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Machine learning and deep learning 
to predict mortality in patients 
with spontaneous coronary artery 
dissection
Chayakrit Krittanawong1,2*, Hafeez Ul Hassan Virk3, Anirudh Kumar4, Mehmet Aydar5, 
Zhen Wang6,7, Matthew P. Stewart8,9 & Jonathan L. Halperin2

Machine learning (ML) and deep learning (DL) can successfully predict high prevalence events in very 
large databases (big data), but the value of this methodology for risk prediction in smaller cohorts 
with uncommon diseases and infrequent events is uncertain. The clinical course of spontaneous 
coronary artery dissection (SCAD) is variable, and no reliable methods are available to predict 
mortality. Based on the hypothesis that machine learning (ML) and deep learning (DL) techniques 
could enhance the identification of patients at risk, we applied a deep neural network to information 
available in electronic health records (EHR) to predict in-hospital mortality in patients with SCAD. We 
extracted patient data from the EHR of an extensive urban health system and applied several ML and 
DL models using candidate clinical variables potentially associated with mortality. We partitioned 
the data into training and evaluation sets with cross-validation. We estimated model performance 
based on the area under the receiver-operator characteristics curve (AUC) and balanced accuracy. As 
sensitivity analyses, we examined results limited to cases with complete clinical information available. 
We identified 375 SCAD patients of which mortality during the index hospitalization was 11.5%. The 
best-performing DL algorithm identified in-hospital mortality with AUC 0.98 (95% CI 0.97–0.99), 
compared to other ML models (P < 0.0001). For prediction of mortality using ML models in patients 
with SCAD, the AUC ranged from 0.50 with the random forest method (95% CI 0.41–0.58) to 0.95 with 
the AdaBoost model (95% CI 0.93–0.96), with intermediate performance using logistic regression, 
decision tree, support vector machine, K-nearest neighbors, and extreme gradient boosting methods. 
A deep neural network model was associated with higher predictive accuracy and discriminative power 
than logistic regression or ML models for identification of patients with ACS due to SCAD prone to 
early mortality.

Machine learning (ML), a branch of artificial intelligence (AI), is applicable to risk modeling in medicine. Deep 
learning (DL) is a form of ML typically implemented through multi-layered neural networks to interpret and 
classify complex datasets and enhance clinical decision-making. When applied to big data in medicine, ML and 
DL, particularly convolutional neural networks (ResNet, GoogLeNet, or VCG families) are well suited to clinical 
image recognition and estimation of prognosis in large  datasets1, 2. Information about the performance of this 
technology in smaller datasets, such as rare diseases or patient cohorts with heterogeneous conditions, infre-
quent events, or comorbidities that cause competing risks is considerably more limited. ML may perform poorly 
at predicting low frequency events, such as those with an incidence < 10%, and scant data are available on the 
performance of DL in heterogeneous populations with a low frequency of  events3. Spontaneous coronary artery 
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dissection (SCAD) is a heterogeneous condition (high noise) and uncommon cause of acute coronary syndrome 
(ACS) associated with low mortality (infrequent events)4, 5. Although there have been other ML-based approaches 
for predicting mortality risk in patients with ACS, predictors of early mortality in patients with SCAD have not 
been identified. We hypothesized that ML and particularly DL models could predict in-hospital mortality in 
patients with ACS due to SCAD, based on information extracted from electronic health records (EHR), with 
greater accuracy that conventional risk classification  methods6, 7. Accordingly, we compared the performance 
of conventional logistic regression, ML modeling, and custom-built DL models to predict mortality in patients 
with SCAD using data from the EHR of a large urban health system.

Methods
Study population. We identified patients with a principal diagnosis of SCAD by querying the entire Mount 
Sinai Health System EHR for the period from January 1, 2008, to December 31, 2018, using International Clas-
sification of Diseases (ICD) 9 (414.12) and 10 codes (I25.42) for SCAD diagnosis, including only those with 
procedural (CPT) codes for coronary angiography and/or percutaneous coronary intervention, and excluding 
those with diagnoses indicating iatrogenic coronary dissection, perforation, or laceration. We excluded patients 
who have the following: (1) missing critical demographic information (i.e., age); (2) missing data for mortal-
ity; (3) age < 18; and/or (4) they had concomitant iatrogenic puncture or laceration of the coronary vessels. All 
coded co-morbidities were accumulated. The protocol was approved by the Institutional Review Board govern-
ing research involving human subjects at the Icahn School of Medicine at Mount Sinai. The MSHS Ethics Com-
mittee approved a waiver of documentation of informed consent; de-identified patient data was obtained from 
the MSHS Data Warehouse (https:// msdw. mount sinai. org/).

Baseline variables and feature selection. Feature selection to select potential variables for SCAD 
patients based on 2 steps. First, we conducted stepwise backward regression on all variables using the Holm-
Bonferroni Method (Step-down, familywise error rates) and we chose variables for our full model when variables 
were P < 0.00048. Second, we identified potential variables using clinical judgment based on previously published 
findings. From over 400 variables, the candidate features present on admission were selected to develop the pre-
diction models; these demographic, clinical characteristic, comorbidity, medication, vital sign and laboratory 
value items are listed in Online Supplementary Table 1. The primary outcome was in-hospital mortality.

Machine learning analysis. Algorithms towards diagnosis or forecasting (prognosis) of an event were 
based on supervised learning to predict mortality using preprocessed data and several ML and DL approaches. 
The ML algorithms were logistic regression, support vector machine  (SVM), decision tree, random forest, 
K-nearest neighbors, AdaBoost and extreme gradient boosting. The DL model employed a deep neural net-
work running Python version 3.6 (Keras) with Tensorflow backend in the high performance computing (HPC) 
 clusters9. Statistical properties of continuous variables (e.g., laboratory measurements) were summarized using 
histograms or kernel density estimation when necessary. Log-transformations were used to normalize the 
underlying distribution of variables. Variables with > 10% missing data were excluded and remaining missing 
data were addressed through imputation techniques on an individual variable basis, using R version 3.3.1 (MICE 
and missForest packages)10. Event imbalance was addressed by random over-sampling11. We randomly parti-
tioned the data and repeated multiple times.

Sensitivity analyses were performed by comparing various data partitions, missing imputation vs ignoring 
missing data (LightGBM) and by data augmentation. In these analyses, we also examined whether results changed 
when limited to cases with complete unimputed data or treating event imbalance with ROSE package software. 
Machine-learning algorithms gain functionality from variables in the training dataset. The histogram for each 
clinical characteristic was normalized and analyzed separately for relationship by linear regression. Hyper-
parameters, a specific learned function, was randomly tuned using several values for each parameter to derive 
optimum values (online Supplementary Table 2). A random forest algorithm, for example, has hyper-parameters 
specifying the number of branches and maximum width of each branch corresponding to the number of interac-
tions considered in the model, whereas for the neural network, hyper-parameters control for the complexity of 
the model, size of the network, and how network connections are activated, or “learned”. For other prediction 
methods, logistic regression models did not prove viable. Hyper-parameters were tuned by cross-validated 
performance to minimize overfitting, searching the grid by sampling incremental combinations of multiple 
variables for the model, and including a parameter to control for dropping from the model variables that did 
not contribute to minimizing loss of functionality to identify the optimal  parameters12. Once optimized based 
on the training dataset, performance of the final predictive model was assessed using the evaluation dataset. 
Each of several ML and DL models using tenfold cross-validation was used to estimate performance, minimize 
biases, and optimize hyperparameters. A summary of the workflow process for ML and DL is presented in Fig. 1. 
All methods were carried out in accordance with relevant guidelines and regulations. Given this particular 
dataset and heterogeneity in nature, we used oversampling techniques to control for dataset imbalance as well 
as reported balance accuracy.

Deep learning model. The full model architecture explanation with mathematical can be found in the in 
online supplementary eMethod. The neural network architecture for this binary classification ( x = [x1, x2, . . . , xn]

T 
adding weight and bias) by binary cross-entropy [− ylog(p) + (1 − y)log(1 − p)] consists of 15 regular fully-con-
nected layers (using ReLU activation), two dropout layers, one after the second and third fully-connected layers, 
and a binary output layer (Softmax)13, 14. (Fig. 2). The output of the k th neuron in a given layer can be written as 

https://msdw.mountsinai.org/
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yk = f

(

n
∑

j=1

wkjxj + bj

)

 for a layer with n inputs and hence weights w1 through wn . Because the number of 

patients with SCAD was small and the mortality rate was low, a plethora of hidden layers may impair perfor-
mance due to overfitting. The model was tested using an Adam optimizer with a learning rate of 0.0115. To opti-
mize the model performance, the model was fine-tuned using grid search hyperparameter selection and opti-
mally trained at 1,000  epochs16. Sensitivity analyses were performed using grid search for each hyperparameter 
selection, different data partitions, and different value of the class label. To minimize biases and optimize hyper-
parameters, we employed the nested cross-validation to fine-tune the model.

Statistical analysis. Model performance was assessed from the area under the receiver-operator charac-
teristic curve (AUC) for accuracy and adjusted for event imbalance using balancing statistics. The bootstrap 
technique was used to estimate confidence intervals. Performance assessments were performed using Caret, 
Scikit-learn and Keras software (R and Python, respectively). We compared models’ performance based on AUC 
values using the interaction  test17.

Results
Of 30,425 patients with acute coronary syndromes identified in the EHR survey, 375 (1.2%) had a diagnosis of 
SCAD. Overall, the mean age was 52.2 ± 12.8 years and 64.3% were women. Table 1 summarized selected base-
line clinical characteristics for SCAD patients. Among these, 43 patients died during the index hospitalization 
(mortality 11.5%). Based on feature selections and regression analysis, predictors of in-hospital mortality in 
SCAD patients include elevated c-reactive protein, atrial fibrillation, hypertension, and steroid use. The best-
performing DL models predicted in-hospital mortality with AUC 0.98 (95% CI 0.97–0.99) with mean accuracy 
97%, balanced accuracy 98%, sensitivity 98%, and specificity 96%, compared to other ML models or logistic 
regressions (P < 0.0001). Table 2 summarizes all model performances. The AdaBoost method yielded an AUC 
of 0.95 (95% CI 0.93–0.96), mean accuracy 94%, balanced accuracy 61%, sensitivity 25%, and specificity 97%, 
compared to logistic regression model (P < 0.0001). The AUC with the support vector machine method was 0.92 
(95% CI 0.89–0.94), mean accuracy 93%, balanced accuracy 60%, sensitivity 25%, and specificity 96%, compared 
to logistic regression model (P < 0.0001). The K-nearest neighbors method generated an AUC of 0.91 (95% CI 
0.88–0.93), and had a mean accuracy of 89%, balanced accuracy 50%, sensitivity 74%, and specificity 97%, 
compared to logistic regression model (P < 0.0001). Extreme gradient boosting resulted in an AUC of 0.90 (95% 
CI 0.86–0.93), mean accuracy 95%, balanced accuracy 54%, sensitivity 83%, and specificity 99%, compared to 
logistic regression model (P < 0.0001). The decision tree model had an AUC of 0.78 (95% CI 0.72–0.83), mean 
accuracy of 79%, balanced accuracy 53%, sensitivity 87%, and specificity 35%, compared to logistic regression 
model (P < 0.0001). The conventional logistic regression model was associated with an AUC of 0.59 (95% CI 
0.51–0.67), mean accuracy 91%, balanced accuracy 59%, sensitivity 25%, and specificity 94%, compared to 

Figure 1.  Machine learning and deep learning workflow process diagram.
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Figure 2.  The architecture of the network.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8992  | https://doi.org/10.1038/s41598-021-88172-0

www.nature.com/scientificreports/

Clinical characteristics SCAD (N = 375) Missing data (%)

Age (mean ± SD) 52.2 ± 12.8 0

Female 64.3% 0

White 44% 0

African-American 6.9% 0

Hispanic 4.8% 0

Asian 3.2% 0

Others/Unknown 36.3% 0

Hypertension 54.7% 0

History of smoking 5.6% 0

Overweight 2.1% 0

Secondary hypertension 0.53% 0

Malignant hypertension 1.8% 0

Chronic obstructive pulmonary disease 8.8% 0

Ischemic stroke 5.6% 0

Intracranial hemorrhage 2.1% 0

Peripheral artery disease 26.9% 0

Carotid artery disease 8.5% 0

Pulmonary hypertension 13.3% 0

Atrial fibrillation 19.7% 0

Chronic kidney disease 7.5% 0

FMD 1.9% 0

Type 1 diabetes 2.4% 0

Hyperthyroid 1.1% 0

Hypothyroid 6.4% 0

Anxiety 1.1% 0

Depression 8.5% 0

Emotional stress 5.1% 0

Migraine 1.6% 0

Rheumatoid arthritis 0.8% 0

Hypertrophic cardiomyopathy 0.5% 0

Ventricular arrhythmia 31% 0

Cardiac arrest 34.5% 0

Vital Signs

Body mass index (kg/m2), 23.4 ± 7.9 1.50

Systolic blood pressure (mmhg) 130.6 ± 16.2 1.65

Diastolic blood pressure (mmhg) 71.2 ± 9.0 7.13

Heart rate 72.3 ± 10.2 3.60

Body temperature 78.2 ± 21.9 1.97

Respiratory rate 18.6 ± 2.8 2.13

Oxygen saturation 95.8 ± 3.8 7.68

Lab values

Sodium 138.7 ± 2.6 6.56

Potassium 4.1 ± 0.4 6.61

Magnesium 2.1 ± 0.3 7.40

Chloride 103.9 ± 4.0 6.94

Blood urea nitrogen 20.5 ± 10.3 6.54

Creatinine 1.29 ± 0.6 8.62

Cholesterol 82.3 ± 31.7 6.82

HDL 43.1 ± 13.2 6.68

White blood cell count 8.5 ± 4.2 6.58

Hemoglobin 12.3 ± 1.8 6.21

C-reactive protein 15.5 ± 7.9 8.30

Platelet count 219.5 ± 62.7 6.54

Albumin 3.6 ± 0.5 7.10

Vaccination

Influenza vaccination 12.8% 7.60

Continued
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logistic regression model (P < 0.0001). The random forest ML model had an AUC of 0.50 (95% CI 0.41–0.58), 
mean accuracy 93%, balanced accuracy 52%, sensitivity 25%, and specificity 96%. The random forest ML model 
had no statistical difference from logistic regression model. Table 3 summarizes all statistical comparison among 
DL and ML models.

Discussion
There are three main conclusions from the present study. First, elevated c-reactive protein, atrial fibrillation, 
hypertension and steroid use are important predictors of SCAD mortality. SCAD is a unique and heterogenous 
condition. Numerous studies suggested that SCAD is usually not associated with atherosclerosis or traditional 
cardiovascular risk factors (e.g., dyslipidemia, type 2 diabetes), but may be associated with connective tissue 
disease, autoimmune disease, stimulants, intense emotional stress, or intense physical exertion.

All the ML approaches, except the random forest model, outperformed conventional logistic regression 
models in predicting mortality during the index hospitalization for patients with ACS due to SCAD. Further-
more, the custom-built DL models outperformed both logistic regression and ML methods for predicting in-
hospital mortality in patients with SCAD. Compared to either ML or DL, conventional logistic regression per-
formed poorly at identifying predictors of early mortality in the population we examined. Even the relatively 
rudimentary decision tree ML approach, which had limited predictive power, had better predictive capacity. 
These observations are consistent with previous studies establishing that ML algorithms typically outperform 
regression  models18–20. Deep neural network models also generally perform better than regression, reflecting 
the mathematical complexity and non-linearity of medical diagnosis and prognosis that defy simple parametric 
methodologies. In well-established diseases with causative agents, regression models can be used to estimate the 
effect of an independent variable on a dependent outcome (e.g., ACS directly predicts ischemic cardiomyopathy) 
and may be better than ML or DL methods when relationships are linear. In contrast, heterogeneous conditions 
with obscure predictors such as those linking SCAD to mortality require nonlinear analytic methodology that 
pools a large number of multidimensional variables to identify predictors of an infrequent outcome. That may 
explain how DL and ML models outperform regression models in select circumstances.

In this investigation, DL outperformed both regression and ML models. Although several ML models were 
more robust than regression models, a low-bias ML model such as boosting, which is based on methodology 
designed to minimize bias, may be subject to overfitting when applied to small amounts of heterogeneous 
data (high variance). This may explain why DL performed better than boosting. The DL model perhaps used 
multidimensional variables (matrix multiplication) including weight and bias, capturing a greater proportion 
of interactions between variables than kernel and regularization penalties in SVM, improving its performance 
compared to SVM. The SVMs must tune relatively fewer parameters, while DL requires multiple parameter 
selections, entailing complexity when applied to more than 400 clinical variables. Pathophysiological between 
disease and mortality are non-linear, particularly in heterogeneous conditions with low frequency  events21, 22. 
This may be why a deep neural network using matrix multiplication for complex variable interactions outper-
formed all the ML models in the present study. To date, attempts to explain the iteration of stochastic gradient 
descent and cosine loss have yielded no reliable mathematical explanation as to how DL unravels such complex 
variable  interactions23, 24.

Clinical characteristics SCAD (N = 375) Missing data (%)

Medications

NSAID use 1.1% 0

Steroid use 2.4% 0

Cannabis use disorder 1.1% 0

Table 1.  Selected baseline clinical characteristics of patients with SCAD. NSAIDs nonsteroidal anti-
inflammatory drugs.

Table 2.  Comparison among machine learning and deep learning algorithms.

Model Accuracy Balanced accuracy AUC (95% CI)

Deep learning 0.97 0.98 0.98 (0.97–0.99)

AdaBoost 0.94 0.61 0.95 (0.93–0.96)

Support vector machine 0.93 0.60 0.92 (0.89–0.94)

K-nearest neighbors 0.89 0.50 0.91 (0.88–0.93)

Extreme Gradient Boosting 0.95 0.54 0.90 (0.86–0.93)

Decision tree 0.79 0.53 0.78 (0.72–0.83)

Logistic regression 0.91 0.59 0.59 (0.51–0.67)

Random forest 0.93 0.52 0.50 (0.41–0.58)
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In general, boosting models adjust for more parameters and are more suitable for objective function than 
random forests. In addition, random forests may cause biases related to different number of levels or correlated 
features of similar relevance. We found that boosting models (e.g., XGBoost) could potentially result in better 
performance than random forests perhaps due to optimal hyperparameter selection (aka hyperparameter tun-
ing) and minimal noise.

We undertook this study as a proof-of-concept. The final DL model exhibited higher discrimination, better 
calibration, and greater classification accuracy than either logistic regression or ML models for predicting early 
mortality in patients with SCAD. We experimented with several DL models, including transfer learning, and 
found that the best results with the ReLU activation function, which outperformed the tanh and sigmoid activa-
tion functions. This is likely due to non-saturation of gradient, the inherent non-linearity, a reduction likelihood 
of vanishing gradient, and sparsity effects. Dropout layers on the upstream section of the deep learning may 
also  help25. Why ReLU exhibited better convergence performance than the tanh and sigmoid activation func-
tions is less  clear25. These observations are consistent with earlier studies in which DL models outperformed ML 
algorithms when applied to other disease  states26–29. This suggests that DL may be better suited to non-linear, 
low frequency outcomes such as SCAD mortality or recurrent SCAD, because it benefits from multiparametric 
adjustment and successive model-fitting. Since SCAD is an uncommon, heterogeneous, and poorly understood 
clinical entity, DL modeling uses repeated model-fitting to discern patterns that were not exposed by the other 
staged analysis methods.

This study has several limitations. First, ML and DL methodologies depend upon mathematical relationships 
between variables (e.g., variable selection algorithms), rather than medical knowledge and biological plausibility. 

Table 3.  Comparison among machine learning and deep learning algorithms.

Model AUC (95% CI) Comparison AUC (95% CI) P-value

Deep learning 0.98 (0.97–0.99) Support vector machine 0.92 (0.89–0.94)  < 0.0001

K-nearest neighbors 0.91 (0.88–0.93)  < 0.0001

Decision tree 0.78 (0.72–0.83)  < 0.0001

Random forest 0.50 (0.41–0.58)  < 0.0001

AdaBoost 0.95 (0.93–0.96) 0.001

Extreme Gradient Boosting 0.90 (0.86–0.93)  < 0.0001

Logistic regression 0.59 (0.51–0.67)  < 0.0001

AdaBoost 0.95 (0.93–0.96) Extreme Gradient Boosting 0.90 (0.86–0.93) 0.01

Logistic regression 0.59 (0.51–0.67)  < 0.0001

Deep learning 0.98 (0.97–0.99) 0.0011

Support vector machine 0.92 (0.89–0.94) K-nearest neighbors 0.91 (0.88–0.93) 0.58

Decision tree 0.78 (0.72–0.83)  < 0.0001

Random forest 0.50 (0.41–0.58)  < 0.0001

AdaBoost 0.95 (0.93–0.96) 0.04

Extreme Gradient Boosting 0.90 (0.86–0.93) 0.36

Logistic regression 0.59 (0.51–0.67)  < 0.0001

Deep learning 0.98 (0.97–0.99)  < 0.0001

K-nearest neighbors 0.91 (0.88–0.93) Decision tree 0.78 (0.72–0.83)  < 0.0001

Random forest 0.50 (0.41–0.58)  < 0.0001

AdaBoost 0.95 (0.93–0.96) 0.01

Extreme Gradient Boosting 0.90 (0.86–0.93) 0.65

Logistic regression 0.59 (0.51–0.67)  < 0.0001

Deep learning 0.98 (0.97–0.99)  < 0.0001

Extreme gradient boosting 0.90 (0.86–0.93) Logistic regression 0.59 (0.51–0.67)  < 0.0001

Deep learning 0.98 (0.97–0.99)  < 0.0001

Decision tree 0.78 (0.72–0.83) Random forest 0.50 (0.41–0.58)  < 0.0001

AdaBoost 0.95 (0.93–0.96)  < 0.0001

Extreme Gradient Boosting 0.90 (0.86–0.93)  < 0.0001

Logistic regression 0.59 (0.51–0.67)  < 0.0001

Deep learning 0.98 (0.97–0.99)  < 0.0001

Logistic regression 0.59 (0.51–0.67) Deep learning 0.98 (0.97–0.99)  < 0.0001

 < 0.0001

Random forest 0.50 (0.41–0.58) AdaBoost 0.95 (0.93–0.96)  < 0.0001

Extreme Gradient Boosting 0.90 (0.86–0.93)  < 0.0001

Logistic regression 0.59 (0.51–0.67) 0.13

Deep learning 0.98 (0.97–0.99)  < 0.0001
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Although we used clinical judgment to select variables and filter the algorithms, the DL decision process—the 
so-called “black box”-cannot be directly observed. While ML algorithms do not always yield information about 
effect size like the hazard ratio derived from Cox regression analysis, the contribution of individual variables 
can be determined and indicate signals in the data that are not causal associations and that should be interpreted 
cautiously pending validation in prospective epidemiological studies. Discrepancies between clinically and math-
ematically selected variables are complex, but DL methods such as quantum neural networks using systematic 
randomization of weights in each neuron rather than regularization/dropout/early stopping methods may be 
able to open the “black box” and shed light on these relationships.

The completeness, quality and consistency of data contribute to the success of ML algorithms. Missing value 
imputation may have biased the prediction algorithms, but there is at present no consensus on statistical stand-
ards to reflect this. Data quality is to some extent subjective and standards for assessment or regulation of quality 
control are lacking. Omission of potential confounders including localization of SCAD, severity of the coronary 
artery disease, proportion of intracoronary imaging, therapeutic management or proportion of PCI as well as 
life-style variables such as coffee consumption, sleep hygiene, emotional state or exercise could contribute to 
overfitting when applied to a SCAD cohort. Moreover, the temporal information of the predictors is a limitation. 
For instance, although we averaged lab values in laboratory values (e.g., troponin, BNP, NT-proBNP) for each 
subject, this may introduce biases for SCAD patients who did not present with an acute coronary syndrome or 
heart failure. Support for inclusion of several of the variables selected for the analysis we conducted, such as 
connective tissue disease and hormonal therapy, is inconsistent in the medical literature.

Although we employed pretrained models, hyper-parameter selection, and normalization, most of the models 
were prone to overfitting. Despite grid-searching, we sampled combinations of variables based on incremental 
significance, including hyper-parameters to control for dropping variables from the model that did not contribute 
to functionality. A key limitation of this proof of concept analysis is the small number of patients who developed 
the main outcome event of in-hospital mortality during the study period. Moreover, given a small number of 
SCAD patients, data splitting reduces the information available for development and possibly renders validation 
impotent. The model was trained for a particular period when survival after ACS was more frequent than demise. 
More training data, ultimately requiring a larger clinical sample, is needed to reduce the impact of these factors 
and others that detract from predictive power.

Given the rarity of the condition, diagnosis of SCAD patients is very challenging. Our findings require 
validation using additional clinical datasets from multiple health systems to assure generalizability to other 
populations with SCAD. Furthermore, while DL has been applied to other small clinical  datasets24, 30, 31, its 
performance in cohorts with a small number of outcome events, such as the SCAD population we studied for 
in-hospital mortality, may not be generalizable to other disease states. Adoption of ML methodology in clinical 
practice requires multiple formal replication and validation steps, given the host of factors affecting variability 
of data (e.g., laboratory collection, data cleaning) and models (e.g., hyperparameter selection). In the future, 
blockchain-encrypted ML models could be shared among institutions or EHR systems to validate the models 
using the same environmental  controls32.

Hyperparameter selection is prone to confounding, and the performance of each algorithm varies depend-
ing on specific variables of the databases and parameters  employed33. There is currently no consensus around 
standards for reporting or interpreting ML or DL studies, limiting comparative analysis. In addition, confounders 
may arise in neural networks, and further methodological advances such as theoretical quantum neural network 
and systematic randomization within each neuron may prove more applicable than the traditional regularization 
methods currently  employed34.

Overall, this is a proposed proof-of-concept work of ML and DL models for SCAD patients. Further studies 
are needed to validate the models and results in different populations.

Conclusions
Elevated c-reactive protein, atrial fibrillation, hypertension and steroid use may be used as predictors of SCAD 
mortality. Although in this analysis a DL model was more predictive and discriminative than ML methods and 
logistic regression models to identify patients with heterogeneous clinical features such as SCAD, several limita-
tions involving mathematical modeling, data structure and clinical integration must be addressed before these 
tools can be applied in clinical practice. Deep neural network models seem most promising for development to 
this purpose, but further methodological enhancements are needed to leverage data and develop valid predictors 
of early mortality in patients with SCAD. Data from prospective studies and randomized trials would greatly 
facilitate this effort to forecast clinical outcomes.
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