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The serotonin transporter gene 
and female personality variation 
in a free‑living passerine
Bert Thys1,5*, Andrea S. Grunst1,2,5, Nicky Staes1,3, Rianne Pinxten1,4, Marcel Eens1 & 
Melissa L. Grunst1

Quantifying variation in behaviour‑related genes provides insight into the evolutionary potential 
of repeatable among‑individual variation in behaviour (i.e. personality). Yet, individuals typically 
also plastically adjust their behaviour in response to environmental conditions and/or age, thereby 
complicating the detection of genotype–phenotype associations. Here, using a population of free‑
living great tits (Parus major), we assessed the association between single nucleotide polymorphisms 
(SNPs) in the serotonin transporter gene (SERT) and two repeatable behavioural traits, i.e. female‑
female aggression and female hissing behaviour. For female‑female aggression, a trait showing 
age‑related plasticity, we found no evidence for associations with SERT SNPs, even when assessing 
potential age‑dependent effects of SERT genotype on aggression. We also found no strong support 
for associations between SERT SNPs and hissing behaviour, yet we identified two synonymous 
polymorphisms (exon 13 SNP66 and exon 12 SNP144) of particular interest, each explaining about 
1.3% of the total variation in hissing behaviour. Overall, our results contribute to the general 
understanding of the biological underpinning of complex behavioural traits and will facilitate further 
(meta‑analytic) research on behaviour‑related genes. Moreover, we emphasize that future molecular 
genetic studies should consider age‑dependent genotype–phenotype associations for behavioural 
trait (co)variation, as this will vastly improve our understanding of the proximate causes and ultimate 
consequences of personality variation in natural populations.

Individuals within single populations are often found to vary in their average behaviour across repeated obser-
vations, known as animal  personality1,2. Traditionally, this among-individual behavioural variation was often 
attributed to random (i.e. non-adaptive) noise around an adaptive  mean3. Today, it is apparent that personality 
can be  heritable4–6, influence  fitness7,8 and therefore potentially evolve adaptively in response to  selection9,10. 
Although quantitative genetic studies have revealed substantial genetic variation underlying variation in person-
ality traits (e.g.4,5), our knowledge about the specific genetic architecture of personality variation still remains in 
its  infancy11–13. Yet, understanding how genes contribute to the shaping of behavioural phenotypes is essential 
to assess their evolutionary potential and how personality variation is maintained in natural populations.

Besides being repeatable, behavioural trait expression is typically also plastic, with individuals adjusting their 
behaviour in response to external (e.g. environmental) and internal (e.g. age)  factors14,15. Consequently, effects 
of genes on behavioural phenotypes (and hence heritability) might not be constant across environments and/
or the life span of individuals, as characterized by genotype-by-environment (i.e. G × E) and genotype-by-age 
(i.e. G × A) interactions,  respectively15,16. In other words, effects of certain genes or gene polymorphisms on 
behavioural phenotypes might be reduced, shut down or altered under specific environmental conditions and/
or at certain ages, indicating that genes can act in an environment- and/or age-dependent manner (e.g.17,18). 
Although still limited in number, studies in natural populations are increasingly revealing heterogeneity in the 
associations between genetic polymorphisms and behavioural traits across populations, suggesting the existence 
of G × E in behaviour (e.g.19–21; see  also22,23). In contrast, studies investigating G × A in behaviour, which can be 
considered a specific form of G × E, are very scarce (24,25; review  in15), and we are unaware of any study assessing 
whether the association between specific genes (or polymorphisms) and behavioural traits interact with age 
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in natural populations. Modelling the interaction between genotype and age is important for traits that show 
age-related phenotypic plasticity since the latter can complicate the detection of associations between genes and 
behavioural phenotype.

A variety of so-called candidate genes have been hypothesized to be involved in the expression of particular 
behavioural phenotypes (recently reviewed  in13). One promising candidate gene particularly with regard to 
anxiety- and aggression-related behaviour is the serotonin transporter gene (SERT) (e.g.4,12,13,26,27). The serotonin 
transporter has an important role in the regulation of extracellular and synaptic serotonin concentrations, and 
hence the magnitude and duration of serotonergic neurotransmission. In human and non-human primates, 
allelic variation in SERT has been associated with anxiety, harm avoidance, dominance, aggression and sexual 
 behaviour26–29. Additionally, a handful of recent studies suggest that single nucleotide polymorphisms (SNPs) in 
SERT can be associated with behavioural variation in free-living bird species. Notably, SNPs in SERT have been 
associated with variation in flight initiation distance in dunnocks (Prunella modularis23) and novel object and 
anti-predator responses in great tits (Parus major21,30,31; but see  also32,33).

Here, using a population of free-living great tits, we aimed to identify genomic variation underlying two 
female personality traits, that is, female-female aggression and female anti-predatory nest defence (so-called 
hissing  behaviour34). In this population, both behavioural traits have been shown to be short-term (i.e. within-
year) and long-term (cross-year) repeatable, but to not covary on the among-individual level (i.e. no behavioural 
 syndrome35–37). The latter raises the, as of yet untested, possibility that aggression and hissing behaviour are influ-
enced by different underlying genetic mechanisms. Moreover, we recently revealed that female-female aggression, 
but not hissing behaviour, decreased within individuals with age and that individuals differed in their level of 
age-related plasticity in aggression (i.e. individual-by-age interaction; I × A;37). Since G × A can underlie I ×  A15, 
the influence of genes on aggression might vary with age, but whether this is the case remains to be evaluated. 
Hence, using a behavioural dataset collected over four years  (see37) and SERT as a candidate gene, we assessed 
the association between SERT SNPs and both aggression and hissing behaviour in female great tits. For aggres-
sion, we additionally assessed whether the potential associations with SNPs interacted with age, which would 
be characterized by age-dependent aggression-SNP associations (i.e. G × A).

Methods
Study population and standard procedures. Data were collected in a semi-urban population of free-
living great tits in the surroundings of Antwerp, Belgium (Fort 6/Campus Drie Eiken; 51° 09′ 44″ N–4° 24′ 15″ 
E), which has been monitored since 1997 and at present consists of approximately 150 nest boxes for great tits. As 
part of long-term monitoring, all birds in the population are provided with a metal leg ring as nestlings or upon 
first capture (in winter or when feeding nestlings), and all adults receive a unique combination of three plastic 
colour rings. A blood sample (20 µl) is collected from the brachial vein for all birds, either as nestling or as adult 
upon first capture. Reproductive activities of all breeding pairs are monitored throughout the nesting cycle to 
determine lay date, clutch size and onset of incubation.

Behavioural measurements. For four years (2016–2019), behavioural experiments were performed on 
females with first  clutches37. First, female-female aggression was assessed using simulated same-sex territorial 
intrusion tests (henceforth aggression test),  following35. In short, a stuffed female great tit (decoy, one of five) 
was placed on top of the focal female’s nest box at day 2 and 5 of the egg-laying period (with day 1 the day the 
first egg was laid). The focal female’s behaviour was observed for 5 min, starting when she entered within a 
15 m radius around the nest box, or when she was already present at the start of the test. The observer (B.T. 
or an observer trained by B.T., 11 in total), standing at a distance of approximately 15 m, scored the following 
aggression parameters using a customized handheld tally counter device: the number of alarm calls produced, 
the time spent on the decoy (in s) and the number of attacks towards the decoy. Also, approach distance (in m) 
was scored, representing the minimum distance of the focal female to the decoy during the observation period.

Second, when confronted with a predator inside the nest cavity, some incubating and brooding females 
produce loud broadband hissing calls, often accompanied with intense flapping of the wings and lunging at the 
 predator34. This so-called hissing behaviour was assessed using simulated predator intrusion tests (henceforth 
hissing test),  following38. Specifically, the observer (one of 11) entered the head of a stuffed great spotted wood-
pecker (Dendrocopos major; one of three) into the entrance hole of a focal female’s nest box, at day 2 and 5 of 
the incubation period, thereby blocking the only entrance to the nest box and preventing the incubating female 
from escaping. The woodpecker was held in this position for one minute, during which the number of hissing 
calls produced were counted, which can easily be heard from outside the nest box. The number of hissing calls 
produced was used as a measure of hissing behaviour.

Over the course of 2016–2019, a total of 686 aggression tests and 866 hissing tests were successfully performed 
on 290 and 311 unique females, respectively, with 289 of these females tested for both behaviours during the 
same breeding attempt (details on data structure can be found in Table 1  in37). Age of females (with age = 0 rep-
resenting age of birth) was determined using hatching records (resident birds) or plumage characteristics upon 
first capture (first-year or older). Absolute age was therefore known for all local recruits (N = 96 out 312 females; 
30.8%) and immigrant birds first captured as first-year-olds (N = 192; 61.5%). For immigrant birds with an adult 
plumage upon first capture (N = 24; 7.7%), we assumed they recruited into the population as 2-year-olds37. We 
were able to genotype 306 of the 312 females in our behavioural dataset (detailed below).

Genotyping. DNA was extracted from 306 blood samples using a commercial kit (Macherery-Nagel Nucle-
oSpin® blood kit), following manufacturer’s instructions. Next, using polymerase chain reactions (PCRs), we 
amplified the 13 exonic regions of SERT. New primers were designed to optimize reaction performance for 
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exon 1 and 12 using Geneious Prime 2020.0.4, but otherwise primers were derived  from30 (see Supplementary 
Table S1). Thermocycling condition for exons 2 through 13 were 95 °C for 15 min, followed by 38 cycles of 95 °C 
for 30 s, 52 °C for 30 s, and 72° for 1 min, with a final extension at 72 °C for 4 min. Since exon 1 has longer prod-
uct length, the themocycling conditions were 95 °C for 15 min, followed by 38 cycles of 95 °C for 30 s, 54 °C for 
30 s, and 72° for 1 min, with a final extension at 72 °C for 6 min. PCR reactions were run on a Mastercycler gradi-
ent PCR machine (Eppendorf) for all exons, expect for exon 2. The reaction mixture (15 µl) consisted of 7.5 µl of 
master mix (HotStarTaq Master Mix, Qiagen), 0.6 µl of both the forward and reverse primers at a concentration 
of 10 µM, 3.3 µM of DNase free water, and 3.0 µl of DNA at a concentration of 10 µM. Exon 2 was amplified on 
a LightCycler480 (Roche), using a reaction mixture (15 µl) consisting of 7.5 µl of master mix (LightCycler480 
High Resolution Melting Master), 0.525 µl of the forward and reverse primer at 10 µM, 1.2 µl of  MgCl2 (concen-
tration in master mix, 2 µM), and 2.0 µl of DNA at 10 µM.

Genotypes were determined via direct sequencing of PCR amplicons, performed at the genomics core facility 
of the University of Antwerp using a sanger sequencing platform. Sequences where aligned to the great tit refer-
ence genome using Geneious Prime 2020.0.4 and single nucleotide polymorphisms (SNPs) were identified by 
manual inspection. At first, a subsample of 46–48 females (selected based on large variation in the focal behav-
ioural traits) were genotyped across all loci, and sequenced in both directions (i.e. forward and reverse primers). 
This revealed SNPs with genotype frequencies > 5% in 8 exonic regions, i.e. exons 1, 2, 3, 5, 6, 9, 12 and 13. All 
other exons either contained rare SNPs (< 5%; exons 7, 8, 10 and 11) or were monomorphic (exon 4), and were 
not further considered. Next, all other females in the dataset were genotyped for the eight polymorphic exons, 
which were sequenced in the direction that gave the best coverage across a particular locus (i.e. either forward or 
reverse). Sample sizes differ somewhat between loci due to sequencing failures of some SNPs for some individuals.

Genotypic quality control. Within the eight exonic regions, we excluded SNPs in which minor allele fre-
quencies (MAF) were < 10% (Supplementary Table S2), to avoid small numbers of individuals in any genotype 
and/or genotype-age class. All remaining SNPs were tested for deviation from Hardy–Weinberg equilibrium 
(HWE) using chi-square tests (Hardy–Weinberg package in  R39). Linkage disequilibrium (LD) statistics (D’ and 
r) among the remaining SNPs within SERT were estimated using  SNPStats40 (Supplementary Table S3). Signifi-
cance levels for HWE and LD statistics were adjusted for false discovery rate (FDR; p.adjust function in  R41).

Statistical analyses. First, a principal component analysis was performed on the aggression parameters 
(i.e. number of alarm calls produced, approach distance, attacks and time on decoy) scored during territorial 
intrusion  tests35. This resulted in a single principal component (PC1) with eigenvalue > 1 (EV = 1.40), explain-
ing 49% of variance. High scores on PC1 correspond to closer approach distance, more time on the decoy and 
more attacks. In contrast, low scores on PC1 correspond to the production of more alarm calls from a larger 
distance (Supplementary Table S4). Scores on PC1 were used as a measure of aggression in all further analyses 
(henceforth aggression).

Second, association testing between each SERT SNP and behavioural traits was performed using linear mixed 
models fitted with the lmekin function (coxme package in  R42). For each behavioural trait, we fitted two standard 
allele effect models, i.e. the additive and the overdominant effect model, thereby covering the complete range of 
allele effects (additive, recessive, dominant and  overdominant20,43). Genotype was coded as a continuous covariate 
(three-levels; 0, 1 or 2 copies of the minor allele) in the additive effect models, and as a two-level factor (homozy-
gote = 0; heterozygote = 1) in the overdominant effect models. Based on previous findings, we also included lay 
date (relative to the first-egg date in the given year) and clutch size as fixed effects in the models for hissing 
 behaviour36,37. Clutch size was centred and standardized within individuals, thereby partitioning effects of clutch 
size on behavioural traits into its among-individual (i.e. mean clutch size per individual) and within-individual 
(clutch deviation; i.e. the deviation of each observation from an individual’s mean clutch size)  components44. For 
aggression, we included age and its two-way interaction with genotype as fixed effects. We pooled individuals 
of 3 years old or older into one age-class to avoid small numbers of individuals in any genotype-age class (i.e. 
three age-classes: 1, 2 and 3+). Nonetheless, for certain SNPs this still resulted in a small number of individuals 
in certain genotype-age classes and the interaction between age and genotype was only included in the models 
where sufficient individuals (≥ 5) were available in each genotype-age class (see Supplementary Table S5). Year 
(2016–2019) was included as a fixed effect in all models to control for annual  variation37. Other fixed effects 
previously shown to not affect variation in behavioural traits (e.g. time and date of behavioural testing) were not 
 included35,36. All models included random intercepts for female identity (ID) and the unique combination of 
ID and year (ID_Year), the latter denoting a period (i.e. breeding season) during which repeated observations 
were obtained for individuals  (see37,45). To control for the effect of relatedness among females, we constructed a 
relatedness matrix (kinship function, kinship2 package in  R46) using pedigree information based on social matings 
(2004–2019) and entered this matrix into all models. Relatedness was modelled this way because, due to high 
immigration and dispersal, we failed to collect behavioural data for a sufficient number of related females to fit 
animal models (i.e. the pedigree was not well-connected;  see47). We also did not include random intercepts for 
observer or decoy identity since previous results using the same behavioural dataset revealed that they explain 
little to no variation in focal behavioural traits  (see37). For significant SNPs we calculated the proportion of vari-
ance in behaviour explained using the marginal coefficient of determination  (R2

m
48).

All analyses were performed in R 3.6.1 (R core team, 2019). Response variables were standardized to unit 
variance prior to analyses and, based on visual inspection of model residuals, all models were fitted assuming 
Gaussian error distribution. Interaction effects were removed from final models when non-significant. Results 
are presented as means with standard error (SE), unless stated otherwise, and we report significance levels of 
effects before (P-value) and after adjustment for FDR (P.adjust).
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Ethical statement. This study was approved by the ethical committee of the University of Antwerp (ID 
2017-23 and 2017-61), performed in accordance with Belgian and Flemish laws regarding animal welfare, 
adhered to the ASAB/ABS guidelines for the use of animals in behavioural research and teaching, and complies 
with ARRIVE guidelines. The Royal Belgian Institute of Natural Sciences (KBIN) provided ringing licences for 
all authors and technicians.

Results
Genetic polymorphisms. We detected SERT SNPs at 27 loci across 8 exonic regions in our population 
(Supplementary Table S2). For 15 of these SNPs minor allele frequency was < 10% and an additional 4 SNPs 
deviated significantly from HWE even after correcting for FDR, so they were removed from further analyses. 
Hence, we retained 8 SNPs across 5 exons for association testing with behavioural traits (Table 1). Of these 8 
SNPs, SNP226 in exon 1 is non-synonymous (i.e. causing changes in amino acids), while all other SNPs are syn-
onymous (Table 1). We found no complete linkage disequilibrium between SNPs. Yet, strong linkage disequilib-
rium (P.adjust < 0.01) was found among the three SNPs within exon 1, between the two SNPs within exon 9, and 
among the two SNPs in exon 9 and the SNP in exon 13. For all other pairs of SNPs linkage disequilibrium was 
weak (see Supplementary Table S3 for full results).

Associations between SNPs and behaviour. No evidence was found for significant associations 
between aggression and SERT SNPs in either the additive or overdominant effect models (Fig. 1a). Additionally, 
although aggression decreased across age-classes, we found no support for effects of the interaction between 
genotype and age-class on aggression (Supplementary Table S5).

Overall, we also found no strong support for associations between hissing behaviour and SERT SNPs (Fig. 1b; 
Supplementary Table S6). Notably though, there were two hissing behaviour—SERT SNP associations that 
deserve particular attention. First, the association between variation in hissing behaviour and exon 13 SNP66 
genotype was significant before, and marginally non-significant after, controlling for FRD in the overdominant 
effect model (0.28 ± 0.10; P = 0.007; P.adjust = 0.054), where SNP66 genotype explained 1.3% of the total variance 
in hissing behaviour  (R2

m = 0.013). Specifically, homozygous females for SNP66 produced on average 3.26 hiss-
ing calls less compared to heterozygous females (Fig. 2). Second, the association between variation in hissing 
behaviour and exon 12 SNP144 genotype was significant before, but not after, controlling for FDR in the additive 
effect model (β ± SE: − 0.25 ± 0.11; P = 0.023; P.adjust = 0.184;  R2

m SNP144 = 0.013). Specifically, the number of 
hissing calls produced decreased on average by 2.92 with the successive replacement of C-alleles in SNP144 (i.e. 
CC → CT → TT; Fig. 3).

Discussion
Identifying genes that underlie personality can improve our understanding of how among-individual variation 
in behaviour is maintained in natural populations. Here, in a population of free-living great tits, we found no 
evidence for associations between SERT polymorphisms and female same-sex aggression, even when potential 
age-dependent effects of SERT genotype on aggression were assessed (i.e. no evidence for genotype-by-age 
interaction; G × A). In general, we also found no strong support for associations between SERT polymorphisms 
and hissing behaviour. Yet, genomic sequence variation at one synonymous locus in SERT (SNP66 in exon 13) 
showed a strong, marginally non-significant, tendency to be associated with variation in hissing behaviour. 
Another synonymous polymorphism (SNP144 in exon 12) also appeared to be associated with hissing behav-
iour, although not significantly so after correcting for multiple testing. As expected for single loci influencing 

Table 1.  Single nucleotide polymorphisms (SNPs) in SERT with minor allele frequency (%m) > 10%. 
Coordinate refers to the position within the great tit genome on chromosome 19. For each SNP we give the 
total sample size (N), major/minor alleles (M/m) with sample sizes per genotype and protein coding with 
associated amino acid (AA) changes. Chi-square (χ2) statistics for Hardy–Weinberg equilibrium are given with 
associated significance levels adjusted for false discovery rate (P.adjust). SNPs used for association testing with 
behavioural traits are depicted in bold.

Locus Coordinate Location N M/m mm Mm MM %m χ2 P.adjust Protein coding AA change

SNP106 chr19:5978897 Exon 1 286 G/A 12 61 213 14.86 6.02 0.04 Non-coding

SNP163 chr19:5978840 Exon 1 286 G/A 5 57 224 11.71 0.13 0.79 Synonymous

SNP187 chr19:5978816 Exon 1 289 C/T 11 98 180 20.76 0.14 0.79 Synonymous

SNP226 chr19:5978777 Exon 1 289 T/A 32 114 143 30.80 1.34 0.50 Non-synonymous E26D

SNP101 chr19:5976872 Exon 3 303 A/G 18 30 255 10.89 68.24 < 0.001 Synonymous

SNP125 chr19:5976812 Exon 3 301 A/G 17 45 239 13.12 30.57 < 0.001 Synonymous

SNP187 chr19:5976777 Exon 3 303 A/T 17 50 236 13.86 29.70 < 0.001 Non-synonymous L260Q

SNP36 chr19:5973968 Exon 6 286 T/C 72 140 74 49.65 0.07 0.79 Synonymous

SNP51 chr19:5971865 Exon 9 284 C/T 15 88 181 20.77 0.70 0.60 Synonymous

SNP84 chr19:5971832 Exon 9 289 T/C 58 124 107 41.52 3.57 0.14 Synonymous

SNP144 chr19:5968682 Exon12 303 C/T 6 57 240 11.39 0.86 0.60 Synonymous

SNP66 chr19:5967914 Exon13 302 C/T 26 115 161 27.65 0.52 0.63 Synonymous
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complex behavioural traits, each of these SNPs explained a small amount (1.3%) of the total variance in hissing 
behaviour. Overall, our results therefore suggest that the SERT gene might be involved in heritable variation in 
hissing behaviour, but not in female-female aggression, although caution is warranted given the possibility for 
false positive results (i.e. type I errors).

Although we have previously demonstrated that female-female aggression is both repeatable and plasticity 
adjusted according to  age37, we found no evidence for (age-dependent) associations with genomic sequence 

Figure 1.  Effect size with 95% confidence intervals (CIs) of SERT SNPs for female-female aggression (a) and 
hissing behaviour (b) from the additive effect (circles) and the overdominant effect (triangles) models. For 
the additive model, positive effects indicate the average increase, and negative effects the average decrease 
in aggression/hissing behaviour with successive replacement of alleles. For the overdominant model, 
positive effects indicate the average increase, and negative effects the average decrease in aggression/hissing 
behaviour from homozygous individuals to heterozygous individuals. Effects are significant (with P < 0.05, but 
P.adjust > 0.05) when CIs do not overlap with zero (dotted lines).

Figure 2.  Quartile based box plots of the number of hissing calls produced by females in relation to exon 13 
SNP66 genotype. Plotted are the number of hissing calls corrected for fixed and random effects included in the 
overdominant effect model (i.e. predicted values; see text for details). For illustration purposes, the estimates 
from the model with standardized hissing calls were back-transformed to the actual number of hissing calls 
produced. N females per genotype: CC/TT: 186, CT: 113.
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variation in the exonic regions of SERT. It should be noted that for some SNPs there were very few females in 
certain genotype-age classes and whether genotype-by-age interactions occur for these SNPs remains unknown. 
Moreover, we cannot rule out that factors other than age, such as external environmental conditions, may result 
in induced or inherited changes in a gene’s  expression49. For example, in free-living great tits, dopamine receptor 
D4 (DRD4) genotype was associated with exploratory behaviour in only one out of four populations, potentially 
explained by cross-population environmental differences modifying genetic  effects19. More recently, environmen-
tally induced epigenetic modifications (i.e. DNA methylation) have been suggested to play a role in the associa-
tion between SERT genotype and novelty responses across urban and rural great tit  populations21. Hence, it will 
be interesting to investigate whether genotype-by-environment interactions occur for the association between 
female same-sex aggression and SERT polymorphisms, both within and across populations.

Overall, we also found no strong support for associations between hissing behaviour and SERT polymor-
phisms. Yet, variation in hissing behaviour was marginally non-significantly associated with genomic sequence 
variation in exon 13 (SNP66), where homozygous females produced on average less hissing calls compared 
to heterozygous females. Additionally, we revealed some tentative indications for an additive genetic effect 
of SNP144 in exon 12 on hissing behaviour. As noted before, these associations might represent false positive 
results (i.e. type I errors), especially in the case of exon 12 SNP144 as the latter association was far from reaching 
significance after correcting for multiple testing. Nonetheless, our results are informative for studies aiming to 
reconcile the effects of SERT on behaviour, including those aiming to identify biological pathways involved in the 
expression of hissing behaviour. That is, the here identified SNPs in exon 12 and 13 were not detected in another 
great tit population where the association between hissing response and SERT SNPs was  assessed31. Instead, 
the latter study found that SERT SNP187 in exon 1 explained about 16% of the variation in whether or not (i.e. 
binary response) females produced hissing calls upon predator confrontation. Although we found a SNP at the 
same location in exon 1 (SNP187), this was not associated with the same nucleotide change (i.e. C/T instead of 
A/T; Table 1) and not with variation in hissing behaviour. Different results across these two populations may be 
due to cross-study differences in the quantification of hissing responses (i.e. binary versus continuous response) 
and/or a combination of type I and type II errors (31; but  see11,50). Nonetheless, genuine cross-population dif-
ferences in gene-behaviour associations are  common12,13,26,50 and can be the result of, amongst other factors, 
divergent selective pressures, different mutations, and gene-by-environment  interactions19,20,51. Notably, since 
the proportion of females not producing hissing calls (across all repeated observation) can greatly differ among 
great tit populations (e.g. our population: 7.7%; Estonian population: 48%31; Latvian population: 30%52), it will 
be of interest to investigate whether population differences in SERT-hissing behaviour associations represent 
genuine population-specific effects, preferably across a large number of populations.

As expected for quantitative behavioural traits, single loci had only small effects on hissing behaviour in our 
population, each explaining about 1–2% of  variation11,12. Although small from a statistical viewpoint, from a 
genetic point of view these effects can be non-negligible and substantial, particularly for a genetic association 
with complex behavioural  traits19,53. Hence, the here identified SNPs with small effects can guide our further 
understanding of the biological underpinning of hissing  behaviour12,13,26. At present it indeed remains unclear 
how these potential effects come about, especially since the associated polymorphisms are synonymous and do 
not determine amino acid sequences of the encoded protein. However, there is growing evidence that synony-
mous polymorphisms can have functional effects via their influence on transcription, splicing, mRNA stability 
or translation, any of which could alter the  phenotype54,55. Alternatively, synonymous SNPs can be linked with 
variation in non-coding regions that influence a gene’s expression, or with functionally significant polymorphisms 
(i.e. non-synonymous SNPs) in other  genes54,56. Hence, a next step would be to investigate linkage disequilibrium 
patterns between exonic SNPs (especially SNP66 in exon 13) and variation in intronic regions of SERT, as well 
as in the wider gene region (i.e. flanking regions and adjacent genes; see e.g. 20).

Figure 3.  Quartile based box plots of the number of hissing calls produced by females in relation to exon 12 
SNP144 genotype. Plotted are the number of hissing calls corrected for fixed and random effects included in the 
additive effect model (i.e. predicted values; see text for details). For illustration purposes, the estimates from the 
model with standardized hissing calls were back-transformed to the actual number of hissing calls produced. N 
females per genotype: CC: 238, CT: 56, TT: 6.
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In general, our study identified SNPs in SERT that might be involved in the expression of hissing behaviour, 
but not female same-sex aggression. Different findings for different traits might be related to the behavioural 
context in which they are expressed. That is, growing evidence in rodents, humans and non-human primates 
suggests that different forms of aggression could be influenced by different components of the serotonergic 
system, as well as interactions with other neurochemical  systems27,57–59. In the case of female-female aggression, 
females can decide whether or not to (aggressively) engage during same-sex conspecific confrontation in their 
territory, therefore likely reflecting a female’s tendency for offensive aggression. In contrast, hissing behaviour 
is typically expressed in situations where predator confrontation is unavoidable due to predators often block-
ing the only entrance/exit of the nest cavity, therefore reflecting a female’s tendency for fear-induced defensive 
behaviour. Hence, our findings raise the possibility that the serotonergic system might be differentially involved 
in the expression of same-sex offensive aggression and fear-induced defensive behaviour in an avian species. Yet, 
this remains to be determined since the observed differential involvement of SERT might also be the result of 
differences in the heritability of our focal behavioural traits, which we were unfortunately unable to estimate due 
to the relatively low number of related females in our data. Nonetheless, repeatability estimates are useful in this 
regard as they enable the quantification of the upper limit to  heritability5. Since cross-year repeatability is high 
for hissing behaviour (R = 0.64) but low for aggression (R = 0.19;37), it could hence have been more difficult to 
detect underlying loci for aggression than for hissing behaviour. Also, although variation in hissing behaviour has 
been linked to reproductive investment and success in our  population36,60, it remains to be investigated whether 
the here detected synonymous SERT polymorphism are subject to  selection54.

Conclusion
Our findings suggest that SERT genotype might play a potential role in the expression of hissing behaviour, but 
replicated studies are necessary to verify our results. Yet, the two here identified SNPs with small effect provide 
valuable starting points in continuing to reveal underlying biological pathways involved in the expression of 
hissing behaviour. In contrast, we found no support for associations between SERT genotype and female same-
sex aggression, even when assessing potential age-dependent effects. Whether age-dependent associations occur 
between aggression and other genes, including the role of epigenetic mechanisms on age-dependent behavioural 
trait expression, remains to be evaluated. In general, since genotype-by-age interactions are expected to be 
common for  behaviour15, there is a clear scope for future molecular genetic studies to consider genotype-by-age 
interactions for behavioural trait (co)variation. With our study, we hope to stimulate research in this direction 
as this will vastly improve the proximate and ultimate understanding of the development of personality varia-
tion in natural populations.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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