, M. M. & Hetherington, C. A Modeling study of EOR potential for  CO2 

huff-n-puff in tight oil reservoirs—Example from the Bakken formation. In SPE Unconventional Resources Conference. https:// doi. 
org/ 10. 2118/ 185026- MS (Society of Petroleum Engineers, 2017).

 3. Kanfar, M. S. & Clarkson, C. R. Factors affecting huff-n-puff efficiency in hydraulically-fractured tight reservoirs. In SPE Uncon-
ventional Resources Conference. https:// doi. org/ 10. 2118/ 185062- MS (Society of Petroleum Engineers, 2017).

 4. Sharma, S. & Sheng, J. J. A comparative study of huff-n-puff gas and solvent injection in a shale gas condensate core. J. Nat. Gas 
Sci. Eng. 38 (2017).

 5. Jacobs, T. Shale EOR delivers, so why won’t the sector go big? J. Petrol. Technol. 71 (2019).
 6. Hamdi, H. et al. Huff-n-puff gas injection performance in shale reservoirs: A case study from Duvernay Shale in Alberta, Canada. 

In Proceedings of the 6th Unconventional Resources Technology Conference. https:// doi. org/ 10. 15530/ urtec- 2018- 29028 35 (American 
Association of Petroleum Geologists, 2018).

 7. Thomas, F. B. et al. Experimental measurements of Montney and Duvernay gas-cycling enhanced oil recovery GCEOR. In SPE 
Canada Unconventional Resources Conference. https:// doi. org/ 10. 2118/ 199994- MS (Society of Petroleum Engineers, 2020).

 8. Mahzari, P. et al. Novel laboratory investigation of huff-n-puff gas injection for shale oils under realistic reservoir conditions. Fuel 
284 (2021).

 9. Li, L., Sheng, J. J., Su, Y. & Zhan, S. Further investigation of effects of injection pressure and imbibition water on  CO2 huff-n-puff 
performance in liquid-rich shale reservoirs. Energy Fuels 32 (2018).

 10. Du, D., Pu, W., Jin, F. & Liu, R. Experimental study on EOR by  CO2 huff-n-puff and  CO2 flooding in tight conglomerate reservoirs 
with pore scale. Chem. Eng. Res. Des. 156 (2020).

 11. Xue-wu, W. et al. Laboratory and field-scale parameter optimization of  CO2 huff–n–puff with the staged-fracturing horizontal 
well in tight oil reservoirs. J. Petrol. Sci. Eng. 186 (2020).

 12. Pu, W. et al. Experimental investigation of CO2 huff-n-puff process for enhancing oil recovery in tight reservoirs. Chem. Eng. Res. 
Des. 111 (2016).

 13. Qian, K. et al. Experimental investigation on microscopic residual oil distribution during  CO2 huff-and-puff process in tight oil 
reservoirs. Energies 11 (2018).

 14. Li, L., Sheng, J. J. & Xu, J. Gas selection for huff-n-puff EOR in shale oil reservoirs based upon experimental and numerical study. 
In SPE Unconventional Resources Conference. https:// doi. org/ 10. 2118/ 185066- MS (Society of Petroleum Engineers, 2017).

 15. Li, L., Zhang, Y. & Sheng, J. J. Effect of the injection pressure on enhancing oil recovery in shale cores during the  CO2 huff-n-puff 
process when it is above and below the minimum miscibility pressure. Energy Fuels 31 (2017).

 16. Yu, Y. & Sheng, J. J. A comparative experimental study of IOR potential in fractured shale reservoirs by cyclic water and nitrogen 
gas injection. J. Petrol. Sci. Eng. 149 (2017).

 17. Wan, T., Yu, Y. & Sheng, J. J. Experimental and numerical study of the EOR potential in liquid-rich shales by cyclic gas injection. 
J. Unconvent. Oil Gas Resour. 12 (2015).

 18. Song, C. & Yang, D. Experimental and numerical evaluation of  CO2 huff-n-puff processes in Bakken formation. Fuel 190 (2017).
 19. Li, L. et al. A comparative study of  CO2 and  N2 huff-n-puff EOR performance in shale oil production. J. Petrol. Sci. Eng. 181 (2019).

Figure 7.  CT scanning images of 2D and processed 3D views of Duv 1–1: (a) 2D, top to bottom; (b) 3D, top to 
bottom; (c) 3D, bottom to top. A primary cemented lamination that is partly fractured is highlighted with the 
red arrows (a–c). There is a secondary fracture close to the edge (a,b) that is not continuous along the core axis. 
Drafted using ImageJ (version 1.53a, https:// imagej. net/).

https://doi.org/10.2118/185026-MS
https://doi.org/10.2118/185026-MS
https://doi.org/10.2118/185062-MS
https://doi.org/10.15530/urtec-2018-2902835
https://doi.org/10.2118/199994-MS
https://doi.org/10.2118/185066-MS
https://imagej.net/


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9497  | https://doi.org/10.1038/s41598-021-88247-y

www.nature.com/scientificreports/

 20. Hawthorne, S. B. et al. Measured crude oil MMPs with pure and mixed  CO2, methane, and ethane, and their relevance to enhanced 
oil recovery from middle Bakken and Bakken shales. In SPE Unconventional Resources Conference. https:// doi. org/ 10. 2118/ 185072- 
MS (Society of Petroleum Engineers, 2017).

 21. Hawthorne, S. B. et al. Hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed 
to CO. In SPE Unconventional Resources Conference Canada. https:// doi. org/ 10. 2118/ 167200- MS (Society of Petroleum Engineers, 
2013).

 22. Ghanizadeh, A., Clarkson, C. R., Aquino, S., Ardakani, O. H. & Sanei, H. Petrophysical and geomechanical characteristics of 
Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization. Fuel 153 (2015).

 23. Ghanizadeh, A. et al. Unpropped/propped fracture permeability and proppant embedment evaluation: A rigorous core-analysis/
imaging methodology. In Proceedings of the 4th Unconventional Resources Technology Conference. https:// doi. org/ 10. 15530/ urtec- 
2016- 24598 18 (American Association of Petroleum Geologists, 2016).

 24. Zhang, Z., Clarkson, C. R., Williams-Kovacs, J. D., Yuan, B. & Ghanizadeh, A. Rigorous estimation of the initial conditions of 
flowback using a coupled hydraulic-fracture/dynamic-drainage-area leakoff model constrained by laboratory geomechanical data. 
SPE J. https:// doi. org/ 10. 2118/ 201095- PA (2020).

 25. Clarkson, C. R., Nobakht, M., Kaviani, D. & Kantzas, A. Use of pressure- and rate-transient techniques for analyzing core per-
meability tests for unconventional reservoirs. In SPE Americas Unconventional Resources Conference. https:// doi. org/ 10. 2118/ 
154815- MS (Society of Petroleum Engineers, 2012).

 26. Clarkson, C. R. & Qanbari, F. Use of pressure- and rate-transient techniques for analyzing core permeability tests for unconventional 
reservoirs: Part 2. In SPE Unconventional Resources Conference Canada. https:// doi. org/ 10. 2118/ 167167- MS (Society of Petroleum 
Engineers, 2013).

 27. Solano, N. A., Soroush, M., Clarkson, C. R., Krause, F. F. & Jensen, J. L. Modeling core-scale permeability anisotropy in highly 
bioturbated “tight oil” reservoir rocks. Comput. Geosci. 21 (2017).

 28. Song, C., Clarkson, C. R., Hamdi, H. & Ghanizadeh, A. Evaluation of cyclic solvent injection (‘huff-n-puff ’) in artificially-fractured 
shale core samples: Experiments & modeling. in Proceedings of the 8th Unconventional Resources Technology Conference. https:// 
doi. org/ 10. 15530/ urtec- 2020- 3038 (American Association of Petroleum Geologists, 2020).

 29. Ghanizadeh, A., Song, C., Clarkson, C. R. & Younis, A. Relative permeability of tight hydrocarbon systems: An experimental study. 
Fuel 294 119487 (2021).

 30. Li, S., Qiao, C., Zhang, C. & Li, Z. Determination of diffusion coefficients of supercritical CO2 under tight oil reservoir conditions 
with pressure-decay method. J. CO2 Utiliz. 24 (2018).

 31. Ghanizadeh, A. et al. Effects of entrained hydrocarbon and organic-matter components on reservoir quality of organic-rich shales: 
Implications for «sweet spot» identification and enhanced-oil-recovery applications in the Duvernay formation (Canada). SPE J. 
25, 1351–1376 (2020).

 32. Shen, Z. & Sheng, J. J. Experimental and numerical study of permeability reduction caused by asphaltene precipitation and deposi-
tion during  CO2 huff and puff injection in Eagle Ford shale. Fuel 211, 432–445 (2018).

 33. Crank J. The Mathematics of Diffusion. 2nd edn. (Oxford University Press Inc, 1975).
 34. DeRuiter, R. A., Nash, L. J. & Singletary, M. S. Solubility and displacement behavior of a viscous crude with CO2 and hydrocarbon 

gases. SPE Reserv. Eng. (Society of Petroleum Engineers) 9, 101–106 (1994).
 35. Yi, W., Zhou, Y., Gao, L., Li, X. & Mou, J. An improved adaptive differential evolution algorithm for continuous optimization. 

Expert Syst. Appl. 44, 1–12 (2016).
 36. Hamdi, H., Couckuyt, I., Sousa, M. C. & Dhaene, T. Gaussian Processes for history-matching: application to an unconventional 

gas reservoir. Comput. Geosci. 21, 267–287 (2017).
 37. Jin, L. et al. Utilization of produced gas for improved oil recovery and reduced emissions from the Bakken formation. In SPE Health, 

Safety, Security, Environment, & Social Responsibility Conference-North America. https:// doi. org/ 10. 2118/ 184414- MS (Society of 
Petroleum Engineers, 2017).

 38. Alharthy, N. et al. Enhanced oil recovery in liquid-rich shale reservoirs: Laboratory to field. SPE Reserv. Eval. Eng. 21 (2018).
 39. Ghanizadeh, A. et al. Effects of entrained hydrocarbon and organic-matter components on reservoir quality of organic-rich shales: 

Implications for ‘sweet spot’ identification and enhanced-oil-recovery applications in the Duvernay formation (Canada). SPE J. 
25 (2020)

Acknowledgements
The authors gratefully thank the sponsors of the Tight Oil Consortium hosted at the Department of Geoscience, 
University of Calgary. Chris Clarkson would like to acknowledge Ovintiv Inc. (former Encana Corporation) and 
Shell for support of his Chair position in Unconventional Gas and Light Oil research at the University of Calgary, 
Department of Geoscience. The authors further thank Natural Sciences and Engineering Research Council of 
Canada (NSERC) for providing funding for this work through the Collaborative Research and Development 
(CRDPJ 505339-16) and Alliance (ALLRP 548652-19) grants. Hamidreza Hamdi would like to thank Rock Flow 
Dynamics Inc. (RFD) for supporting his independent research. An early version of this work, focused on  CO2, 
was prepared for presentation at the Unconventional Resources Technology Conference held in Austin, Texas 
(20-22 July, 2020) and published as a non-peer-reviewed conference contribution (URTeC 3038). The current 
manuscript represents a significant update to this pre-cursor work by adding new sets of (1) experiments and (2) 
simulation runs using lean gas to establish comparisons between  CO2 and lean gas huff-n-puff performances. In 
addition, this version includes new sections elaborating on (a) rock sample preparation and fracturing process, 
(b) technical challenges associated with experiments and numerical simulations, (c) the sources and degrees of 
uncertainty, and (d) complimentary ‘best-practices’ to perform HNP experiments and numerical simulations 
more effectively for future interested readers. Approval by the Unconventional Resources Technology Conference 
(URTeC) to publish the material reproduced from URTeC 3038 as a peer-reviewed article is greatly appreci-
ated. The authors thank RFD for the use of tNavigator.

Author contributions
A.G. is a Research Associate, who was in charge of supervision, conceptualization, investigation and writing/
editing of the manuscript. C.S. is a Research Assistant, who was in charge of conceptualization, investigation, 
methodology and writing/editing of the manuscript. H.H. is a Research Associate, who was in charge of con-
ceptualization, investigation, methodology and writing/editing of the manuscript. C.R.C. is the principal inves-
tigator, who was in charge of funding acquisition, supervision, conceptualization and writing and editing of the 
manuscript.

https://doi.org/10.2118/185072-MS
https://doi.org/10.2118/185072-MS
https://doi.org/10.2118/167200-MS
https://doi.org/10.15530/urtec-2016-2459818
https://doi.org/10.15530/urtec-2016-2459818
https://doi.org/10.2118/201095-PA
https://doi.org/10.2118/154815-MS
https://doi.org/10.2118/154815-MS
https://doi.org/10.2118/167167-MS
https://doi.org/10.15530/urtec-2020-3038
https://doi.org/10.15530/urtec-2020-3038
https://doi.org/10.2118/184414-MS


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9497  | https://doi.org/10.1038/s41598-021-88247-y

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 88247-y.

Correspondence and requests for materials should be addressed to A.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-88247-y
https://doi.org/10.1038/s41598-021-88247-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Experimental and computational evaluation of cyclic solvent injection in fractured tight hydrocarbon reservoirs
	Numerical simulation: prior to experiments
	Experiments
	Experimental setup. 
	Experimental workflow and procedure. 

	Results
	CO2 vs. simplified lean gas HNP. 
	History matching: post experiments. 

	Discussion
	Samples
	Rock samples. 
	Rock sample preparation: fracturing under stress. 
	Fluids. 

	References
	Acknowledgements


