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Sex difference in the weighting 
of expected uncertainty 
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The neurobiological literature implicates chronic stress induced decision-making deficits as a 
major contributor to depression and anxiety. Given that females are twice as likely to suffer from 
these disorders, we hypothesized the existence of sex difference in the effects of chronic stress on 
decision-making. Here employing a decision-making paradigm that relies on reinforcement learning 
of probabilistic predictive relationships, we show female volunteers with a high level of perceived 
stress in the past month are more likely to make suboptimal choices than males. Computational 
characterizations of this sex difference suggest that while under high stress, females and males differ 
in their weighting but not learning of the expected uncertainty in the predictive relationships. These 
findings provide a mechanistic account of the sex difference in decision-making under chronic stress 
and may have important implications for the epidemiology of sex difference in depression and anxiety.

An important insight from recent studies in the field of decision-making is that psychological stress affects 
decision-making, but with sex  differences1,2. Specifically, in the face of acute stress, males and females seem to 
show distinct patterns in their perception of probabilistic uncertainty (or risk preferences). Males tend to become 
more risk-seeking while females more risk-aversive, as demonstrated in experimental tasks with explicit proba-
bilistic information such as the Game of Dice  Task3 and the Cambridge Gambling  Task4. Similar results have 
been reported in ambiguous situations where learning of the cue-outcome contingencies (i.e., reinforcement 
learning, RL) is required, such as in the Iowa Gambling  Task5,6 (where risk-taking is financially disadvantageous) 
and the Balloon Analogue Risk  Task7 (where risk-taking is advantageous).

However, despite these fruitful findings with acute stress, little is known about the effects of chronic stress on 
decision-making. Unlike acute stress which often induces fast, adaptive responses that enhance survival, chronic 
stress causes prolonged, maladaptive responses that contribute to neuropsychiatric disorders in particular depres-
sive and anxiety disorders (hereinafter, depression and anxiety)8,9. Recent evidence from the neurobiological 
literature suggests that chronic stress alters reward and threat processing in the brain (i.e., decision-making), 
which ultimately leads to the development of depression and  anxiety10–12. Whereas a striking sex difference 
has been consistently identified in the prevalence of depression and anxiety (i.e., females are twice as likely to 
be affected)13–15, whether the effects of chronic stress on decision-making is sex-dependent remains unclear. 
Clarifying the potential sex difference in the effects of chronic stress on decision-making may shed light on the 
epidemiology of sex in depression and anxiety and provide insights into the psychopathology as well as preven-
tion and treatment of these disorders.

In the present study, we set out to investigate the effects of chronic stress on decision-making in healthy 
human subjects and sought to identify potential sex differences in these effects. For such purpose, we employed 
a RL based decision-making paradigm. Given that the outcomes of our decisions in everyday life are often uncer-
tain, the ability to use effective cues to predict the outcomes is essential. RL or trial-and-error learning of such 
predictive relationships (i.e., cue-outcome contingencies) constitutes a fundamental form of human learning from 
direct interaction with the  environment16. In fact, RL has been considered a key decision-making mechanism 
involved in the development and treatment of depression and anxiety. For instance, relearning of emotional 
associations in social interactions via adequate RL has been considered a prerequisite for the therapeutic effect of 
 antidepressants17. Meanwhile, altered RL of aversion information plays a key role in the development of anxiety 
and has been considered a primary treatment  target18,19.
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Importantly, RL provides a computational framework for encapsulating the mechanistic processes involved 
in associative learning as well as learning-based decision-making. RL-based decision-making involves two inde-
pendent computational processes, an initial RL of the probabilistic cue-outcome contingencies followed by a sub-
sequent weighting of the learned probability or uncertainty. This uncertainty is known as “expected uncertainty” 
or “irreducible uncertainty” because the uncertainty or unreliability of predictive relationships is expected and 
not reduced by gathering more  experience20–22. A related concept is “risk”, where the uncertainty is expressed 
as explicit probabilities and not to be learned. Recent research suggests that learning and weighting of expected 
uncertainty involve different cognitive and neural computations in the  brain20,23 and successful decision-making 
requires the proper implementation of both of them.

We predicted that males and females would perform differently in RL-based decision-making under chronic 
stress. Furthermore, the potential sex difference in RL-based decision-making might be explained by a sex-
specific change in either learning or weighting of the expected uncertainty, or a combination of both. Therefore, 
in contrast to the current RL literature on depression and  anxiety24–26 that has primarily focused on quantify-
ing the change of learning, we used a RL task and computational  models27,28 that allowed us to tease apart the 
influence of the learning component (i.e., learning rate) and the weighting component involved in the decision-
making process.

Results
Females choose “correct” options less often than males, but only under high stress. Subjects 
performed a RL-based decision-making task (Fig. 1), choosing between two fractal stimuli based on their reward 
magnitude (shown in the center) and reward probability. One of the two fractal stimuli was arbitrarily assigned 
a higher reward probability (0.75 versus 0.25), and subjects had to learn this probability assignment through 
trial-and-error experience. This task design with a fixed, probabilistic stimulus-outcome association allowed us 
to evaluate the learning and weighting of expected uncertainty. The proportion of choosing the option/stimulus 
with high expected value (i.e., “correct” choices) among all trials as well as in each block was calculated for each 
participant and used as the primary model-free measure of the task performance. Expected value was calculated 
as the product of the true reward probability (0.75 versus 0.25) and the magnitude of each option.

We asked participants to indicate their perceived psychological stress in the past month using the widely 
employed Perceived Stress Scale (PSS)29,30. Participants’ mean ± SD score on this scale was 18.71 ± 5.37, compa-
rable to a previous report with young adults of similar  background30. We categorized participants (n = 65; see 
Supplementary Table S1 for demographic information) as perceiving low versus high chronic stress based on a 
mean split of their score on the scale. Consequently, the mean ± SD score of PSS for each group was 14.89 ± 3.06 

Figure 1.  Illustration of the RL-based decision-making task. Each trial consisted of four stages, STIMULUS, 
DECISION, CONFIRMATION, and FEEDBACK. Two fractal stimuli each with a number in their center were 
shown to participants (STIMULUS phase). Participants were told that the fractal stimulus indicated reward 
probability which they had to learn through trial-and-error experience and that the number shown in the center 
represented the reward magnitude which they would receive once the stimulus was rewarded. Participants 
had three seconds to indicate their choice by pressing one of two arrow keys and were instructed to respond as 
soon as possible once they had made the decision (DECISION phase). The chosen stimulus was immediately 
highlighted by a gray frame (CONFIRMATION phase). Later, the rewarded stimulus was revealed in the center 
(FEEDBACK phase). ITI, inter-trial interval.
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and 23.17 ± 3.79, respectively. We considered this dichotomization meaningful since it has been generally sug-
gested that a score of 20 or higher on PSS represents a high level of  stress31,32.

As shown in Fig. 2, a stress and sex two-way ANOVA test indicated a significant effect of sex (F1,61 = 7.990, 
p = 0.006) and sex*stress interaction (F1,61 = 4.603, p = 0.036) but not stress (F1,61 = 0.849, p = 0.360) on the pro-
portion of choosing the option with high expected value (Fig. 2A–C). Post hoc tests revealed that under high 
stress but not low stress, females chose the option with high expected value less frequently than males (p = 0.004 
for high stress, p = 0.594 for low stress; Fig. 2C). As can be seen, under high stress, females chose about 20% 
less correct options compared to males. This tendency was confirmed across the three blocks of trials (repeated 
measures ANOVA: F1,28 = 10.322, p < 0.01; Fig. 2D). A further within-sex analysis suggested, however, that the 
sex difference under high stress was primarily driven by enhanced performance in males (high versus low stress 
within males, for overall performance: F1,25 = 7.069, p = 0.013; for block-wise performance: F1,25 = 7.272, p = 0.012) 
rather than impaired performance in females (high versus low stress within females, for overall performance: 
F1,25 = 0.705, p = 0.407; for block-wise performance: F1,25 = 0.775, p = 0.385).

Computational model-based analysis: different weighting of expected uncertainty explains 
the sex difference in choice performance under high stress. To quantitatively capture the compu-
tational process underlying RL, we fitted eight computational models to participants’ choice behaviors. These 
included two static RL models, two dynamic RL models as well as their variates incorporating a probability 
weighting parameter (cf. “Methods”for details).

To fit the above models to each participant’s behavior, we employed maximum a posteriori (MAP) estimation, 
a Bayesian-based approach that incorporates prior belief about parameter values to avoid overfitting common 
in a maximum likelihood  approach33. The mean model evidence for each model across all subjects is presented 
in Table 1. As can be seen, the four original models all underperformed their variates that included a probability 
weighting parameter. It suggests that participants do not simply use predicted probability in their decision-
making but weight that probability in a subjective way. Importantly, the winning model was model s1w that had 
a single learning rate and a probability weighting parameter (Table 1).

Figure 2.  The effect of stress and sex on task performance. The effect of stress (A), sex (B), and stress*sex 
interaction (C) on the proportion of choosing the option with high expected value (“correct” choices). Block-
wise analysis of the data is shown in (D). For (A)–(C), each circle represents a subject. Error bars represent SEM. 
*p < 0.05, **p < 0.01, two-tailed. LS low stress, HS high stress, M male, F female.

Table 1.  Model specification and fitting results. The winning model is shown in bold.

Model description Model name Free parameters Mean model evidence

No probability weighting parameter

Static
s1 α, β − 35.8708

s2 α+, α−, β − 32.8888

Dynamic
d1 μ, κ, β − 45.4718

d2 α1, α2, β − 35.6651

Probability weighting parameter

Static
s1w α, γ, β − 32.2318

s2w α+, α−, γ, β − 32.6815

Dynamic
d1w μ, κ, γ, β − 40.4454

d2w α1, α2, γ, β − 32.6518
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To further evaluate whether the winning model actually captured participants’ behaviors, following Boorman 
et al.,  201134, we conducted a generalized linear mixed model analysis to determine the degree to which choos-
ing one option was predicted by both the reward magnitude and the reward probability as estimated by the best 
model s1w. Results indicated a significant positive effect of both reward magnitude and the model estimated 
reward probability in all subjects as well as in subjects of each sex-stress group (p < 0.001; Supplementary Fig. S1).

The scatterplot of the estimated learning rate and probability weighting for all participants in each stress-sex 
group is shown in Fig. 3A,B. A stress and sex two-way ANOVA test indicated a significant stress*sex interaction 
for both learning rate (F1,61 = 5.293, p = 0.025) and probability weighting (F1,61 = 4.168, p = 0.046). For learning 
rate, post hoc tests revealed a significant sex difference under low stress (F1,33 = 7.605, p = 0.009), without any 
other differences. Thus, under low stress, females learned faster than males. For probability weighting, post 
hoc tests revealed a significant sex difference under high stress (F1,28 = 4.218, p = 0.049) and a trend towards 
significance for low versus high stress within females (F1,36 = 2.990, p = 0.092), without other differences. Thus, 
under high stress, females underweighted small probabilities and overweighted large probabilities to a greater 
degree compared to males. In other words, females showed greater risk aversion than males. This sex difference 
in probability weighting under high stress seems to be the results of an increase in probability weighting with 
a trend towards significance in females and a nonsignificant decrease in probability weighting in males due to 
stress. A representative plot of this sex difference using the group mean is shown in Fig. 3C.

Meanwhile, we found that greater probability weighting (linear regression,  r2 = 0.4180 for males,  r2 = 0.6188 
for females, both p < 0.001) but not learning rate was associated with a lower proportion of choosing correct 
options in both sexes (Fig. 4). Similar associations were obtained for block-wise analysis (Supplementary Fig. S2).

We further tested whether the sex difference in choosing correct options would disappear or be greatly 
attenuated by statistically controlling the influence of the parameters we estimated. For such purpose, we first 
quantified the sex difference by fitting a general linear model, with the proportion of choosing correct options 
as the dependent variable and sex as the independent variable (male = 1, female = 0). The unstandardized regres-
sion coefficient was 0.220 ± 0.070 (mean ± SE) among all trials (p < 0.01, Fig. 5, dark gray, no covariate, all trials), 
indicating that under high stress, females chose 22% less correct options compared to males. The parameter 
estimate for this sex difference remained stable across the three blocks (Fig. 5, dark gray, no covariate, block 1 ~ 3). 
We next incorporated the estimated parameters as the covariate and found that after controlling the probability 
weighting parameter γ but not learning rate α (Fig. 5, yellow versus light gray), the parameter estimate for the 
sex difference in choosing correct choices under high stress among all trials was greatly attenuated while that for 
each block became nonsignificant. This indicates that it is probability weighting rather than learning rate that 
drives the sex difference in task performance under high stress.

Finally, since it has been reported that RL may be associated with cognitive  capacities35 and that chronic 
stress affects cognitive  capacities36, we also administered a n-back task to examine the potential involvement of 
working memory. We found that there was no effect of sex, stress, or sex*stress interaction on working memory, 
and working memory did not account for the sex difference in choosing correct choices under high stress (Sup-
plementary Fig. S3).

Discussion
In the present study, we found a sex difference in choice performance under high stress in a sample of young 
adults: females choose about 20% less correct options compared to males. This sex difference is primarily driven 
by enhanced performance in males rather than impaired performance in females by chronic stress. In contrast, we 
did not find a sex difference in choice performance under low stress. Applying computational models to dissect 

Figure 3.  Computational model-estimated learning rate and probability weighting parameter across sex and 
stress groups. (A), learning rate. (B), probability weighting. To illustrate this sex difference, a representative plot 
of the risk curve for each sex-stress group using the group mean of the probability weighting parameter is shown 
(C). *p < 0.05. LS low stress, HS high stress, M male, F female.
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the underlying processes of RL-based decision-making, we found that in response to chronic stress, whereas 
males show a nonsignificant decrease in probability weighting, females show an increase in probability weighting 
with a trend towards significance. As a result, females show a greater probability weighting parameter than males 
such that they underweight small probabilities and overweight large probabilities to a greater degree compared 
to males. More importantly, the sex difference in choice performance is explained by different weighting rather 
than learning of expected uncertainty between sexes under high stress. To our knowledge, this is one of the first 
studies to examine the association between chronic stress and decision-making and the first study looking at sex 
differences in RL-based decision-making under chronic stress.

Thus, rather than the initial RL of the probabilistic cue-outcome contingencies, chronically stressed males and 
females differ in their weighting of the learned probability or uncertainty. Our results are partially consistent with 
one previous study of decision-making with explicit probabilistic  information37. Kandasamy et al., 2014 admin-
istered hydrocortisone (pharmaceutical cortisol) to human volunteers over eight days to mimic a sub-chronic 
stress episode and found that males overweighted small probabilities while underweighted large probabilities 
relative to  females37. In other words, males behaved in a more risk-seeking (i.e., less risk-aversive) way compared 
to females. Similar sex difference in risk preference has been reported in decision-making under acute  stress1,2. In 

Figure 4.  Associations between task performance and model estimated parameters. Scatterplot (with regression 
lines) of the proportion of choosing the option with high expected value as a function of learning rate (A) and 
probability weighting (B) in each sex, respectively. Subjects of low and high stress were combined for each sex 
group. Green indicates males and orange females.

Figure 5.  Parameter estimate for the sex difference in task performance under high stress. The coefficients 
(unstandardized) are obtained using general linear models with the proportion of choosing the option with 
high expected value as dependent variable and sex as the independent variable (male = 1, female = 0). Error bars 
represent SEM. *p < 0.05, **p < 0.01.
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contrast to the psychiatric literature on  RL24–26 that has primarily focused on the role of learning, here we show 
rather than learning per se, it is the distinct weighting of the expected uncertainty that drives the sex difference in 
decision-making under chronic stress. Specifically, under high stress, females are more risk-aversive than males. 
They underweight small probabilities and overweight large probabilities to a greater degree compared to males.

Previous research has also indicated that the sex difference in decision-making may be context-dependent. 
For instance, Li et al. showed that males and females demonstrate different changes in loss aversion when mat-
ing or self-protection motives are  activated38. Specifically, when mating motives are induced, males tend to be 
less loss aversive or more gain seeking while females show no change or even a slight increase in loss aversion. 
In contrast, when self-protection motives are induced (with a fearful or stressful situation), males show a large 
increase in loss aversion while females do not show any change in loss  aversion38. Since we did not examine this 
kind of context-dependent sex differences, future studies may investigate, for instance, whether there exists an 
interaction between chronic and acute stress in the sex differences in decision-making.

While we identified the existence of such sex difference in probability weighting under high stress, the biologi-
cal and psychological explanations remain unclear. Previous research of sex difference in risk-seeking behaviors 
under explicit risk conditions has focused on the role of  testosterone39,40. A lack of sex difference in risk aver-
sion at low stress condition in the present study, however, suggests the possibility that testosterone and stress 
hormones may jointly affect risk preference in ambiguous decision-making that requires RL.

On the other hand, to date the literature on the psychopathological explanation of the sex difference in depres-
sion and anxiety shows that females ruminate (i.e., overthink about one’s negative emotional experience) more 
 frequently41,42 and worry to a greater  degree43 than males. Both  rumination44,45 and  worry46 are associated with 
more enhanced risk-aversive behaviors. Thus, the sex difference in probability weighting (or risk aversion) under 
high stress we observed might be due to sex difference in rumination and worry. In fact, more frequent rumina-
tion in females has been believed to largely explain the striking sex difference in the prevalence of depression 
(i.e., females are twice more likely to be affected by depression)41,42. Therefore, future research may investigate 
whether the different weighting of expected uncertainty provides a mechanistic explanation to the sex difference 
in rumination/worry and even the sex difference in the prevalence of depression and anxiety. Testing such a pos-
sibility may also propel us towards a better understanding of the high comorbidity of depression and  anxiety47,48 
since chronic stress is a common risk factor for both disorders.

Our observed sex difference might provide a potential explanation for why previous studies of patients with 
depression have failed to identify consistent deficits in RL of cue-outcome contingencies in static environments 
(i.e., fixed cue-outcome associations)24,49,50. In fact, no previous studies have ever investigated potential sex differ-
ences in RL under depression or anxiety. Neither did they separate the component of weighting from learning of 
the expected uncertainty. Based on our results, it is possible that perhaps depressed females might be more likely 
to perform suboptimally on RL-based decision-making than males, and this is to a large extent due to altered 
weighting rather than learning of expected uncertainty: females tend to underweight small probabilities and 
overweight large probabilities to a greater degree compared to males. Future research with depressed patients 
may test these possibilities using a similar computational framework.

Taken together, utilizing the computational approach, the present study provides a mechanistic account of 
the sex difference in RL-based decision-making under high stress. It provides an example illustrating how com-
putational psychiatry may help bridge the explanatory gap between observable behaviors and the underlying 
specific cognitive computations in the  brain24.

Our study also has several limitations. Firstly, the cross-sectional nature of the dataset did not allow us to 
draw causal conclusions. Secondly, only young subjects were investigated in this study. Future research should 
include subjects from all ages and in particular adolescents and older adults in whom the sex difference in mental 
health may be more  emphasized13. Thirdly, although we observed a sex difference in probability weighting under 
high stress, our study had insufficient power to specify if the sex difference was due to a decrease in males or an 
increase in females due to stress, or both. Future studies are required to clarify the mechanism of the sex differ-
ence we observed here with larger sample sizes. Lastly, as we have mentioned, the uncertainty we investigated 
here is known as expected uncertainty or irreducible uncertainty. There is also another kind of uncertainty called 
“unexpected uncertainty” which involves changing cue-outcome  associations20–22. It remains for future work to 
investigate whether sex difference exists in the computation of uncertainty in this kind of sophisticated, volatile 
environments.

Materials and methods
Participants. This research was part of an ongoing larger prospective study designed to predict mental 
health of young adults using evaluations of high-level cognitive functions. Data collected at the baseline of the 
study during the year 2019 were used for the analysis here. The study was carried out in accordance with the lat-
est version of the Declaration of Helsinki and approved by the Institutional Review Board of Yamaguchi Univer-
sity Hospital. The inclusion criteria were being 20–39 years old at the time of the visit and the exclusion criteria 
were (1) having any self-reported psychiatric disorders, (2) receiving medical examinations due to suspicion of 
any psychiatric disorders, (3) being suspected of psychiatric disorders by the research staff and subsequently 
diagnosed as having any psychiatric disorder by the Mini-International Neuropsychiatric Interview conducted 
by a psychiatrist, or (4) being unable to perform the laboratory tests and answer the questionnaires for this study 
due to severe physical conditions or other reasons. No participant was excluded owing to meeting any of the 
exclusion criteria.

Among 68 participants that agreed to participate in this study and provided written informed consent after 
receiving a detailed explanation, 3 were excluded from the present analysis due to too many no response tri-
als (over 8%) or data recording problems in the RL task, leaving 65 participants (mean age: 22.46 ± 5.91; range 
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20–38 years) for the final analyses. We categorized subjects as perceiving low versus high chronic stress based 
on a mean split of their score on PSS such that subjects scoring 19 and above were categorized as perceiving 
high stress (mean = 18.7). There were no stress-sex group differences regarding age or any other demographic 
information (see S1 Table S1).

RL task. We used an established RL task  design27,28. The task had sixty-trials and was programmed using 
MATLAB R2018b (MathWorks) and Psychtoolbox 3 (http:// psych toolb ox. org/). In each trial (Fig. 1), partici-
pants were asked to choose between two fractal stimuli to maximize the number of reward points earned. Each 
stimulus was randomly assigned a reward magnitude shown in the center. In our experiment, we used complex 
fractals generated from the Mandelbrot set. Participants were told that the fractal stimulus indicated reward 
probability which they had to learn through trial-and-error experience and that on each trial, one of the stimuli 
would be rewarded. The two fractal stimuli were randomly positioned left or right for each trial. One of the two 
fractal stimuli was arbitrarily assigned a higher reward probability (0.75 versus 0.25). To ensure each participant 
experience the same stimulus-reward contingency (i.e., 0.75 versus 0.25), we randomized the reward assignment 
every twenty trials, resulting in three blocks. The reward magnitude for one stimulus (R) was randomly sampled 
from a uniform distribution ranging from 1 to 99, while that for the other stimulus was set to 100-R. Following 
Suzuki et al.,  201228, we added an adjustment to the reward magnitude to balance participants’ choices (i.e., the 
magnitude assigned to a stimulus was reduced once that stimulus had been chosen twice in a row). Subjects were 
also informed that the reward magnitude was independent of the probability.

The stimuli were shown for three seconds (STIMULUS phase), after which a question mark occurred and 
participants were instructed to indicate their choice by pressing one of two arrow keys within three seconds and 
as soon as possible once they decided their choice (DECISION phase). After making a response, the chosen 
option was highlighted by a gray frame (CONFIRMATION phase), and then the rewarded stimulus on that 
trial was shown in the center (FEEDBACK phase). Failing to press a key within the DECISION phase would be 
counted as no response and participants would not be able to earn any reward points on that trial. After exclud-
ing two participants who failed to respond on over 8% trials and one participant with data recording problems, 
the remaining sixty-five subjects had a no response rate of merely 0.34 ± 0.64% (mean ± SD).

In this study, each subject received a fixed payment of approximately 3000 JPY for participating in this study. 
We did not implement the performance-adjusted payment, because our final objective was to develop useful tools 
for predicting mental health problems in public health settings: it is impossible to pay people a certain amount 
of money based on their choices in any public health predictive tools. Meanwhile, previous research has shown 
that people’s decision-making with hypothetic rewards highly resembles that with real  rewards51–53.

Working memory task. The n-back task was programmed by Jörn Alexander  Quent54 after Jaeggi et al., 
 201055 using MATLAB and Psychtoolbox 3. Following the signal detection theory, a discriminability score  (d2) 
indicating the overall performance at discriminating targets from non-targets56 was calculated for the 2-back 
task for each subject and used as an indicator of working memory.

Data analysis. Data analysis was conducted with IBM SPSS Statistics 26 and MATLAB R2018b. All statisti-
cal tests were two-sided. We used two-way ANOVA to test the effects of stress and sex on choice behaviors and 
model parameters. We used general linear models to test the association between model parameter and choice 
behaviors and to quantify the observed sex differences.

Computational modeling. To quantitatively capture the computational process underlying RL, we fitted 
eight computational models to participants’ choice behaviors (Table 1). These included two static RL models, 
two dynamic RL models as well as their variates incorporating a probability weighting parameter.

Static model 1 (s1). In this model, after choosing stimulus A on trial t and observing reward rt (1 if stimulus A 
is rewarded and 0 otherwise), the predicted probability for stimulus A is updated according to a standard Res-
corla–Wagner model with a constant learning  rate16:

where α is the learning rate and δt is the probability prediction error. The predicted probability for stimulus B is 
modeled as pt(B) = 1 − pt(A). In our implementation, the predicted probability for each stimulus is initialized to 
0.5. Then for each trial, the expected value of a stimulus  Qt(·) is computed as the product of the reward magnitude 
and predicted probability of that stimulus pt(·).

Static model 2 (s2). This model is identical to model s1 except that it uses two learning rates, α+ for positive and 
α- for negative prediction errors. This model is incorporated because it has been frequently proposed that people 
may respond differently to positive versus negative feedback.

Dynamic model 1 (d1). This model is known as the Pearce–Hall learning  model57 which substitutes associabil-
ity-gated dynamic learning rate for the constant learning rate in model s1. Unlike model s1, the learning rate in 

(1)pt+1(A) = pt(A)+ α · δt

(2)δt = rt − pt(A)

http://psychtoolbox.org/
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this model changes adaptively in every trial depending on the reliability of prior predictions (i.e., the associabil-
ity S):

where κ is the scale of learning rate, St+1 is the associability on trial t + 1, and μ is the step size for updating asso-
ciability which determines the relative weight of the associability and the absolute value of prediction error on 
the previous trial t.

Dynamic model 2 (d2). This simplified dynamic model is identical to model s1 except that it uses two learn-
ing rates, one for the first half and the other for the latter half of trials. This model was included to simulate the 
strategy of fast acquisition at first and subsequent stable  choice33.

Each model described above is then combined with a probability weighting parameter γ that transforms the 
influence of predicted probability to account for risk-aversive or risk-seeking  behaviors27,28:

where γ = 1, γ > 1, and γ < 1 indicate risk-neutral, risk-aversive, and risk-seeking behavior, respectively. This 
generates models s1w, s2w, d1w, and d2w. For these models, the expected value of a stimulus Qt(·) is computed 
as the product of the reward magnitude and F(pt(·),γ).

Participants were then assumed to choose actions stochastically, according to a sigmoidal probability distri-
bution such that choice probability of stimulus A on trial t is given by:

where β is the inverse temperature which adjusts the degree of stochasticity in participants’ choices.

Modeling fitting and selection. To fit the above models to each participant’s behavior, we employed max-
imum a posteriori (MAP) estimation, a Bayesian-based approach that incorporates prior belief about parameter 
values to avoid overfitting common in a maximum likelihood  approach33.

Following Suzuki et al.,  201228 that used a similar task as well as computational models, we constrained learn-
ing rates α, α+, α-, α1, α2 with a Beta (4.6,50) prior distribution, probability weighting parameter γ with a Gamma 
(1.9,1.0) prior distribution, and the inverse temperature β with a Gamma (2.8,0.05) prior distribution. These 
prior distributions were obtained by minimizing the squared error of the first, second, and third quartiles of each 
parameter reported in Suzuki et al.,  201228 (see their Table S1). Note that this choice of the prior distribution for 
learning rates is also in accordance with the results reported by Behrens et al.,  200727 (see their Fig. 2e). Following 
Niv et al.,  201258, we also tested another less constrained prior distribution Beta (2,2) for learning rates which, 
however, did not improve model fits so as to outperform the current best model s1w with the original choice of 
prior distribution described above. For the parameter κ and μ, we did not impose strong hypothesis about their 
values and used a uniform distribution Beta (1.0,1.0) as their prior distribution.

For each participant, we estimated the free parameters for each model by maximizing the posterior probability 
of the data with the MATLAB function fminsearch. To avoid local maxima, the initial point for the optimization 
routine is chosen randomly for 1,000 times and the best result is used as the optimal parameter estimate. Given 
the optimal estimates of model parameters, the best fitting model is selected by comparing the model evidence 
computed using the Laplace  approximation33. The model evidence favors models with greater likelihood while 
penalizes models with an increasing number of free parameters to be estimated. Thus, a greater value of model 
evidence indicates better, more parsimonious model fit.

Data availability
The data and custom MATLAB code that support the findings of this study are available from the corresponding 
author upon reasonable request.
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