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Identification of transcriptional 
subtypes in lung adenocarcinoma 
and squamous cell carcinoma 
through integrative analysis 
of microarray and RNA sequencing 
data
François Fauteux1*, Anuradha Surendra1, Scott McComb2, Youlian Pan1 & Jennifer J. Hill2*

Classification of tumors into subtypes can inform personalized approaches to treatment including 
the choice of targeted therapies. The two most common lung cancer histological subtypes, lung 
adenocarcinoma and lung squamous cell carcinoma, have been previously divided into transcriptional 
subtypes using microarray data, and corresponding signatures were subsequently used to classify 
RNA-seq data. Cross-platform unsupervised classification facilitates the identification of robust 
transcriptional subtypes by combining vast amounts of publicly available microarray and RNA-seq 
data. However, cross-platform classification is challenging because of intrinsic differences in data 
generated using the two gene expression profiling technologies. In this report, we show that robust 
gene expression subtypes can be identified in integrated data representing over 3500 normal and 
tumor lung samples profiled using two widely used platforms, Affymetrix HG-U133 Plus 2.0 Array and 
Illumina HiSeq RNA sequencing. We tested and analyzed consensus clustering for 384 combinations 
of data processing methods. The agreement between subtypes identified in single-platform and 
cross-platform normalized data was then evaluated using a variety of statistics. Results show that 
unsupervised learning can be achieved with combined microarray and RNA-seq data using selected 
preprocessing, cross-platform normalization, and unsupervised feature selection methods. Our 
analysis confirmed three lung adenocarcinoma transcriptional subtypes, but only two consistent 
subtypes in squamous cell carcinoma, as opposed to four subtypes previously identified. Further 
analysis showed that tumor subtypes were associated with distinct patterns of genomic alterations 
in genes coding for therapeutic targets. Importantly, by integrating quantitative proteomics data, we 
were able to identify tumor subtype biomarkers that effectively classify samples on the basis of both 
gene and protein expression. This study provides the basis for further integrative data analysis across 
gene and protein expression profiling platforms.

Lung cancer is the leading cause of cancer mortality (1.8 million deaths per year globally) and although mul-
tiple treatment options are available, the five-year survival rate remains low and there is an unmet need for 
better  therapies1–3. Lung cancer is a heterogeneous disease and the classification of tumors using histological 
and molecular features can inform personalized approaches to treatment, in particular the choice of targeted 
 therapies4. The increasing use of biomarkers and targeted therapies against receptor tyrosine kinases, angiogenic 
factors and inhibitory immune checkpoint proteins has indeed resulted in improved patient  outcomes5–8. Lung 
cancer is generally divided into small cell lung cancer and non-small cell lung cancer (NSCLC) which comprises 
lung adenocarcinoma (LUAD), squamous cell carcinoma (LUSC) and large cell lung  cancer9.
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The two most common NSCLC histological subtypes (LUAD and LUSC) have been classified into molecular 
subtypes associated with clinically relevant characteristics including prognosis and survival, oncogenic drivers, 
and response to targeted therapies. Transcriptional subtypes (three in LUAD and four in LUSC) were initially 
identified by clustering gene expression microarray data from three LUAD (total 231 patients) and five LUSC 
(total 382 patients) discovery  cohorts10,11. Gene expression signatures were further applied to RNA-seq data 
by The Cancer Genome Atlas (TCGA) and successfully classified tumors into corresponding  subtypes12,13. The 
natural extension of these analyses, namely subtype discovery in combined data from the two platforms, presents 
challenges because of intrinsic differences in data generated using different gene expression profiling technolo-
gies, although previous studies showed that dedicated normalization methods enabled cross-platform pattern 
discovery and  classification14,15, and comparative differential expression analyses also showed good agreement 
between the two gene expression profiling  platforms16.

In this study, we explored cross-platform subtype discovery in LUAD and LUSC using public gene expres-
sion data from over 3500 normal and tumor lung samples. We tested 384 combinations of preprocessing, cross-
platform normalization, and unsupervised feature selection methods. The results were evaluated based on the 
agreement between subtypes identified in single-platform and cross-platform normalized data using various 
statistics including clustering comparison measures. We show that unsupervised learning can be achieved with 
combined microarray and RNA-seq data. We further show that tumor subtype biomarkers can be identified in 
integrated gene expression and quantitative proteomics data.

Results
Classification of lung cancer subtypes. Our main objective was to identify robust expression subtypes 
in combined microarray and RNA-seq data for the two most common lung cancer histological subtypes (LUAD 
and LUSC). We collected a total of 2079 lung microarrays (500 normal, 1134 LUAD and 445 LUSC) and 1673 
lung RNA-seq samples (532 normal, 640 LUAD and 501 LUSC). Although cross-platform analysis of a large 
number of samples can facilitate expression subtype analyses, clustering may nevertheless be sensitive to the 
presence of experimental (platform and batch) effects, outliers (e.g. low quality or misdiagnosed samples) as 
well as to data processing procedures including normalization and feature  selection17–25. We therefore evalu-
ated various single and cross-platform normalization and unsupervised feature selection methods to identify 
an optimal combination of data processing methods for cross-platform classification of lung cancer subtypes as 
detailed in Fig. 1.

After preprocessing single-platform data and performing cross-platform normalization, we proceeded to a 
first round of iterative ensemble classification (Supplementary Fig. S1) to clean data by removing a small number 
of samples with low confidence (< 75% of votes) regarding the main class labels (1.1–3.5% of microarrays and 
0.9–1.3% of RNA-seq samples, depending on the data preprocessing method). Consensus  clustering26 analyses 
were subsequently performed on expression data from a total of 384 data processing combinations, and resulting 
clusters were evaluated using different statistics. Cluster  purity27 and clustering comparison  measures28 were used 
to evaluate agreement between clusters identified using single-platform and combined data, while  entropy27, a 
measure of  association29 and  randomness30,31 were used to evaluate the tendency of data to cluster by platform 
rather than by subtype. Lastly, we used min (O/E) , the minimum ratio of observed (size of the smallest cluster) 
relative to expected (number of samples divided by number of clusters), to identify data containing spurious 
clusters.

First, the analysis of platform entropy revealed that two cross-platform normalization methods, feature-
specific quantile normalization (FSQN)15 and  ComBat21,32, performed well as evidenced by their high entropy. 
In contrast, the two other methods tested, training distribution matching (TDM)14 and quantile  normalization33, 
performed rather poorly showing entropy below 0.1 (Supplementary Fig. S2). For TDM, in addition to using 
normalized values as input, we also used raw RNA-seq counts as recommended by the authors of the TDM 
 software34, which yielded similar results with entropy close to zero (data not shown). Based on these results, 
TDM and quantile normalization were excluded from further analyses, leaving 192 data processing combina-
tions for each class.

Next, the following selected filters were applied: purity > 0.8 to retain only results with good agreement 
between single-platform and combined data, and min(O/E) > 0.1 to eliminate results containing spurious clusters. 
These filters had little effect on the proportion of single-platform processing or unsupervised feature selection 
methods in the remaining combinations; however, the vast majority of clustering results remaining after filtering 
were associated with three LUAD subtypes and two LUSC subtypes (Supplementary Fig. S3). To confirm this 
observation, we also analyzed the frequency of the best number of clusters for each dataset evaluated using the 
R package  NbClust35 combined with the above filters. This analysis supported the same result showing three 
LUAD subtypes and two LUSC subtypes (Supplementary Fig. S4).

Remaining data processing combinations retained in both LUAD and LUSC (78 combinations) were then 
ranked using various  statistics27–31. The analysis of absolute correlation between these measures revealed four 
groups (Supplementary Fig. S5), each of which was weighted equally for the final ranking: (1) single vs. cross-
platform clustering agreement: purity, adjusted mutual information, adjusted Rand index, normalized informa-
tion distance, normalized variation information; (2) measures related to platform entropy and platform-cluster 
association: entropy, Cramér’s V; (3) platform randomness within clusters: number of runs divided by sample 
size, rank version of von Neumann’s ratio and (4) min(O/E) for minimizing the presence of spurious clusters. The 
top-ranking data processing combination was: microarray suite 5.0 (mas5)36 for microarray data, edgeR reads 
per kilobase per million (rpkm)37 for RNA-seq,  FSQN15 for cross-platform normalization, and median absolute 
deviation (mad) for unsupervised feature selection (Supplementary Table S1).
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Using clusters resulting from the top-ranking data processing combination as class labels, all lung samples 
(normal, LUAD and LUSC) were submitted to a final round of supervised classification, which in our experience 
improves the classification of some of the samples that are more difficult to classify using unsupervised methods 
alone. The heatmap in Fig. 2 represents the results of this final classification. Clustering of cross-platform normal-
ized data showed consistent expression patterns with good separation between subtypes and even distribution 
of samples from the two expression profiling platforms for all tumor subtypes.

Characteristics of lung cancer subtypes. To take advantage of our robust cross-platform tumor sub-
type classification, we proceeded to a reanalysis of LUAD and LUSC genomic alterations and patient outcomes 
and compared findings to those from the original  studies12,13. Since the publication of these studies by TCGA, 
numerous additional patients have been enrolled and all data have been reanalyzed and harmonized to a newer 
version of the human genome (GRCH38)38 by the Genomics Data Commons (GDC)39.

Lung adenocarcinoma and LUSC expression subtypes from our analysis were compared to those identified 
in TCGA studies using annotations from  TCGAbiolinks40. Lung adenocarcinoma subtypes 1–3 correspond to 
the proximal-proliferative, proximal-inflammatory and terminal respiratory unit subtypes, respectively, whereas 
LUSC-1 regroups the basal, primitive and secretory subtypes and LUSC-2 corresponds to the classical subtype. 
Analysis of available survival data (1,734 patients) revealed significant (p < 1e−10) differences between subtypes 
(Supplementary Fig. S6). Overall, LUAD-1 patients had the worst overall prognosis, whereas LUAD-3 patients 

Supervised classification
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Figure 1.  Overview of the workflow for selecting the best combination of data processing methods for 
cross-platform classification of lung cancer into tumor subtypes. In brief, microarray data were pre-processed 
using two methods, and RNA-seq data were pre-processed using six methods. Data from the two platform 
were combined and cross-platform normalization was performed using four methods. After filtering data by 
removing samples with low confidence regarding main class labels (LUAD, LUSC and normal lung), single-
platform and cross-platform normalized data were submitted to unsupervised feature selection using eight 
methods, and then to consensus clustering. Clustering results were compared between single-platform and 
cross-platform normalized data using various statistics. Clustering results from the top-ranking combination 
of data processing methods were selected for a final round of supervised classification into tumor subtypes. 
Microarray pre-processing methods: mas5, microarray suite 5.0; rma, robust multi-array average. RNA-seq pre-
processing methods: cpm, counts per million; fpkm, fragments per kilobase per million; normTransform, shifted 
logarithm transformation; rpkm, reads per kilobase per million; voom, variance modeling at the observational 
level; vst, variance stabilizing transformation. Cross-platform normalization methods: ComBat, empirical 
Bayes batch effect correction; FSQN, feature-specific quantile normalization; quantile, quantile normalization; 
TDM, training distribution matching. Unsupervised feature selection methods: disr, diversity-induced self-
representation; lscore, Laplacian score; mad, median absolute deviation; mcfs, multi-cluster feature selection; 
specu, unsupervised spectral feature selection; spufs, structure preserving unsupervised feature selection; svde, 
singular value decomposition entropy; udfs, unsupervised discriminative features selection. Clustering statistics: 
entropy, platform entropy; ITCC, information theoretic clustering comparison; min(O/E), minimum observed 
to expected ratio; NbClust: optimal number of clusters; purity: maximum agreement between single and cross-
platform data; randomness: platform randomness within clusters.
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had the best prognosis (both overall and relapse-free survival). For LUSC, subtype 1 had a better relapse-free 
survival than subtype 2. Follow-up times were relatively short for TCGA data as noted  before41 but were in general 
longer for microarray  data42–47 which strengthened the analysis for the combined survival data.

Focal copy number amplifications were assessed in each tumor subtypes using masked copy number segments 
from GDC analyzed with GISTIC 2.048. Table 1 lists amplified focal copy number regions that overlap with genes 
coding for targets of clinical-stage or approved lung cancer therapeutic  targets2,5,8,49 in any of the five lung cancer 
subtypes. Lung adenocarcinoma subtypes 1–2 had the highest number of focal amplifications containing potential 
oncogenes (ERBB2, FGFR1, KRAS, MET), whereas LUAD-3 contained none. Interestingly, LUAD subtypes 1–2 
also contained KDR (a.k.a VEGFR) amplification, which was not reported in the original TCGA LUAD  study13. 
Epithelia growth factor receptor (EGFR) was most frequently amplified in four subtypes (LUAD-1, LUAD-2, 
LUSC-1, LUSC-2). We further evaluated the percentage of samples carrying mutations using averages from 
 MuTect50, VarScan  251, Somatic  Sniper52 and  MuSE53 in lung cancer therapeutic targets (Table 2). Percentages of 
samples with mutations within each tumor subtype were highly consistent between the different variant-calling 
software. Again, LUAD subtypes carried the largest load of somatic mutations in potential oncogenes, and the 
most frequent mutated gene was KRAS. However, the LUAD-3 subtype had the most frequent mutations in 
EGFR. Lung squamous cell carcinoma had much less mutations as compared with LUAD, however some genes 
including e.g. KDR and ROS1 were frequently mutated in LUSC.

Because of the importance of protein assays in the  clinic54, we further sought to integrate quantitative prot-
eomics data with gene expression data, taking advantage of the recently released data for LUAD by the Clinical 
Proteomic Tumor Analysis Consortium (CPTAC)55. Our goal was to select a small set of biomarkers for subtype 
classification, capable of classifying LUAD tumors using either gene expression or quantitative proteomics data. 
To illustrate the robustness of the biomarkers, we combined gene expression data with proteomics data without 
any special cross-platform normalization other than scaling the mean and variance using microarray data as 
reference. Labels for CPTAC samples (205 classified samples with both RNA-seq and proteomics data) were 
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Figure 2.  Heatmap and hierarchical clustering of lung cancer and normal lung microarray and RNA-seq data. 
LNOR, normal (healthy) lung; LUAD-(1–3), lung adenocarcinoma subtypes 1–3; LUSC-(1–2), lung squamous 
cell carcinoma subtypes 1–2. This figure was produced using R version 4.0.4 (https:// www.r- proje ct. org/).

https://www.r-project.org/
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assigned using classification of RNA-seq samples as described above. The top-10 features were selected for each 
one-against-one (OAO) class comparison using the log2 fold change (log2FC) and the overlap of locally adap-
tive kernel  densities56. Figure 3 shows that biomarkers selected across platforms are able to accurately separate 
samples by clustering for all OAO class comparisons.

Discussion
Lung adenocarcinoma and LUSC have previously been classified into transcriptional subtypes associated with 
important characteristics such as response to targeted  therapies10,11. Transcriptional subtypes can further be 
integrated with other data such as somatic mutations and DNA methylation into multi-omics  subtypes12,13. Previ-
ous studies have also shown that classification of NSCLC into histological subtypes can be achieved using rela-
tively simple methods, using both microarray and RNA-seq data, for example a nearest class centroid approach 
using differentially expressed genes and Pearson correlation as a similarity  measure57, or a two gene (KRT5 and 
AGR2) expression ratio which classified LUAD and LUSC samples with relatively high  accuracy58. However, to 
our knowledge, systematic evaluation of data processing methods for unsupervised classification of LUAD and 
LUSC transcriptional subtypes across gene expression profiling platforms has not been performed previously. 
In this study, we used an unsupervised approach combining 384 data processing methods to analyze public gene 
expression data (2,079 microarrays and 1673 RNA-seq samples). This analysis provided insights into the optimal 
combination of data processing methods for cross-platform clustering, and enabled the identification of robust 
LUAD and LUSC expression subtypes in combined microarray and RNA-seq data.

Combinations of data processing methods were evaluated using single and cross-platform consensus cluster-
ing, and various statistics including cross-platform purity, clustering comparison measures, platform entropy, as 
well as randomness and min(O/E). Whereas cluster purity is generally used to evaluate the ability of a clustering 
method to recover known  classes27, here it was used to evaluate the maximum agreement between single and 

Table 1.  Focal amplifications and therapeutic targets in LUAD and LUSC subtypes.

Class Chromosome Start End Gene

LUAD-1 chr4 54249594 58387240 KDR

LUAD-1 chr7 54467979 56385413 EGFR

LUAD-1 chr8 38413296 38619413 FGFR1

LUAD-1 chr12 25205851 25213599 KRAS

LUAD-1 chr17 39507734 39854986 ERBB2

LUAD-2 chr4 54481387 55668902 KDR

LUAD-2 chr7 116699055 116705489 MET

LUAD-2 chr7 54714092 55576700 EGFR

LUAD-2 chr12 25181421 25209325 KRAS

LUAD-2 chr17 39725021 39761258 ERBB2

LUSC-1 chr7 54751453 55698753 EGFR

LUSC-2 chr7 54699947 55357446 EGFR

Table 2.  Percentage of samples carrying somatic mutations in therapeutic targets in LUAD and LUSC 
subtypes.

Gene LUAD-1 LUAD-2 LUAD-3 LUSC-1 LUSC-2

KRAS 27.25 24.15 24.55 0.96 0

EGFR 3.89 9.12 12.93 2.03 1.13

NTRK3 11.48 9.47 2.64 4.06 3.1

KDR 10.04 7.33 4.59 6.3 4.66

PDGFRA 7.38 8.76 4.32 4.16 2.83

BRAF 7.38 6.8 6.41 1.5 2.68

ROS1 7.38 3.58 0.7 5.66 7.06

ALK 6.56 5.18 3.34 3.21 1.97

NTRK2 5.94 2.68 2.09 2.46 1.69

RET 4.92 4.65 0.69 2.67 3.81

PDGFRB 4.3 2.68 1.25 2.14 1.41

MET 2.46 4.11 2.36 0.54 0.28

NTRK1 3.28 1.79 1.25 1.6 2.96

ERBB2 0 3.22 0.56 1.39 1.13

FGFR1 0.82 0.53 0.28 0.74 0
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cross-platform data. Measures of randomness enabled the evaluation of the tendency of samples to regroup by 
platform within clusters. In addition, the use of min(O/E) allowed effective filtering of small, spurious clusters. 
For unsupervised feature selection methods, the simplest and fastest method, namely median absolute deviation 
(mad), performed well and ranked above more complex and computationally intensive methods. The approach 
of binning genes by expression level also helped to avoid enrichment of features sets with low-expressed genes.

For cross-platform normalization,  FSQN15 performed better than other methods tested in this study. This 
method normalizes RNA-seq data in a feature-specific manner, using microarray data as a reference (quantiles for 
each gene). This method performs best with larger numbers of samples, as was the case in our study. As discussed 
in Franks et al.15, its superior performance can be attributed to the fact that FSQN preserves “distribution infor-
mation about the center and spread of each individual gene”. Interestingly,  ComBat21, a method originally devel-
oped to adjust microarray data for batch effects, also performed relatively well for removing platform effects. The 
latter method estimates model parameters by pooling information across genes and experimental conditions. The 
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Figure 3.  Biomarkers selected across three platforms for one-against-one classification of LUAD subtypes and 
normal lung. (A) Normal lung vs. LUAD-1; (B) normal lung vs. LUAD-2; (C) normal lung vs. LUAD-3; (D) 
LUAD-1 vs. LUAD-2; (E) LUAD-1 vs. LUAD-3; (F) LUAD-2 vs. LUAD-3. HGNC gene symbols are used to 
identify all biomarkers. This figure was produced using R version 4.0.4 (https:// www.r- proje ct. org/).
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resulting empirical Bayes estimates are used to adjust the data for unwanted sources of experimental variation. 
The other two methods tested for cross-platform normalization, namely quantile  normalization33 and  TDM14, 
did not perform well as evidenced by low entropy, meaning that unsupervised learning with data normalized 
using these methods would identify primarily platform-specific clusters. Quantile normalization ranks features 
using expression levels, and assigns to each feature the average value of other features with the same rank in 
other samples. This method can be used with a single matrix, or with a target and a reference matrix. Training 
distribution matching uses a similar approach, whereas target distributions are adjusted to match certain proper-
ties of a reference distribution (interquartile range, spread of the tails, extreme values) and expression data in a 
target sample is mapped into a range from the minimum to the maximum of the reference data. Altogether, this 
analysis showed that feature-specific methods such as FSQN perform better for cross-platform normalization, 
especially for unsupervised learning which is more sensitive than supervised approaches to experimental biases 
including platform effects.

After the filtering and ranking of data processing methods, we found that RNA-seq data normalized using 
effective gene length (edgeR  rpkm37 and DeSeq2  fpkm59) performed well as input for classification after cross-
platform normalization. Although RNA-seq counts normalized using gene or transcript length are generally used 
to compare gene expression within samples, here we show that such units are very compatible with both super-
vised and unsupervised classification approaches, and integrate better with microarray data for cross-platform 
normalization. This can be explained by the fact that methods used to summarize microarray data (mas5 or 
RMA) are averages across probes, and there is no direct link between gene length and expression level. RNA-
seq data normalized using effective gene length are thus more similar to, and integrate better with microarray 
data for cross-platform normalization and machine learning tasks such as feature selection and classification.

The three LUAD subtypes identified in our analysis were highly concordant with those identified in a previ-
ous  study10. However, single and cross-platform clustering data provided strong evidence for only two LUSC 
expression subtypes, in line with results from a previous  study60, but opposed to another study that identified 
four  subtypes11. This may be explained by the fact that the study by Wilkerson et al.11 used microarray data only, 
and a relatively small number of samples, although subtypes were validated across several datasets. The most 
limiting factor for the number of clusters was cross-platform purity, whereas only two subtypes were consistent 
between single-platform and cross-platform unsupervised learning in LUSC. The three subtypes previously iden-
tified within LUSC-1 (basal, primitive and secretory) may have some utility in terms of prognostics/diagnostics, 
but our results show that they are grouped into a single class by our data-driven, unsupervised cross-platform 
tumor subtype identification methodology. This is a strength in our approach, that only the most robust clusters, 
identified across platforms, are retained as candidate tumor subtypes. Robust classification schemes are more 
likely to successfully transfer to real-world applications by minimizing reliance on features that are variable due 
to batch or platform effects.

Each tumor subtype was analyzed separately for focal amplifications and somatic mutations in genes coding 
for targets of clinical-stage or approved lung cancer therapeutics, and patterns presented here show that patients 
within each subtype may benefit from a particular subset of targeted therapeutics. In addition, to demonstrate 
the robustness of transcriptional subtypes identified in this study, we showed that biomarkers accurately sepa-
rating the different tumor subtypes and normal tissues can be selected and validated with mass spectrometry-
based quantitative proteomics data, even though the number of proteins quantified is limited as compared 
with gene expression data, and generally biased towards highly expressed genes. With further validation, the 
identified proteins may be used as biomarkers to classify tumors using classical protein-based methods such as 
immunohistochemistry.

Cross-platform classification of microarray and RNA-seq data is challenging because of intrinsic differences 
and biases in data distribution between the two platforms. A careful selection of data processing and machine 
learning methods enabled cross-platform classification of lung tumor expression subtypes. Our study confirmed 
three LUAD expression subtypes, but only two subtypes in LUSC as opposed to four subtypes previously identi-
fied. Such classification provides insights into clinical management and drug development for LUAD and LUSC, 
in particular with respect to identifying subtype-specific targets for antibody-based therapeutics. This study 
provides the basis for further integrative analysis of microarray, RNA-seq and quantitative proteomics data, and 
for the classification of tumors into expression subtypes.

Methods
Data acquisition and preprocessing. Raw data corresponding to a total of 2,079 samples profiled using 
microarrays (500 normal, 1134 LUAD and 445 LUSC) were obtained from  GEO61 and 1673 lung samples pro-
filed using RNA-seq (532 normal, 640 LUAD and 501 LUSC) were obtained from the Sequence Read Archive 
(SRA)62 (dbGap accession number phs000424.v8.p2, fresh frozen and PAXgene-preserved samples only) and 
 GDC39 (projects TCGA and CPTAC-3). All data were processed using GDC reference files (GRCh38.d1.vd1, 
GENCODE 22): a custom chip definition (21,552 genes) file was created for microarray data using the methods 
of Dai et al.63, and GTEx samples were re-aligned to GRCh38.d1.vd1 using GDC mRNA analysis pipeline (STAR 
two-pass)64. Microarray data were combined into one expression set and processed using R library  affy65. RNA-
seq data were combined into a single count matrix and processed using  edgeR37,  DESeq266 and limma (voom)67 
(Table 3). Reduced ranges of coding exons were used for fragments per kilobase per million (fpkm) calculations. 
Batch (series) effect were corrected using  ComBat21,32. A subset of 17,095 protein-coding genes represented on 
both platforms was selected for further analyses. For cross-platform analysis, we first scaled the RNA-seq data to 
have a similar distribution (mean and variance) to that of microarray data and then merged and normalized the 
data from the two platforms using R libraries  FSQN15,  TDM14,  sva32 and  preprocessCore68 (Table 4).
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Unsupervised feature selection and clustering. Normalized data (single-platform and cross-plat-
form) were submitted to unsupervised feature selection with eight different methods using R libraries  stats69, 
 Rdimtools70 and an in-house package for singular value decomposition entropy implemented using  Rcpp71 
(Table 5). For each dataset, a total of  210 features were equally selected from eight bins delineated using gene 
expression means, to avoid enrichment of low-expression features which are more noisy. This number of features 
was deemed optimal as evaluated by cross-platform purity for a range of features between  28 and  212 (Supple-
mentary Fig. S7). Data were then submitted to consensus  clustering26 as well as evaluation of the optimal number 
of clusters (min = 2, max = 6) using  NbClust35. Agreement between clusters identified using single-platform and 
combined data were evaluated using R package  aricode72 as well as a custom R function to evaluate purity (maxi-
mum agreement between single and cross-platform data). The tendency of cross-platform data to cluster by 
platform rather than by cancer subtype was evaluated using NMF  package73 (function entropy) and DescTools 
 package74 (functions  CramerV29,  RunsTest75 and  BartelsRankTest31). Spurious clusters were evaluated using 
min(O/E), the size of the smallest cluster over sample size divided by number of clusters.

Supervised classification. Samples were submitted to five rounds of a Monte Carlo iterative ensemble clas-
sification algorithm, modified  from56 to include rounds of repeated random sampling (Supplementary Fig. S1). 
At each round, a total of 100 iterations were performed, in which 100 samples per class were randomly sampled 
with replacement, and classifiers were constructed for each 

(

w

2

)

 pair of classes OAO, for three supervised feature 
selection methods, three classification methods and six increasing number of features. All remaining samples 
were classified, by generating votes only where labels generated by OAO classifiers were maximal (i.e. number 
of classes minus one). Then, labels assigned with high confidence (> 90% of votes) by the ensemble of experts 
(5400 votes from 100 iterations, three feature selection methods, three classification methods, and six increasing 
number of features) were fed back into the data and used for subsequent feature selection and training of the 
classifiers. This procedure was repeated until the number of predictions was stabilized over a number of itera-

Table 3.  Functions used for preprocessing/normalization of microarray and RNA-seq data.

Library Function Description Reference

affy mas5 Microarray suite 5.0 36

affy rma Robust multi-array average 93

edgeR cpm Counts per million 37

edgeR rpkm Reads per kilobase per million 59

DESeq2 normTransform Shifted logarithm transformation 92

DESeq2 vst Variance stabilizing transformation 94

DESeq2 fpkm Fragments per kilobase per million 59

limma voom Variance modeling at the observational level 95

Table 4.  Functions used for cross-platform normalization of microarray and RNA-seq data.

Library Function Description Reference

FSQN quantileNormalizeByFeature Feature-specific quantile normalization 15

TDM tdm_transform Training distribution matching 14

sva ComBat Empirical Bayes batch effect correction 21

preprocessCore normalize.quantiles Quantile normalization 33

Table 5.  Unsupervised feature selection methods used for clustering analysis.

Library Function Description Reference

Stats mad Median absolute deviation 96

svde Singular value decomposition entropy 97

Rdimtools do.disr Diversity-induced self-representation 98

Rdimtools do.lscore Laplacian score 99

Rdimtools do.mcfs Multi-cluster feature selection 100

Rdimtools do.specu Unsupervised spectral feature selection 101

Rdimtools do.spufs Structure preserving unsupervised feature selection 102

Rdimtools do.udfs Unsupervised discriminative feature selection 103
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tions (convergence was considered achieved when the number of classified samples reached a plateau). At this 
point, all samples with moderate to high confidence (> 75% of votes) were assigned class labels and retained for 
further analysis. For supervised classification purposes, filter-based feature selection was performed by selecting 
the top 

(

2
k
)10

k=5
 features ranked using three different statistics: q-values derived from linear models for microar-

ray (Limma) moderated t-test76,77, the overlapping coefficient of locally adaptive kernel density  estimates78,79, 
and the weights of support vectors (WSV)80. Locally adaptive kernel densities and overlapping coefficients were 
computed using an in-house R package implemented using  Rcpp71. The WSV were computed using the e1071 
R  package81. Classification was achieved using three algorithms implemented in the RWeka  package82: k-nearest 
 neighbors83, random  forests84 and support vectors  machines85.

Characterization of tumor subtypes and biomarker selection. Survival data were obtained from 
the TCGA pan-cancer clinical  resource41 for RNA-seq data, and from  GEOmetadb86 for microarray data. Sur-
vival analysis was performed using the R package  survival87 using default parameters. Masked copy number 
segments were obtained from GDC and processed using GISTIC 2.048. The search for focal amplifications was 
restricted to peaks covering less than 3 Mb as recommended in Krijgsman et al.88. Somatic calls from  MuTect50, 
VarScan  251, Somatic  Sniper52 and  MuSE53 were obtained from the GDC, and lung tumor RNA-seq data were 
analyzed using  VarDict89. These data were analyzed using the R packages  maftools90 and  VariantAnnotation91.

To select biomarkers for LUAD, we used microarray data processed using  mas536 and RNA-seq data nor-
malized using  DESEq292 and log2 protein expression data from CPTAC 55. Proteomics and RNA-seq data were 
scaled (mean and variance) using microarray data as reference. Features were selected to maximize the log2FC 
and to minimize the overlap of locally adaptive kernel  densities56 with a total of 10 features for each OAO class 
comparison.

Data availability
Raw data analysed in this study are available to download from  GEO61,  SRA62 and  GDC39 repositories. Some 
restrictions may apply to the availability of these data, which were used under license for the current study. 
Processed data analyzed as part of the current study are available from the corresponding authors on request.
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