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A three‑feature prediction model 
for metastasis‑free survival 
after surgery of localized clear cell 
renal cell carcinoma
Kalle E. Mattila1,7*, Teemu D. Laajala2,3,7, Sara V. Tornberg4, Tuomas P. Kilpeläinen4, 
Paula Vainio5, Otto Ettala6, Peter J. Boström6, Harry Nisen4, Laura L. Elo3,8 & 
Panu M. Jaakkola1,3,8

After surgery of localized renal cell carcinoma, over 20% of the patients will develop distant 
metastases. Our aim was to develop an easy-to-use prognostic model for predicting metastasis-free 
survival after radical or partial nephrectomy of localized clear cell RCC. Model training was performed 
on 196 patients. Right-censored metastasis-free survival was analysed using LASSO-regularized Cox 
regression, which identified three key prediction features. The model was validated in an external 
cohort of 714 patients. 55 (28%) and 134 (19%) patients developed distant metastases during the 
median postoperative follow-up of 6.3 years (interquartile range 3.4–8.6) and 5.4 years (4.0–7.6) in 
the training and validation cohort, respectively. Patients were stratified into clinically meaningful 
risk categories using only three features: tumor size, tumor grade and microvascular invasion, and 
a representative nomogram and a visual prediction surface were constructed using these features 
in Cox proportional hazards model. Concordance indices in the training and validation cohorts were 
0.755 ± 0.029 and 0.836 ± 0.015 for our novel model, which were comparable to the C-indices of the 
original Leibovich prediction model (0.734 ± 0.035 and 0.848 ± 0.017, respectively). Thus, the presented 
model retains high accuracy while requiring only three features that are routinely collected and widely 
available.

After surgery for localized renal cell carcinoma (RCC) approximately 20 to 30% of patients will develop disease 
recurrence1,2 and a 5-year disease-free survival ranges from 91 to 51% in contemporary studies3,4. Tumor stage, 
higher nuclear grade, the presence of histologic tumor necrosis, microvascular invasion, sarcomatoid differen-
tiation and positive surgical margins are associated with shorter disease-free and cancer-specific survival after 
radical nephrectomy (RN) and partial nephrectomy (PN)3–8. Risk-based follow-up with thoracic and abdominal 
computed tomography (CT) is recommended to detect distant metastases and local recurrence early9,10.

Several prediction models have been developed to assess oncologic outcomes after RN or PN (Table 1). The 
Kattan2, UISS11 and Karakiewicz12 prediction models include clear cell, papillary and chromophobe RCC, whereas 
the SSIGN13, Leibovich8 and Sorbellini14 models were developed for clear cell RCC only. In 2018 Leibovich et al. 
introduced new models to predict progression-free and cancer-specific survival in clear cell, papillary and chro-
mophobe RCC separately15. To stratify patients into risk groups Kattan, Sorbellini and Karakiewicz presented 
their models as nomograms, UISS introduced a categorization table and SSIGN and Leibovich models were 
presented with a scoring table. The required features for the prediction task in different models are described 
in Table 1.
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In this study, our primary objective was to build an easy-to-use and accurate prognostic model using readily 
available clinicopathologic features to predict the risk of developing distant metastases after surgery of local-
ized clear cell RCC. Focus was placed on selecting a minimal set of features that would still optimally predict 
recurrence. We further aimed to build a visual prediction surface to stratify patients into relevant risk groups 
for convenient adoption to clinical use. Patients with non-clear cell histology (e.g. papillary and chromophobe 
RCC) were excluded from our analysis as well as patients with local recurrences in the kidney after PN or in 
the retroperitoneal space after RN without distant metastases. Primarily metastatic patients who underwent 
cytoreductive nephrectomy were also excluded. The original Leibovich model8 was chosen as the reference model, 
because it has been thoroughly validated by other researchers16,17.

Patients and methods
Patient cohorts and features included in the analysis.  A training cohort of 196 patients operated 
between 2005 and 2014 for localized clear cell RCC was identified from the pathology reports of Turku Univer-
sity Hospital, Finland. Clinical and pathological features and the outcome of the patients were retrospectively 
collected from original pathology and medical reports. The pathological features of primary tumor included the 
histologic subtype, tumor size (maximum dimension), TNM stage (according to AJCC 7th edition) and tumor 
grade as well as information on the presence of microvascular invasion, sarcomatoid differentiation, histologic 
tumor necrosis, a positive surgical margin and tumor invasion into the renal pelvis, ureter, peripelvic fat, per-
inephric fat, renal vein or ipsilateral adrenal gland. Microvascular invasion was defined as tumor cells within 
small vessels in the tumor pseudocapsule, tumor or renal parenchyma adjacent to the tumor6. No immunohisto-
chemistry was used to detect microvascular invasion. In addition to the 4-tiered Fuhrman grading system18, the 
tumor grade was also determined using the 3-tiered WHO (1998) grading system19. Histological features were 
determined according to the initial pathology report and no centralized histological assessment was performed. 
Therefore, traditional Fuhrman grading was used instead of modern WHO/ISUP grading6 in our analysis. The 
clinical features included age, sex, the Charlson comorbidity index20, ASA classification, hemoglobin, hemato-
crit, the mean corpuscular volume, the mean corpuscular hemoglobin, white blood cells, platelets and serum 
creatinine at the time of surgery. A comprehensive list of all the tested prognostic features is reported in the 
Supplementary Table S1.

The primary endpoint was the clinical detection of distant metastases during postoperative follow-up with 
thoracic and abdominal CT. Biopsy was not required to confirm distant metastases. The follow-up cut-off date 
was 11.7.2019 for the training cohort. The Leibovich score was determined for each patient as described in the 
original article8.

The external validation cohort consisted of 714 patients, who underwent PN or RN for localized clear cell 
RCC at Helsinki University Hospital, Finland, between 2006 and 2015. Patients had postoperative follow-up 
with thoracic and abdominal CT according to local clinical practice to detect distant metastases. Biopsy was 
not required to confirm metastatic disease. Patients with non-clear cell histology, cytoreductive nephrectomy, 
and local recurrence without distant metastases were excluded. The follow-up cut-off date was 18.9.2019 for the 
validation cohort. After identifying the required predictive features from the training cohort, these features were 
gathered from the validation cohort together with the features required for calculating the Leibovich score. The 
Leibovich score was determined similarly as for the training cohort.

Patient characteristics of the Turku University Hospital training cohort and the Helsinki University Hospital 
validation cohort are shown in Table 2. Patient selection for the Turku University Hospital training cohort and 
for the Helsinki University Hospital validation cohort is described in Fig. 1.

Statistical modelling.  During exploratory analyses, the Turku University Hospital training cohort was 
subjected to regularized Cox regression using the LASSO L1-norm for identifying optimal features in right-
censored progression free survival. Tenfold cross-validation was run over 100 random binnings of the training 
cohort. At each of these 100 runs, a conservative lambda penalization parameter was selected at the first value 
that was within one standard error of the cross-validation error minimum. The features were then ordered 
according to how many times they appeared over the 100 runs, with the top three occurring features being 
maximum tumor diameter, tumor grade, and microvascular invasion status. After testing for C-index in the 
validation cohort in comparison with the Leibovich score, the final proposed Cox model was fit using the prede-

Table 1.   Renal cell carcinoma postoperative prediction models. a Recurrence-free survival. b Overall survival. 
c Cancer-specific survival. d Metastasis-free survival. e Not defined.

Model Outcome C-index Features

Kattan (2001) RFSa 0.74 Symptoms (incidental, local, systemic symptoms), Histology (chromophobe, papillary, clear cell), Tumor size, 1997 pT-stage2

UISS (2001) OSb NDe 1997 TNM Stage, Fuhrman grade, ECOG performance status11

SSIGN (2002) CSSc 0.84 1997 T stage, N stage, M stage, Tumor size, Fuhrman grade, Necrosis13

Leibovich (2003) MFSd 0.819 Tumor Stage, Regional lymph node status, Tumor Size, Fuhrman grade, Necrosis8

Sorbellini (2005) RFS 0.82 Size, 2002pT, Fuhrman grade, Necrosis, Vascular invasion, Presentation (incidental, local symptoms, systemic symptoms)14

Karakiewicz (2009) CSS ND Age, Gender, Symptoms (no, local, systemic), Tumor Size, T-stage, Metastasis12

Leibovich (2018) RFS 0.83 Constitutional symptoms (yes, no), WHO/ISUP 2016 tumor grade, Necrosis, Sarcomatoid differentiation, Tumor size, Perinephric or 
renal sinus fat invasion, Tumor thrombus level, Extension beyond kidney, Nodal involvement15
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Table 2.   Patient characteristics. Values reported as: aMedian (Range), bAbsolute amount (Percentage).

Turku University Hospital training cohort 
(N = 196)

Helsinki University Hospital validation cohort 
(N = 714)

Age (years)a 67 (37–89) 66 (21–89)

Male/femaleb 118 (60%)/78 (40%) 393 (55%)/321 (45%)

T stage2

1 104 (53%) 424 (59%)

2 32 (16%) 50 (7%)

3–4 59 (30%) 240 (33%)

Unknown 1 (< 1%) –

Regional nodal statusb

Nx/N0 194 (99%) 703 (98%)

N1 2 (1%) 11 (2%)

Tumor size (mm)a 57 (10–160) 48 (8–200)

Histologic tumor necrosisb

Yes 71 (36%) 148 (21%)

No 7 (4%) 563 (79%)

Unknown 118 (60%) 3 (< 1%)

Microvascular invasionb

Yes 33 (17%) 127 (18%)

No 152 (78%) 587 (82%)

Unknown 11 (6%) –

Tumor grade (Fuhrman)b

1 32 (16%) 102 (14%)

2 87 (44%) 389 (55%)

3 60 (31%) 193 (27%)

4 17 (9%) 27 (4%)

Unknown – 3 (< 1%)

Figure 1.   Patient selection flow chart.
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termined features for observations from both cohorts in order to leverage the larger N available in the validation 
cohort.

R statistical software v3.5.2 was utilized for all the statistical analyses. The R-packages glmnet, survival, 
survminer, compareC, rms, survivalROC and hamlet were utilized during model fitting, feature extraction, 
benchmarking and subsequent visualization steps for the nomogram and risk grouping surface. In the results 
section, continuous variables are presented with median and interquartile range and categorical variables with 
category amounts and corresponding percentages.

Ethical approval statement.  This study was approved by the institutional research board of Turku and 
Helsinki University Hospitals. Informed consent was waived due to retrospective nature of this study and was 
approved by IRB and ethics committee (Turku Clinical Research Centre Licence number T06/032/15, date 
28.9.2015). All methods were performed in accordance with the institutional guidelines and regulations. Data 
was anonymized for statistical analyses and handled in a manner that meets the EU General Data Protection 
Regulation 2016/679 (GDPR) on data protection.

Results
Clinical outcome.  The median follow-up in our RCC patient cohorts was 76.1 (interquartile range 40.9–
103.9) months in the training cohort and 65.4 (47.7–90.8) months in the validation cohort. 55 (28%) patients in 
the training cohort and 134 (19%) patients in the validation cohort developed distant metastases during post-
operative follow-up. The median time to distant metastases was 25.5 (11.2–49.9) months in the training cohort 
and 21.9 (8.8–42.8) months in the validation cohort. The most common sites of metastases were lungs (47% of 
the patients with metastases), lymph nodes (36%) and brain (16%) in the training cohort and lungs (68%), bone 
(16%) and lymph nodes (12%) in the validation cohort.

Prognostic model for postoperative RCC outcome.  We employed regularized Cox regression using 
the LASSO L1-norm to discover a minimal set of clinicopathologic features for predicting RCC metastases after 
surgery. Only three features, tumor size, tumor grade (Fuhrman) and microvascular invasion, were found to 
be essential for an accurate prediction model in the Turku University Hospital training cohort of 196 patients. 
We will henceforth refer to our prognostic modelling framework, i.e. building a statistical model for predicting 
a metastasis-free outcome for a patient, as a prediction model for convenience. The resulting model was then 
validated in the external Helsinki University Hospital cohort of 714 patients.

We stratified patients into three clinically relevant risk groups (low-, intermediate- and high-risk) in both 
cohorts using the proposed three-feature prediction model (Fig. 2). The metastasis-free survival of these risk 
groups is illustrated with Kaplan–Meier curves in Fig. 3. The final proposed Cox model is displayed in Table 3. 
Using calibration plots as diagnostics, we observed that the predicted risks from the Cox model agreed with the 
general trends for observed probabilities (Supplementary Fig. S1).

In the training cohort 73 (37%), 87 (44%) and 36 (18%) patients were classified into the low-, intermediate- 
and high-risk groups, respectively. In the validation cohort 314 (44%), 209 (29%) and 191 (27%) patients were 
classified into the low-, intermediate- and high-risk groups. During postoperative follow-up, distant metastases 
were found in 8 (11%), 24 (28%) and 23 (64%) patients in the low-, intermediate- and high-risk group of the 
training cohort and in 12 (4%), 31 (15%) and 91 (48%) patients in the low-, intermediate- and high-risk group of 
the validation cohort. The median time to distant metastases in the low-, intermediate- and high-risk group was 

0 10 20 30 40 50 60 70 80 90 100

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180

1 year

3 years

5 years

10 years

Total points

No Yes
Microvascular 

invasion status

1 32 4
Tumor grade

Maximum tumor 
diameter (mm)

Points

M
et

as
ta

si
s 

fre
e 

%
(fo

llo
w

-u
p 

ye
ar

s)

Low Intermediate High

Risk 
groups

90 80 70 60 50 40 30 20

90 80 70 60 50 40 30 20 10

90 80 70 60 50 40 30 20 10

90 80 70 60 50 40 30 20 10

4

3

2

1Tu
m

or
 g

ra
de

10 20 30 40 50 60 70 80 90 100 110 120 130 140150 160

4

3

2

1Tu
m

or
 g

ra
de

10 20 30 40 50 60 70 80 90 100 110 120 130 140150 160
Maximum tumor diameter (mm)

With microvascular invasion

No microvascular invasion

Risk
groups

Low

Intermediate

High

A B

10 30 50 70 90 110 130 150 170

Figure 2.   (A) A nomogram for calculating continuous risk scores for stratifying patients into low-, 
intermediate- and high-risk groups using the three identified features, presented together with 1-, 3-, 5- and 
10-year metastasis free proportions associated with the total score. (B) The three-feature prediction surface for 
stratifying patients into the low-, intermediate- and high-risk groups.
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66.6 (52.5–75.9) months, 26.0 (18.2–39.8) months and 17.5 (4.7–39.0) months in the training cohort and 46.6 
(19.7–57.9) months, 24.2 (13.0–50.9) months and 18.5 (7.2–36.0) months in the validation cohort respectively. 
Low-risk patients developed metastases later compared to the intermediate- and high-risk patients indicating 
more indolent course of the disease.

The novel proposed model achieved high prediction accuracy. The C-index and standard error was 
0.755 ± 0.029 in the training cohort and 0.836 ± 0.015 in the validation cohort. We then benchmarked our pre-
diction model against the Leibovich model8. While our model outperformed the Leibovich model in the training 
cohort (C-index 0.734 ± 0.035), there was no statistically significant difference between our proposed prediction 
model and the Leibovich model (C-index 0.848 ± 0.017) in the validation cohort (p = 0.106). Noticeably however, 
the number of identified prediction features was lower in our model compared to the models introduced by 
Leibovich et al.8,15. The sensitivity and specificity of our proposed model and the Leibovich model is illustrated 
by time-dependent ROC-AUC-curves in Fig. 4. Noticeably, our novel model retained higher predictive accuracy 
in the later time points (24 to 90 months, Fig. 4A,B), suggesting that the smaller set of prognostic features was 
more robust for long-term predictions. Furthermore, we examined whether discretization of both risk scores 
into three risk categories would affect performance of either model; as observed in Fig. 4C, both models retained 
similar trends measured using cumulative ROC-AUC as their continuous counterparts presented in Fig. 4 panels 
A and B with time-dependent ROC-AUC.

Visual prediction surface for postoperative RCC outcome.  We developed a nomogram to calculate 
patient’s risk score using the three proposed features (Fig. 2A). Tumor size, tumor grade (Fuhrman) and micro-
vascular invasion each result in points from 0 to 100 (tumor size), 0 to 60 (tumor grade) and 0 to 15 (microvas-
cular invasion) and the total points from 0 to 180. Individual risk score is obtained by summing each separate 
risk factor. Furthermore, average metastasis-free survival rates are reported at 1, 3, 5 and 10 years of follow-up as 
associated with the sum of the risk score. As an alternative method, a visual prediction surface for determining 
the risk group given all three variables is presented in Fig. 2B. Low-risk patients are indicated by the blue colour, 
intermediate-risk patients by the yellow colour and high-risk patients by the red colour.
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Figure 3.   Kaplan–Meier curves illustrating statistically significant differences in metastasis-free survival in the 
training cohort (A) and in the validation cohort (B).

Table 3.   The final Cox regression model obtained after feature extraction. CI confidence interval. *Ratio 
increment in hazard of event happening per level of feature when all other features are held constant.

Feature Levels Parameter estimate p-value Hazard ratio* [95% CI]

Tumor max diameter Increment in millimetres 0.017326  < 0.0001 1.017 [1.014–1.021]

Tumor grade (Fuhrman) Increment in levels from 1 to 4 0.685226  < 0.0001 1.984 [1.604–2.454]

Microvascular invasion status Positive finding reported 0.236717 0.0034 1.267 [1.081–1.485]
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Discussion
In this study we aimed to develop an easy-to-use prognostic model to assess metastasis-free survival after sur-
gery of localized clear cell RCC. We introduced a model that required only three features, tumor size, tumor 
grade and microvascular invasion, for the prediction task. Tumor size was found to have the largest effect on 
metastases-free survival in our study. Our model confirmed that routinely reported microvascular invasion, 
even when not based on a centralized review or immunohistochemical staining, increases the risk of disease 
recurrence as noted in earlier studies21,22.

The Concordance index of our proposed model reached 0.836 in the validation cohort and was similar to the 
C-index of 0.848 for the original Leibovich model in the validation cohort (p = 0.106). The reported C-indices 
for other prediction models do not exceed 0.8322. The prediction accuracy of our model was also comparable 
to reported C-index of 0.83 for recurrence-free survival in the 2018 updated Leibovich model15. Interestingly, 
as shown in Fig. 4, our novel model has better prognostic value for long term prediction in both cohorts, as it 
retained a higher integrated AUC for the time-dependent ROC-AUC post 24 months. The original Leibovich 
model required five features (T-stage, N-stage, Tumor size, Nuclear grade and Histologic tumor necrosis)8 and the 
updated Leibovich model required nine features (Constitutional symptoms, Tumor grade, Coagulative necrosis, 
Sarcomatoid differentiation, Tumor size, Perinephric or renal sinus fat invasion, Tumor thrombus level, Extension 
beyond kidney and Nodal involvement)15 for prediction task, whereas our proposed model reached comparable 
prediction accuracy with only three readily available features of the primary tumor. Because of the lack of the 
information on constitutional symptoms and tumor thrombus level in our study cohorts, we were not able to 
compare our model directly with the updated Leibovich model.

The limitations of our study include its retrospective nature, the small number (196 patients) of patients in 
the training cohort and the lack of centralized re-review of the original pathology reports However, this was 
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Figure 4.   Time-dependent ROC-AUC performance for the proposed new model and the benchmarking 
Leibovich model in the training cohort (A) and the validation cohort (B). Integrated AUC (iAUC) was 
computed as the proportion of true performance in area under curve (AUC) within a given time interval out of 
a perfect performance (AUC at 1.0). Subsequently, both the proposed new model and the Leibovich model were 
stratified into three risk groups (low, intermediate, and high; (C)), and two representative time points at 1-year 
and 5-year follow-up are shown here for discriminative capability for both models using cumulative ROC-AUC.
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compensated by the size of the validation cohort (714 patients) and by fitting the final Cox model utilizing 
patients from both cohorts to obtain more reliable estimates. Pathologic features were collected from the origi-
nal pathology reports and therefore Fuhrman grading was used instead of WHO/ISUP grading. The informa-
tion on tumor necrosis was missing in 60% of the original pathology reports of the Turku University Hospital 
cohort but it was routinely reported in the Helsinki University Hospital cohort (< 1% missing). Because of the 
retrospective nature of our study, there was no standardized follow-up protocol and postoperative imaging was 
performed according to local clinical practice at Turku and Helsinki University Hospitals. The proportion of 
patients that underwent PN increased from 8% in 2007 to 23% in 2014 in the Turku University Hospital cohort, 
but the surgical technique has not been observed to affect the risk of distant metastases23. However, we decided 
to exclude patients with local recurrence in the kidney after PN and in the retroperitoneal space after RN without 
distant metastases in order to eliminate the effect of surgical technique on our analysis. Importantly, the simple 
yet efficient prognostic model was successfully validated in the larger external validation cohort. A systematic, 
prospective evaluation of our model with other prognostic models in a larger patient population is warranted 
to support wider clinical use of our model, as retrospective prognostic models have been found to overestimate 
their accuracy in prospective settings24. Furthermore, our training data may have underrepresented otherwise 
informative clinical factors, such as necrosis, and may therefore present bias towards features that were widely 
available in the training cohort.

In conclusion, only three tumour features (tumor size, tumor grade and microvascular invasion) were suf-
ficient for the prediction of metastasis-free survival after surgery of localized clear cell RCC with a similar 
prediction accuracy as the 2003 Leibovich model. To facilitate the use of our model, a nomogram (Fig. 2A) and 
a risk grouping surface (Fig. 2B) were introduced to assess each patient’s relative risk scores and to subsequently 
stratify patients into clinically relevant risk groups.

Data availability
Data is available upon request from the corresponding author.
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