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Hydrological projections 
in the upper reaches of the Yangtze 
River Basin from 2020 to 2050
Ya Huang1,2,3,4*, Weihua Xiao1, Baodeng Hou1, Yuyan Zhou1, Guibing Hou3, Ling Yi3 & 
Hao Cui1

Understanding the impact of climate change on runoff is essential for effective water resource 
management and planning. In this study, the regional climate model (RCM) RegCM4.5 was used to 
dynamically downscale near-future climate projections from two global climate models to a 50-km 
horizontal resolution over the upper reaches of the Yangtze River (UYRB). Based on the bias-corrected 
climate projection results, the impacts of climate change on mid-twenty-first century precipitation 
and temperature in the UYRB were assessed. Then, through the coupling of a large-scale hydrological 
model with RegCM4.5, the impacts of climate change on river flows at the outlets of the UYRB were 
assessed. According to the projections, the eastern UYRB will tend to be warm-dry in the near-future 
relative to the reference period, whereas the western UYRB will tend to be warm-humid. Precipitation 
will decreases at a rate of 19.05–19.25 mm/10 a, and the multiyear average annual precipitation will 
vary between − 0.5 and 0.5 mm/day. Temperature is projected to increases significantly at a rate of 
0.38–0.52 °C/10 a, and the projected multiyear average air temperature increase is approximately 
1.3–1.5 ℃. The contribution of snowmelt runoff to the annual runoff in the UYBR is only approximately 
4%, whereas that to the spring runoff is approximately 9.2%. Affected by climate warming, the 
annual average snowmelt runoff in the basin will be reduced by 36–39%, whereas the total annual 
runoff will be reduced by 4.1–5%, and the extreme runoff will be slightly reduced. Areas of projected 
decreased runoff depth are mainly concentrated in the southeast region of the basin. The decrease 
in precipitation is driving this decrease in the southeast, whereas the decreased runoff depth in the 
northwest is mainly driven by the increase in evaporation.

In the past few decades, the significant increase in temperature has led to an increase in the maximum amount 
of water vapor that can be carried by the atmosphere, which has affected the spatial and temporal distribution 
characteristics of  precipitation1–5. Higher temperature also causes higher rates of surface drying and evapora-
tion, thereby increasing the duration and intensity of  droughts6. Many regions of the world can easily cope with 
moderate changes in the average climate and can even benefit from changing  climate7. However, most of the 
destructive effects of floods, droughts or other disasters are the result of extreme weather and climate events, 
which are likely to occur more frequently on a global  scale8 and have indirect and direct impacts on natural 
vegetation, urban construction, farming, energy generation, water resources and the  environment9–12, resulting 
in considerable economic  losses13. Accurate understanding and projections of the spatiotemporal characteristics 
of water resource changes in a basin caused by changes in precipitation are essential for effectively managing 
regional water resources, responding to various risks related to climate change, and formulating appropriate 
climate change adaptation and mitigation  measures14.

The Yangtze River, the longest river in China, provides precious water resources for the Yangtze River Basin 
(YRB) and supports the livelihoods of millions of people. Due to the influences of the East Asian summer 
monsoon and the South Asian summer monsoon, the YRB exhibits complex and unique precipitation patterns 
and a unique regional  climate15,16, and is a flood-prone  area17. The upper reaches of the YRB (UYRB) accounts 
for approximately 59% of the YRB, and the multiyear average annual runoff accounts for approximately 46% of 
the YRB. Climate change has led to changes in the hydrological conditions in the UYRB, which have affected 
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the amount of available water resources and the socioeconomic development and ecological environment of 
the middle and lower reaches of the YRB. For this reason, the impact of climate change on water resources in 
the UYRB and the future response of water resources in the basin to climate change have received widespread 
attention. A large number of observations and projection studies suggest that climate change has accelerated 
the hydrological cycle of the YRB, reduced the snow cover in the basin and increased extreme runoff. Previous 
studies have mainly used climate conditions predicted by global climate models (GCMs) to drive hydrological 
models to study the responses of UYRB hydrology to climate  change18–26. However, few studies have investigated 
the hydrological changes in the UYRB under climate change using a coupling model based on the RegCM4 and 
variable infiltration capacity (VIC)  models27–29.

RegCM has been applied to the UYRB as an effective tool for assessing and projecting hydroclimatic 
 conditions27–31, but it remains challenging to accurately assess and project climate changes in the basin. Gao 
et al.31 found that, according to a coupling model of RegCM2 and CSIRO R21L9, precipitation in most regions 
of the YRB will increase in the future. Cao et al.30 found that, based on RegCM3 forcing by the FvGCM CCM3 
under the SRES A2 scenario, summer precipitation in most areas of the YRB will decrease by the late twenty-first 
century. Gu et al.29 used the ECHAM5 results under the SRES A1B scenario to drive RegCM4 to project precipita-
tion in the YRB to the end of the twenty-first century and found that precipitation in the north and south of the 
basin will increase and decrease, respectively. Lu et al.28 used the HadGEM2-ES under three representative con-
centration pathways (RCPs) scenarios (2.6, 4.5, and 8.5) to drive RegCM4 to project runoff in the source region 
of YRB for 2041–2060 and found that snowmelt runoff would become more important with increase of 17.5% 
and 18.3%, respectively, under RCP2.6 and RCP4.5 but decrease of 15.0% under RCP8.5. In general, the above 
results indicate that the total precipitation and probability of heavy precipitation in the YRB will significantly 
increase by the end of this century. However, investigations of near-future responses of hydroclimatic processes 
of the UYRB to global climate change are very limited.

The purpose of the current study was to evaluate the characteristics of changes in runoff in the UYRB under 
near-future climate change. To this end, the historical and future projection results provided by CSIRO-MK3.6.0 
and MPI-ESM-MR were used to conduct a 50-km resolution dynamic downscaling experiment to estimate the 
characteristics of temperature and precipitation change in the UYRB under two RCPs (4.5 and 8.5) in the mid-
twenty-first century. In addition, the quantile mapping method based on the mixed distribution was used to 
correct the bias of meteorological elements from the dynamic downscaling output of the regional climate model 
(RCM). Before using the VIC model, the generalized likelihood uncertainty estimation (GLUE) method was 
used to measure the uncertainty of the parameters of the VIC model. The corrected meteorological elements 
were used to drive the VIC hydrological model to analyze the impacts of near-future climate change on runoff 
in the UYRB. This study has certain reference significance for deepening the understanding of runoff change 
characteristics and water resource management in the UYRB under the background of global warming and 
provides a scientific basis for further development of adaptive measures.

Models and data
The climate model. Experimental design and model configuration. RegCM4.5 is an RCM developed by 
the Abdus Salam International Center for Theoretical  Physics32 and has been extensively applied in multi-dec-
adal climate change simulations in  China33,34. Because the RegCM4.5 scheme configured by Gao et al.33 exhibits 
good simulation performance in China, it was adopted in this study. As shown in Fig. 1a, in this study, only 
the UYRB from East Asia was intercepted for  analysis35. The topography and river system in the UYRB were 
shown in Fig. 1b. The radiation scheme used was the NCAR CCM3  scheme36. The cumulus convection scheme 
and planetary boundary layer scheme used in the current study were the  Emanuel37 and  Holtslag38 schemes, 
respectively. The Zeng sea surface flux parameterization scheme was  used39. Details on the model parameter 
configuration are presented in Table 1. The processing of and analysis procedures for the various data sets used 
in this study are shown in Fig. 2.

Correction of the RegCM4.5 outputs. The commonly used RCM bias correction methods are the Delta  method40, 
statistical multiple regression  models41,42, K-nearest neighbor  approach43, nearest-neighbor  technique44, and 
quantile  mapping45–47. Themeßl et al.47 compared the correction performance of the above methods on RCM 
output results and found that the quantile mapping (QM) method had the best performance. Moreover, Shin 
et al.45 found that the QM method based on the mixed distribution is better than the QM method based on 
the single distribution in correcting precipitation, especially extreme precipitation. Therefore, the QM method 
based on the mixture distribution was used to correct the precipitation, and the temperature was corrected by 
the QM method based on the GEV  distribution48. Due to the obvious seasonal characteristics of the climate in 
the YRB, the RCM output was corrected month by month based on long-term observation data.

Some distributions that are widely applied for modeling extreme events in hydrometeorological and many 
other  fields45,49–51, such as the gamma, exponential, generalized extreme value (GEV), Gumbel and generalized 
Pareto (GP) distributions were tested to evaluate the optimal fitting distribution of precipitation events in the 
UYRB. The cumulative distribution function (CDF) and probability density function (PDF) of the above distri-
butions are shown in Table 2.

The definition of a mixture distribution is as follows:

(1)f (x) =
n

∑

i=1

σi fi(x; δi)
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where δi is a parameter of the ith distributed component in the mixture distribution, and σi is the weight of the 
ith distributed component. n is the number of mixtures applied. Based on the characteristics of the above five 
distributions, we present five mixture distributions: gamma-gamma (G-G), gamma-exponential (G-E), gamma-
Gumbel (G-U), gamma-GEV (G-V) and gamma-GP (G-P). Their PDFs are as follows:

(2)fG−G(x;α1,β1,α2,β2) = σ fG(x;α1,β1)+ (1− σ)fG(x;α2,β2)

(3)fG−E(x;α1,β1,α2) = σ fG(x;α1,β1)+ (1− σ)fE(x;α2)

(4)fG−V (x;α1,β1,α2,β2, γ ) = σ fG(x;α1,β1)+ (1− σ)fV (x;α2,β2, γ )

(5)fG−U (x;α1,β1,α2,β2) = σ fG(x;α1,β1)+ (1− σ)fU (x;α2,β2)

Figure 1.   (a) Computation domain and topography (m) of RegCM4; (b) the UYRB domain and topography 
(m). The figure was generated by Arcmap 10.6 (https:// www. esri. com).

https://www.esri.com


4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9720  | https://doi.org/10.1038/s41598-021-88135-5

www.nature.com/scientificreports/

The simulated precipitation of the RCM usually produces a large number of invalid precipitation events. To 
be consistent with the observed precipitation events, we corrected the RCM precipitation events based on the 
historical period.

The simulated precipitation of the RCM usually generates a large number of invalid precipitation events. 
To be consistent with the observed precipitation events, we corrected the daily RCM precipitation data based 
on daily precipitation observation data of the reference period. The probability P that the observation of daily 
precipitation is zero is defined as follows:

(6)fG−P(x;α1,β1,α2,β2, γ ) = σ fG(x;α1,β1)+ (1− σ)fP(x;α2,β2, γ )

Table 1.  The RegCM4 model configuration used in this study.

Contents Description

Domain
50 km horizontal resolution
Central Lat. and Lon.: 35°N, 115°E
200 (Lon) × 130 (Lat)

Vertical layers (top) 18 vertical sigma levels (1 hPa)

PBL scheme Holtslag

Cumulus parameterization scheme Emanuel

Land surface model NCAR CLM3.5

Short-/longwave radiation scheme NCAR CCM3

Boundary data CSIRO-MK3.6.0, MPI-ESM-MR

Simulation period Jan. 1970-Dec. 2000; Jan. 2020-Dec. 2050

Analysis period Jan. 1971-Dec. 2000; Jan. 2021-Dec. 2050

Climate model data
- CSIRO-MK3.6.0
- MPI-ESM-MR
The time series includes the near-
future period (2021-2050) and the
reference period (1971-2000)

Dynamic scaling
Method:
- Regional climate model
(RegCM4.5)

Bias Correction
Method:
- Quantile mapping method
The optimal fitting distribution is
selected from ten groups of
distributions

Calibration and verification
Method:
- Variable infiltration capacity
(VIC) model
-Generalized likelihood uncertainty
estimation (GLUE) method

Hydrometeorological data
- Meteorological station j
(j=1,2, ,n) Where n is the number
of Meteorological stations
- Daily flow data of the PS, ZT, CT
and YC stations
- CN05.1 data set

Near-future climate change

- Spatiotemporal characteristics of
precipitation
- Spatiotemporal characteristics of
temperature

Near-future changes in runoff

- Seasonal variation characteristics
- Spatial variation characteristics
- Variation characteristics of
extreme

forcing data

Geographic data
- Digital elevation model
- Vegetation cover data
- Soil data

Discussions and Conclusions

va
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io

n

Figure 2.  Modelling flowchart of this study. The figure was generated by Visio 2019 (https:// www. micro soft. 
com/).

https://www.microsoft.com/
https://www.microsoft.com/
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where Nobs is the total number of days during years and nobs0  is the number of dry days in Nobs . The zero part of the 
daily precipitation of the outputs is generally smaller than the portion of the observation, i.e., PRCM0 < Pobs0  for the 
reference period. Therefore, it is necessary to set the RegCM4.5 precipitation values to zero so that PRCM0 = Pobs0 :

where φ is the threshold corresponding to RCM when  PRCM0 = Pobs0 .
To rapidly obtain the parameters of the mixture distributions, a genetic algorithm was used to optimize the 

parameters. Three indices, the relative error (BIAS), correlation coefficient (CORR) and Nash–Sutcliffe efficiency 
coefficient (NSE), were selected as the genetic algorithm optimization objective functions, and the same calcula-
tion weight was applied. The formulas of the three indices are as follows:

where Pi and Oi are the values of the i-th period in the fitting and observation, respectively; P and O are the aver-
age values of the fitting and observation, respectively; and N is the total number of samples.

The large-scale hydrological model. The VIC hydrological model can be used to simultaneously simu-
late the energy balance and the water balance of the ground  surface52,53. The model has been widely used in 
global and regional streamflow  studies54–59.

Uncertainty of the VIC model. In the study, the GLUE method proposed by Beven et al.60 was used to measure 
the uncertainty of the parameters of the VIC model. The likelihood objective function (LOF) is mainly used 
to evaluate the fit between the observed and simulated results. The NSE and BIAS, two indices with the same 
weight, were taken into consideration. The LOF is defined as follows:

To obtain the uncertainty range of the VIC hydrological model at a certain confidence level, the LOF values 
of all parameter groups less than 0.5 were normalized and sorted. To quantify the uncertainty level of the VIC 
hydrological model, three commonly used evaluation indices were selected for uncertainty analysis. These indices 
are defined as  follows61:

where n is the total number of observed discharges and nQin is the number of observed discharges falling within 
the uncertainty intervals.

(7)Pobs0 =
nobs0

Nobs

(8)x =
{

xRCM xRCM > φ

0 xRCM ≤ φ

(9)BIAS =
P − O

O
×100%

(10)CORR =

N
∑

i=1

(

Pi − P
)(

Oi − O
)

[

N
∑

i=1
(Pi − P)0.5

][

N
∑

i=1
(Oi − O)0.5

]

(11)NSE = 1−

N
∑

i=1
(Pi − Oi)

2

N
∑

i=1

(

Oi − O
)2

(12)OBJ = 0.5|BIAS| + 0.5(1− NSE)

(13)Containing ratio: (CR)CR =
nQin

n
× 100%

Table 2.  PDF and CDF of the functions used in the study.

Function PDF CDF

Gamma fG(x) = α−β

Ŵ(β)
xβ−1 exp(− x

α
) FG(x) =

∫ x
0

α−β

Ŵ(β)
xβ−1 exp(− x

α
)dx

Exponential fE(x) = 1
α
exp(− x

α
) FE(x) = 1 - exp(− x

α
)

GEV fV (x) = 1
α
(1+ β(− x−τ

α
)−1/β−1) exp(−(1+ β( x−τ

α
)−1/β )) FV (x) = exp(−(1+ β( x−τ

α
)−1/β ))

Gumbel fU (x) = 1
α
exp(− x−τ

α
) exp(− exp(− x−τ

α
)) FU (x) = 1− exp(− exp(− x−τ

α
))

GP fP(x) = 1
α
(1+ β( x−τ

α
)−1/β−1) FP(x) = 1− (1+ β( x−τ

α
)−1/β )
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where Qupper
i  and Qlower

i  are the upper and lower values, respectively, at time i.

where Qi is the observed discharge corresponding to time i.
Figure 3 shows the scatter plots of the LOF for all parameters after the weighted calculation of four hydrologi-

cal stations. In Fig. 3b–d, f, the scatter points of the LOF for the Ds, Dsmax, Ws and D3 are approximately uniformly 
distributed and exhibit no obvious trend, indicating that these parameters are insensitive. For parameters D2 
and B, the scatter points are unevenly distributed, which means that D2 and B are sensitive. The LOF decreases 
as D2 increases from 0.1 to 0.6 and increases as D2 increases from 0.6 to 1.5 (Fig. 3e). Parameter B ranges from 
0 to 0.6, and the LOF decreases as B increases (Fig. 3a).

As shown in Fig. 4a–d, the 95% confidence interval covers the observed flow of each station during the verifi-
cation period, and only a few observed runoffs are outside the confidence interval, indicating that the VIC model 
is feasible for simulating runoff in the UYRB. The CR values at the Pingshan (PS), Zhutuo (ZT), Cuntan (CT) 
and Yichang (YC) stations are 77.5%, 98.3%, 79.2% and 75.3%, respectively. The B values are 3175, 10,736, 6201 
and 9732, and the S values are 0.31, 0.25, 0.29 and 0.35, respectively (Table 3). In general, the VIC hydrological 
model has great uncertainty in low-flow and high-flow regions. The reason may be related to the prior distribu-
tion of the parameters. In addition, due to the complexity of the VIC hydrological model structure, there are a 
large number of optional parameter groups in the model; however, only 1,000 parameter groups were analyzed 
in the current study.

Calibration and verification of the VIC hydrological model. In the process of model calibration and verification, 
the periods of calibration, verification and warm-up were set to 1971–1990, 1991–2000 and 1961–1970, respec-
tively. The VIC model parameters were selected based on results described in the previous section. The detailed 
parameter configuration is shown in Table S1. As shown in Fig. 5a–h, the VIC model can simulate the runoff 
process and peak time of the PS, ZT, CT and YC stations, but the minimum and maximum values of discharge 
are underestimated. The NSEs of the respective PS, ZT, CT and YC stations are 0.90, 0.95, 0.96 and 0.93 during 
the calibration period and 0.92, 0.95, 0.95 and 0.92 during the verification period (see Table 4). The BIAS values 
of the respective PS, ZT, CT and YC stations are 1.41%, − 6.67%, − 2.88% and − 3.61% during the calibration 
period and 1.14%, − 7.88%, − 4.41% and − 5.86% during the verification period (see Table 4). The above results 
show that the VIC model has good simulation performance for the monthly average flow of the basin.

To further analyze the simulation performance of the VIC hydrological model with respect to the runoff pro-
cess in the UYRB, we analyzed the daily runoff process in a typical wet year (1981) and a typical dry year (1994). 
As shown in Fig. S1 (a-d), the VIC hydrological model performs well in simulating the daily runoff process in 
the UYRB. The coefficient of determination (R2) between the observed and simulated daily runoff at the PS, ZT, 

(14)Average bandwidth (B) : B=
1

n

n
∑

i=1

(

Q
upper
i − Qlower

i

)

(15)Average asymmetry degree (S) : S=
1

n

n
∑

i=1

∣

∣

∣

∣

∣

Q
upper
i − Qi

Q
upper
i − Qlower

i

− 0.5

∣

∣

∣

∣

∣

Figure 3.  Scatter plots of likelihood objective function values for each parameter. The figure was generated by 
MATLAB2019a (https:// www. mathw orks. com/).

https://www.mathworks.com/
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CT and YC stations reaches 0.9, 0.92, 0.91 and 0.91, respectively (Fig. S1). As shown in Fig. S2, the NSEs of the 
respective PS, ZT, CT and YC stations are 0.9, 0.93, 0.92 and 0.9 in the wet year (Fig. S2a, c, e, g) and 0.68, 0.85, 
0.86 and 0.81 in the dry year (Fig. S2b, d, f, g). The BIAS values of the four stations are 13.52%, −0.45%, 0.32% 
and 0.33% in the wet year and −5.56%, −9.33%, −0.55% and −0.41% in the dry year (see Table S2). In general, 
the VIC hydrological model has good applicability in the UYRB, and its simulation performance in the wet year 
is slightly better than that in the dry year.

Trend analysis. The nonparametric Mann–Kendall (MK)  method62,63 was used to analyze the temporal 
trends of climatic factors, with significance evaluated at the 95% confidence level. The nonparametric MK 
method is considered a simple and effective way of conducting climate change analysis and has been extensively 
used in the analysis of hydrometeorological time series  sets50,64. The MK statistical test is given as follow:

where statistic S can be calculated as:

(16)Z=



























S − 1
√
Var(S)

S > 0

0 S = 0

S + 1
√
Var(S)

S < 0

(17)S =
n−1
∑

i=1

n
∑

j=i+1

sgn
(

xj − xi
)

Figure 4.  Uncertainty interval of monthly mean runoff at the 95% confidence level during the validation 
period. (a PS station; b ZT station; c CT station; d YC station). The figure was generated by MATLAB2019a 
(https:// www. mathw orks. com/).

Table 3.  Evaluation indices of the uncertainty interval during the validation period.

Indices PS ZT CT YC

CR 77.5 98.3 79.2 75.3

B 3175 10,736 6201 9732

S 0.31 0.25 0.29 0.35

https://www.mathworks.com/
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Figure 5.  Comparisons of simulated and observed monthly mean runoff processes during calibration (a,c,e,g) 
and verification (b,d,f,h) periods. The figure was generated by MATLAB2019a (https:// www. mathw orks. com/).

Table 4.  Simulation performance of monthly mean runoff during the calibration and validation periods.

Station

Calibration 
period

Verification 
period

NSE BIAS (%) NSE BIAS (%)

PS 0.90 1.41 0.92 1.14

ZT 0.95 − 6.67 0.95 − 7.88

CT 0.96 − 2.88 0.95 − 4.41

YC 0.93 − 3.61 0.92 − 5.87

https://www.mathworks.com/
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where xi and xj are the observations at the ith and jth moments, respectively, and n is the length of the series. 
When xi-xj is greater than, equal to or less than 0, sgn

(

xi − xj
)

 equals 1, 0, or − 1, respectively.
The statistic Z can be used as a measure of a trend. Z > 0 and Z < 0 indicate increasing and decreasing trends, 

respectively. A larger |Z| value indicates a more significant trend. In this study, significance level was evaluated 
at the 0.05 level, which mean that Z > 1.96 and Z <  − 1.96 indicated significant increasing and decreasing trends, 
respectively.

Since the autocorrelation of a time series may affect the accuracy of trend analysis, the method developed by 
Yue and  Wang65 was used to eliminate the possible autocorrelation in the extreme precipitation data series for 
the UHRB. In addition, Sen’s  slope66 was used to determine the degree of trend, as it can eliminate the impact of 
missing data or anomalies on the trend test. The slope is estimated by

where β is the estimate of the slope of the trend and xi and xj are the observations at the ith and jth moments, 
respectively.

Applied data. Meteorological observation data. The meteorological observation data used in the UYRB 
were extracted based on the CN05.1 data with a resolution of 0.5° developed by Wu and  Gao67, which include 
329 meteorological stations in the YRB. Forty-two sites with relatively high quality were selected for the perfor-
mance evaluation of the bias correction, and the meteorological station information is shown in Table 5. The 
CN05.1 data contain all meteorological elements required by VIC hydrological models and have been exten-
sively applied in simulation performance evaluation and the analysis of climate  models33. The inverse distance 
weighted method was used to interpolate CN05.1 data into the computational grid center of the RegCM4.5 
model and the VIC model.

Climate model data. The reference experimental and projected experimental results of CSIRO-MK3.6.0 and 
MPI-ESM-MR under the RCPs (4.5 and 8.5) were used as the initial and lateral boundary conditions for the 
 study68,69. CSIRO-MK3.6.0 and MPI-ESM-MR were submitted by the Max Planck Institute of Germany and 
the Commonwealth Scientific and Industrial Research Organization of Australia, respectively, to the Coupled 
Model Intercomparison Project Phase 5 (CMIP5). The difference between the near-future period (2021–2050) 
and the reference period (1971–2000) under the RCPs (4.5 and 8.5) was considered to be the climate change in 
the UYRB.

VIC model forcing data. The hydrological data used for calibration and verification of the VIC hydrological 
model are the daily flow data of the PS, ZT, CT and YC stations from 1961 to 2000. The basic information of 

(18)β=Median

[

(

xj − xi
)

(

j − i
)

]

, ∀j > i

Table 5.  Meteorological stations used for the correction performance assessment.

ID Station Name Latitude Longitude ID Station Name Latitude Longitude

1 52908 Wudaoliang 35.3° 93.6° 22 56565 Yanyuan 27.4° 101.6°

2 56004 Tuotuohe 34° 92.6° 23 56571 Liangshan 27.9° 102.3°

3 56029 Yushu 32.9° 96.7° 24 56651 Lijiang 26.9° 100.2°

4 56034 Qingshuihe 33.9° 97.5° 25 56671 Huili 26.8° 102.3°

5 56144 Dege 31.8° 98.6° 26 56684 Huize 26.4° 103.2°

6 56146 Ganzi 31.6° 100° 27 56751 Dali 25.7° 100.2°

7 56167 Daofu 31° 101.2° 28 56778 Kunming 25° 102.7°

8 56172 Maerkang 31.9° 102.6° 29 57211 Ningqiang 32.7° 106.4°

9 56178 Xiaojin 31° 102.4° 30 57237 Wanyuan 32.1° 108.2°

10 56182 Songpan 32.6° 103.6° 31 57238 Zhenba 32.3° 108.1°

11 56188 Dujiangyan 31° 103.6° 32 57306 Langzhong 31.6° 106°

12 56385 Emeishan 29.5° 103.7° 33 57313 Bazhong 31.9° 106.8°

13 56386 Leshan 29.5° 103.8° 34 57348 Fengjie 31.1° 109.5°

14 56444 Deqin 28.8 98.8° 35 57355 Badong 31.1° 110.4°

15 56462 Jiulong 29° 101.6° 36 57405 Suining 30.5° 105.4°

16 56475 Yuexi 28.6° 102.6° 37 57411 Nanchong 30.8° 106.1°

17 56479 Shaojue 28.2° 103° 38 57445 Jianzhi 30.6° 109.6°

18 56485 Leibo 28.3° 103.6° 39 57461 Yichang 30.7° 111.1°

19 56492 Yibin 28.8° 104.5° 40 57502 Dazu 29.7° 105.7°

20 56543 Diqing 27.5° 100° 41 57517 Jiangjin 29.3° 106.3°

21 56548 Weixi 27.2° 99.5° 42 57608 Xuyong 28.2° 105.4°
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the hydrological station is shown in Table 6. The topography of the UYRB was defined from a digital elevation 
model (DEM) than can be downloaded from the website: http:// www. gsclo ud. cn. The soil data were extracted 
from the global 5-min soil data set from the NOAA hydrological office (http:// www. fao. org/ soils- portal/ en/). 
The vegetation cover data were obtained from the land cover classification data set with a 1 km resolution from 
the University of Maryland (http:// www. landc over. org/ data/ landc over/ data. shtml).

Results
Bias correction using the QM method. Correction performance for different distributions. To evaluate 
the performance of the QM method based on the mixture distribution for precipitation correction, observed 
precipitation data from 42 stations with good quality in the UYRB were applied. Table 7 shows the fitting per-
formance statistical parameters of the QM method based on different distributions, such as the statistics of the 
Kolmogorov–Smirnov test (D), number of stations passing the Kolmogorov–Smirnov test at the 95% confidence 
level (P95), root mean square error (RMSE), mean relative error (MRE), sum of squares due to error (SSE) and 
CORR. According to the results in Table 7, the QM method based on mixed distribution has significantly better 
fitting performance regarding observed precipitation than that based on a single distribution. In the statisti-
cal results of the QM method based on the single distribution, few stations passed the significance test at the 
95% confidence level, indicating that the single distribution fitting the observed precipitation in the UYRB is 
not applicable. The fitting performance of the mixed distribution for observed precipitation in the UYRB was 
significantly higher than that of the single distribution, especially G-G, G-E and G-V. The statistical results in 
Table 7 show that among all the mixed distributions, the G-V distribution achieved the best overall performance. 
Therefore, the G-V distribution was selected to correct precipitation data from the RegCM4.5 output.

Bias correction using the G‑V distribution. Figure 6 shows the Taylor diagrams of various meteorological ele-
ments in the UYRB before and after the revision from the CSIRO-MK3.6.0 and MPI-ESM-MR downscaling 
results (defined as R_CS and R_MPI, respectively) for the reference period. As shown in Fig. 6(a-c), poor per-
formance was achieved in precipitation simulation in the UYRB from R_CS and R_MPI before the correction 
(marked in red). The spatial correlation coefficient of annual precipitation between simulated and observed pre-
cipitation was only approximately 0.1, whereas it can reach approximately 0.35 in winter, and the precipitation 
overestimation usually exceeded 20%. After the correction (marked in blue), the spatial correlation coefficient of 
annual precipitation between simulated and observed precipitation increased from 0.1 to 0.99, and the precipita-
tion bias was reduced to approximately 10%.

As shown in Fig. 6d–l, the annual average air temperature  (T2m), minimum temperature  (Tmin), and maximum 
temperature  (Tmax) were typically well simulated even before the correction (marked in red), and the spatial cor-
relation coefficient of the air temperature between the simulated and observed values was usually approximately 
0.95. The average annual and summer air temperatures had a warm bias of approximately 20% compared with an 
approximately 20% cold bias in winter. After the correction (marked in blue), the spatial correlation coefficient 
of the air temperature between the simulated and observed values increased from 0.95 to 0.99, and the bias of 
the air temperature was reduced from 20 to 10%.

Table 6.  Geographic location information of hydrological stations.

Station Longitude Latitude

PS 104.14° 28.64°

ZT 105.85° 29.02°

CT 106.57° 29.59°

YC 111.18° 30.77°

Table 7.  Statistical parameters of the fitting performance.

ID Function D P95 MRE RMSE SSE CORR

1 Gamma 0.32 23 20.59 6.87 1.66 1.00

2 Exponential 0.54 8 54.90 27.08 22.74 0.98

3 Gumbel 0.80 0 164.92 43.75 63.23 0.94

4 GP 0.51 0 − 49.63 15.28 8.45 0.99

5 GEV 0.38 14 9.32 13.44 6.01 0.99

6 G-G 0.18 38 1.17 1.39 0.16 1.00

7 G-E 0.19 40 − 1.26 1.35 0.18 1.00

8 G-U 0.37 13 8.10 3.17 0.38 1.00

9 G-V 0.17 39 − 1.07 1.29 0.14 1.00

10 G-P 0.23 16 − 0.66 2.04 0.46 1.00

http://www.gscloud.cn
http://www.fao.org/soils-portal/en/
http://www.landcover.org/data/landcover/data.shtml
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Figure 7 shows the annual cycles of precipitation,  T2m,  Tmax and  Tmin before and after the revision from R_CS 
and R_MPI. As shown in Fig. 7a, the unrevised precipitation from R_CS and R_MPI was overestimated in the 
UYRB, whereas the revised precipitation was consistent with the observations. Similarly, compared with the 

(a) Precipitation (b) Sum_Precipitation (c) Win_Precipitation

(d) T2m (e) Sum_T2m (f) Win_T2m

(g) Tmin (h) Sum_Tmin (i) Win_Tmin

(j) Tmax (k) Sum_Tmax (l) Win_ Tmax

Figure 6.  Taylor diagrams of precipitation (a–c),  T2m (d–f),  Tmin (g–i) and  Tmax (j–l) before and after the 
revision from R_CS and R_MPI for the reference period. (annual, left panels; summer, middle panels; winter, 
right panels). The figure was prepared using The NCAR Command Language version 6.5.0. (https:// doi. org/ 10. 
5065/ D6WD3 XH5).

https://doi.org/10.5065/D6WD3XH5
https://doi.org/10.5065/D6WD3XH5
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observations,  T2m,  Tmax and  Tmin before the revision exhibited some deviation in the annual cycle, among which 
warm biases mainly occurred in spring, summer and autumn, while cold biases occurred in winter (Fig. 7b–d). 
After the correction, the warm and cold biases were greatly reduced, and the annual cycle of temperature was 
consistent with the observation.

To further understand the performance of the correction using the QM method, Figs. S3-S6 (a-o) show the 
spatial distribution of annual mean precipitation,  T2m,  Tmax and  Tmin in the UYRB before and after the revision 
from R_CS and R_MPI, and the corresponding results for summer and winter are also presented. After the revi-
sion, the precipitation biases that prevailed in the mountainous areas from western Sichuan to southern Qinghai 
and the southeastern region of the UYRB were significantly improved, and the warm bias of the Sichuan Basin 
and the cold bias of the source area of   the YRB were significantly improved (Fig. S3-S6). In short, the simulation 
performance regarding precipitation and air temperature from R_CS and R_MPI was greatly improved after 
correction using the QM method. From the next section onward, all meteorological elements referring to R_CS 
and R_MPI are corrected using the QM method.

Near-future climate change projected by RegCM4.5. Near‑future precipitation projected by 
RegCM4.5. Figure 8 shows the changes in the multiyear average precipitation under the RCPs (4.5 and 8.5) 
for R_CS (Fig. 8a,b) and R_MPI (Fig. 8c,d) in the mid-twenty-first century (defined as 2021–2050 minus 1971–
2000). The block diagram shows the interannual variation trend in multiyear average precipitation anomaly. The 
black dotted shows the   changes that passed the significance test. In general, the multiyear average precipitation 
of the UYRB from R_CS and R_MPI during the 2021–2050 period exhibited an insignificant downward trend. 
Based on the spatial distribution of precipitation, there are obvious differences between the east and west of the 
UYRB. As shown in Fig. 8, the multiyear average precipitation in the Sichuan Basin increased significantly in 
the northwestern areas but decreased significantly in the southeast areas. Compared with the reference period, 
the multiyear average precipitation in the future will increase significantly by approximately 0.5 mm/day in the 
northwestern part of the basin and will decrease significantly by approximately 0.5 mm/day in the southeast of 
the basin.

Figure 7.  Annual cycles of precipitation (a),  T2m (b),  Tmax (c) and  Tmin (d) before and after the revision from 
R_CS and R_MPI. (The black line represents the observation; the blue and red dashed lines represent the result 
before the R_CS and R_MPI corrections, respectively; the blue and red lines represent the result after the R_CS 
and R_MPI corrections, respectively). The figure was generated by MATLAB2019a (https:// www. mathw orks. 
com/).

https://www.mathworks.com/
https://www.mathworks.com/
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Table 8 shows the variation of multiyear average precipitation in different periods under the RCPs (4.5 and 
8.5) compared with the reference period. Under the RCPs (4.5 and 8.5), the changes in precipitation projected 
by R_CS and R_MPI in different periods were slightly different, but precipitation in both projections generally 
showed a trend of first increasing and then decreasing. In R_CS, the precipitation decrease was concentrated in 
2031–2040 and was reduced by 0.048 mm/day and 0.088 mm/day under the RCP4.5 and RCP8.5, respectively. 
In R_MPI, the degree of precipitation decrease was smaller than that of R_CS, and the precipitation decrease was 
concentrated in 2040–2050. During this period, the precipitation decreases by 0.014 mm/day and 0.035 mm/day 
under the RCP4.5 and RCP8.5, respectively.

(a) R_CS_RCP4.5 (b) R_CS_RCP8.5

(c) R_MPI_RCP4.5 (d) R_MPI_RCP8.5

Figure 8.  Multiyear average changes (unit: mm/day) in precipitation over the UYRB under the RCP4.5 and 
RCP8.5 scenarios compared to the reference period (1971–2000). The black dots denote differences that 
are statistically significant at a significance level of 95% based on Student’s t-test. The rectangle indicates the 
interannual variation trend of precipitation anomalies (unit: mm/day). The figure was prepared using The 
NCAR Command Language version 6.5.0. (https:// doi. org/ 10. 5065/ D6WD3 XH5).

Table 8.  Changes and trends of precipitation from R_CS and R_MPI under the RCP4.5 and RCP8.5 scenarios 
in different periods. *indicates a significant value at the 0.01 level. **indicates a significant value at the 0.05 
level.

Periods

R_CS R_MPI Average

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

2021–2030 0.025 − 0.047 0.012 0.036 0.018 − 0.006

2031–2040 0.010 0.086 − 0.014 − 0.019 − 0.002 0.033

2041–2050 − 0.048 − 0.088 0.020 0.018 − 0.014 − 0.035

Mean − 0.004 − 0.016 0.006 0.011 0.001 − 0.002

Trend (mm/10 a) − 27.7 − 27.3* − 10.8 − 13.7 − 19.25 − 19.05

https://doi.org/10.5065/D6WD3XH5
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Near‑future temperature projected by RegCM4.5. Figure 9 and Figures S7-S8 show the changes in the multiyear 
average  T2m (Fig. 9a–d),  Tmax and  Tmin under the RCPs (4.5 and 8.5) for R_CS (Fig. 9a,b, S7a,b and S8a,b) and 
R_MPI (Fig. 9c,d, S7c,d and S8c,d) in the mid-twenty-first century (defined as 2021–2050 minus 1971–2000). In 
general, compared with the reference period, the multiyear average  T2m of the UYRB will increase by approxi-
mately 1–1.5 °C in the future, and the increasing trend will reach 0.29 °C/10 a and 0.37 °C/10 a under RCP4.5 
and RCP8.5, respectively. In the future, the greater temperature increase will be mainly concentrated in the area 
from the Songpan Plateau to the east of the Qinghai-Tibet Plateau, where the  Tmax and  Tmin increases are usually 
above 2 °C. Table 9 and Tables S3-S4 show the variation of the multiyear average  T2m,  Tmax and  Tmin in different 
periods under the RCPs (4.5 and 8.5) compared with the reference period. It can be seen from Table 9 that the 

(a) R_CS_RCP4.5 (b) R_CS_RCP8.5

(c) R_MPI_RCP4.5 (d) R_MPI_RCP8.5

Figure 9.  Multiyear average changes (unit: ℃) in  T2m over the UYRB under the RCP4.5 and RCP8.5 scenarios 
compared to the reference period (1971–2000). The black dots denote differences that are statistically significant 
at a significance level of 95% based on Student’s t-test. The rectangle indicates the interannual variation trend 
of air temperature anomalies (unit: ℃/10 a). The figure was prepared using The NCAR Command Language 
version 6.5.0. (https:// doi. org/ 10. 5065/ D6WD3 XH5).

Table 9.  Changes and trends of  T2m from R_CS and R_MPI under the RCP4.5 and RCP8.5 scenarios in 
different periods. *indicates a significant value at the 0.01 level. **indicates a significant value at the 0.05 level.

Periods

R_CS R_MPI Average

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

2021–2030 1.046 1.247 0.967 0.952 1.007 1.099

2031–2040 1.567 1.446 1.141 1.208 1.354 1.327

2041–2050 1.937 2.305 1.660 1.688 1.798 1.997

Mean 1.516 1.666 1.256 1.283 1.386 1.474

Trend (℃/10 a) 0.38** 0.52** 0.20* 0.22* 0.29* 0.37*

https://doi.org/10.5065/D6WD3XH5
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 T2m increase is approximately 1 °C during the 2021–2030 period, while by the middle of the twenty-first century, 
the  T2m increase will reach approximately 1.5–2 °C.

In the future, the spatial changes of precipitation and temperature will be quite different between the western 
and eastern areas of the UYRB. On the whole, the eastern part of the basin shows a warm and dry trend, while 
the western part of the basin shows a warm and wet trend. Precipitation has strong interdecadal variation char-
acteristics from 2021 to 2050, with a trend of first increasing and then decreasing, but the above trends are not 
significant. However, the temperature from 2021 to 2050 will continue to increase significantly, and the rate of 
warming will accelerate significantly.

Near-future changes in runoff. Seasonal variation characteristics of runoff. To study the characteristics 
of runoff changes under the near-future climate change in the UYRB, the average climate fields of R_CS and 
R_MPI were used as forcing data of the VIC hydrological model to simulate the near-future runoff process. Fig-
ure 10a–d shows the multiyear average runoff process of the total runoff  (Rt, solid line) and snowmelt runoff  (Rs, 
dashed line) for the PS, ZT, CT and YC stations under the RCPs (4.5 and 8.5), and the corresponding changes are 
presented (defined as the values in 2021–2050 minus those in 1971–2000). As shown in Fig. 10, compared with 
those in other seasons, the summer  Rt and  Rs will decrease more in the near-future. As shown in Fig. 10e–g, the 
decrease in  Rt for the PS, ZT and CT stations located in the middle and upper reaches of the UYRB is largely due 
to the contribution of  Rs, whereas the decrease in  Rt for the YC station at the outlet of the UYRB is less affected 
by  Rs (Fig. 10 h). Table 10 shows the contribution of  Rs to  Rt in different seasons. In terms of the annual average, 
the  Rs of the PS, ZT, CT and YC stations accounts for 5.9%, 6.0%, 4.8% and 4.1%, respectively, of the  Rt. The  Rs 
contributes the most to the  Rt in spring, with contributions of 17.8%, 19.5% and 14.6% for the PS, ZT and CT 
stations, respectively, while the contribution for YC is only 9.2%. The contribution of  Rs to  Rt is approximately 
5–8% in summer but only approximately 1–2% in autumn and winter.

Table 11 shows the multiyear average changes for the PS, ZT, CT and YC stations in different seasons under 
the RCPs (4.5 and 8.5) relative to the reference period. According to the results of the YC station at the outlet of 
the UYRB,  Rt will decrease by approximately 4.4–5% in the near-future, while  Rs will decrease by approximately 

Figure 10.  The multiyear average runoff process (a–d) of the  Rt (solid line) and  Rs (dashed line) for the PS, ZT, 
CT and YC stations under the RCP4.5 and RCP8.5 scenarios and the corresponding changes (e–h). (The black 
color represents the reference period; the blue and red colors represent RCP4.5 and RCP8.5, respectively). The 
figure was generated by MATLAB2019a (https:// www. mathw orks. com/).

https://www.mathworks.com/
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36.9–38.9%. The variation in  Rt in different seasons is quite different, among which  Rt decreases by approxi-
mately 6.9–7.2% in summer, 2.1–4.2% in autumn and 2.7–5.2% in winter. Note that the  Rt in spring shows a 
slight opposite change in the near-future between the RCP4.5 and RCP8.5. Under the RCP4.5 scenario, the  Rt 
in spring decrease by approximately -1.7%, whereas the  Rt in spring increases by approximately 1.4% under the 
RCP8.5 scenario, which is related to the increase in  Rs caused by climate warming. It can be seen from the spring 
 Rs of other stations that the degree of increase of the  Rs under the RCP8.5 scenario is significantly higher than 
that under the RCP4.5 scenario. In addition, the  Rs of the PS station will increase significantly in spring, which 
is due to the melting of a large amount of snow cover in the upper reaches of the UYRB in winter, indicating that 
runoff changes in the source area of the Yangtze River are highly sensitive to climate warming.

Spatial variation characteristics of hydrological elements. Figure 11 shows the spatial distribution of the mul-
tiyear average precipitation, runoff depth and evaporation in the UYRB in the reference period and the corre-
sponding changes under the RCPs (4.5 and 8.5). As shown in Fig. 11a, in the reference period, the southeastern 
part of the UYRB is the main area of precipitation, with annual precipitation exceeding 1000 mm, while the 
total annual precipitation in the northwest of the UYRB is usually approximately 200 mm. The spatial pattern 
of the multiyear average runoff depth in the reference period is nearly the same as that of precipitation, but the 
spatial distribution of multiyear average variation in the near-future differs between the southeast and northwest 
regions of the UYRB (Fig. 11d). According to the results of “Near-future climate change projected by RegCM4.5”, 
precipitation will decrease in the southeast area of the UYRB and increase in the northwest (Fig. 11b,c). The 
runoff depth will increase only in the source area of the YRB and the Minjiang River Basin in the middle of the 
UYRB under the RCPs (4.5 and 8.5), by approximately 15–25%, decreasing by approximately 5–25% in the other 
regions (Fig. 11e,f). The spatial distribution of evaporation changes is largely consistent with that of precipitation 
in the near-future. As shown in Fig. 11h–i, the evaporation in the northwestern UYRB will increase by approxi-
mately 20–30% in the near-future and decreases by approximately 5% in the southeastern UYRB.

Variation characteristics of extreme runoff. Figure 12 shows the box plots of the mean annual runoff (MAR), the 
maximum 1-day daily runoff (MAX1D), and the 5th and 95th percentile of daily runoff  (Q5 and  Q95) for the PS, 
ZT, CT and YC stations in the reference and near-future periods. To illustrate the extreme runoff changes in the 
UYRB, the YC station at the outlet of the basin is addressed here. As shown in Fig. 12d,h, compared with that in 
the reference period, the MAR of the YC will decrease under RCPs (4.5 and 8.5), whereas the MAX1D of the YC 
will not change significantly in the near-future. Compared with the reference period, both the  Q5 and  Q95 of the 
YC will decrease slightly in the near-future. The degree of decrease in  Q5 and  Q95 under the RCP8.5 scenario is 
slightly greater than that under the RCP4.5 scenario, but the degree of change mostly does not exceed the sample 
interval of the reference period. Note that there are many outliers of MAX1D and  Q95 in the near-future that 
exceed the statistical interval of the reference period, especially under the RCP8.5 scenario.

Table 10.  Contribution of  Rs to  Rt in different seasons (unit: %).

PS ZT CT YC

Spring 17.8 19.5 14.6 9.2

Summer 8.1 7.2 5.9 5.4

Autumn 2.2 2.2 1.7 1.4

Winter 1.5 2.0 1.8 3.0

Average 5.9 6.0 4.8 4.1

Table 11.  Multiyear average changes (unit: %) of the  Rt and  Rs for the PS, ZT, CT and YC stations in different 
seasons under the RCP4.5 and RCP8.5 scenarios relative to the reference period.

PS ZT CT YC

Rt (%) Rs (%) Rt (%) Rs (%) Rt (%) Rs (%) Rt (%) Rs (%)

RCP4.5

Spring 8.3 15.2 4.2 3.6 1.7 − 2.7 − 1.7 − 5.0

Summer − 7.6 − 52.7 − 4.8 − 55.1 − 4.3 − 54.5 − 7.2 − 51.0

Autumn − 1.8 − 44.8 − 0.3 − 39.7 − 1.4 − 39.5 − 2.1 − 42.3

Winter 0.4 − 14.5 0.1 − 24.4 − 1.3 − 24.4 − 2.7 − 26.1

Average − 4.2 − 42.1 − 2.3 − 38.7 − 2.5 − 38.9 − 4.4 − 38.9

RCP8.5

Spring 9.9 17.3 7.4 7.0 4.5 0.8 1.4 − 2.1

Summer − 7.0 − 49.9 − 5.3 − 52.6 − 4.3 − 52.1 − 6.9 − 48.5

Autumn − 3.0 − 44.2 − 2.2 − 37.8 − 3.1 − 37.7 − 4.2 − 40.8

Winter 0.2 − 19.3 − 1.4 − 28.5 − 3.2 − 27.8 − 5.2 − 31.1

Average − 4.31 − 39.8 − 3.0 − 36.2 − 3.1 − 36.5 − 5.0 − 36.9
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Discussions and conclusions
The UYRB is one of the regions in the Yangtze River Basin with frequent floods and is very sensitive to global 
warming. In this study, CSIRO-MK3.6.0 and MPI-ESM-MR were used to project the near-future climate change 
in the UYRB under RCPs (4.5 and 8.5), and meteorological elements from the dynamic downscaling results 
were revised using the QM method. Then, the revised climate forcing data were used to drive the hydrological 
model to simulate the hydrological process in the near-future over the UYRB. Finally, the spatiotemporal vari-
ation characteristics of runoff in the basin were analyzed under near-future climate changes. The main research 
conclusions are as follows:

According to the uncertainty analysis results, the depth of the second soil layer (D2) and the infiltration shape 
parameter (B) are the sensitive parameters in the VIC hydrological model. The VIC hydrological model has good 
simulation performance for daily and monthly runoff processes in the UYRB. The NSE is usually higher than 
0.9 during the calibration and verification periods, and the BIAS is within ± 10%, indicating that the model is 
appropriate for the UYRB.

According to the statistical results of D, P95, MRE, RMSE, SSE and CORR, precipitation correction for the 
RCM results using the QM method based on a mixed distribution is better than that using the QM method based 
on a single distribution. The result indicates that the precipitation in the UYRB is not represented by a single 
precipitation pattern. In fact, the South Asian monsoon and East Asian monsoon have a strong influence on the 
precipitation in the YRB, so the mixed distribution can better describe the local complex precipitation pattern 
than the single  distribution15,16. The results of Huang et al.70 confirm that the EASM and its subsystem SCSSM 
have much greater impact on precipitation in the YRB than on that in other basins in China. Among the five 
mixed distributions used in the study, the Gamma-GEV has the best performance in correcting precipitation 
over the UYRB and can effectively correct the obvious wet biases in simulated precipitation.

According to the revised results of R_CS and R_MPI, the eastern part of the UYRB will tend to be warm 
and dry relative to the reference period in the near-future, whereas the western part of the basin will tend to 
be warm and wet. The precipitation will generally decrease at a rate of 19.05–19.25 mm/10 a, but the trend is 

Figure 11.  Spatial distribution of multiyear average precipitation (a, unit: mm), runoff depth (d, unit: mm) 
and evaporation (g, unit: mm) over the UYRB in the reference period and the corresponding changes (unit: %) 
under the RCP4.5 and RCP8.5 scenarios. The figure was generated by Arcmap 10.6 (https:// www. esri. com).

https://www.esri.com
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not obvious. The  T2m will increase significantly at a rate of 0.38–0.52 °C/10 a, and the temperature will rise by 
approximately 1.5 °C in the mid-twenty-first century. Huang et al.70 showed that the summer precipitation in 
the UYRB is predicted to decrease significantly in the mid-21th century, which is consistent with the results of 
Cao et al., Deng et al. and Wang et al.22,30,71. Moreover, as the temperature rises, the difference in precipitation 
between the northwest and southeast of the basin will increase, and the risk of flood disaster caused by high-
intensity precipitation in the western and central regions may  increase70.

The contribution of snowmelt runoff to the annual runoff of the UYRB is only approximately 4%, and the 
contribution can reach approximately 9.2% in the spring. Affected by climate warming, snowmelt runoff will 
decrease by approximately 36–39% in the near-future, while annual runoff will decrease by approximately 4.1–5%, 
and extreme runoff will slightly decrease. Regarding the spatial changes in runoff depth, the areas of decreased 
runoff are concentrated in the southeast of the basin. The decrease in precipitation is the direct factor leading to 
the decrease in runoff depth in the southeast of the basin, while the decrease in runoff depth in the northwest is 
mainly affected by the increase in evaporation. These findings are consistent with previous studies on the impacts 
of climate change in the  UYRB22,30,72,73. In addition, due to climate warming, more rainfall than snowfall may 
increase the risk of summer droughts or spring floods in the snow-covered basin, and this risk will increase as 
the rate of temperature rise  increases30,74,75. The temperature increase in winter and spring may cause the melt-
ing of glaciers and snow at the source of the Yangtze River, where most of the glacier surface is located, and lead 
to a large flow increase in  April30. From May to September, the water flow decreases, which may exacerbate the 
crisis of water shortage in the UYRB during the flood season.

However, the findings of this study are not completely consistent with some of the findings of Gu et al.29 and 
Su et al.26 Due to study differences in source data, bias correction methods, global climate models, hydrological 
model structure, model parameterization, reference period, comparison period, and emission scenarios, which 
may introduce great uncertainty in the assessment of the impact of future climate change, inconsistent results 
among studies may  occur76. For example, Gu et al.29 used the gamma distribution to revise the precipitation from 
the RegCM4; however, the present study revealed that a single distribution (such as the gamma distribution) was 
not the best choice. Compared with the mixed distribution, a single distribution will yield a large amount of wet 
bias in the revised precipitation, resulting in excessive precipitation, as confirmed by Shin et al.45 Some studies 
have indicated that the uncertainty generated by the use of corrected forcing data in hydrological response studies 
may be of the same order of magnitude as that in the GCMs and hydrological  models77,78. Previous studies have 
confirmed that the main source of uncertainty in future runoff forecasts in the UYRB is related to the choice 

Figure 12.  Box plots of the MAR (a–d), MAX1D (e–h),  Q5 (i–l) and  Q95 (m–p) for the PS, ZT, CT and YC 
stations for the reference period (RF) and future period (RCP4.5 and RCP8.5). The figure was generated by 
MATLAB2019a (https:// www. mathw orks. com/).

https://www.mathworks.com/
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of climate forcing (GCMs and RCPs) and that hydrological models paly only a secondary  role26,79. However, in 
most previous studies, empirical manual trial calculation has been adopted to obtain the hydrological model 
 parameters22,29, whereas in this study, the GLUE was adopted to select the optimal parameter group from a large 
number of sample parameters.

In this study, R_CS and R_MPI were used in the regional hydrological and climate projection of the UYRB, 
which was helpful to estimate future climate-related risks. However, it is still necessary to combine the results 
of more RCMs or GCMs to objectively project the climate change characteristics of the UYRB. In addition, the 
spatial and temporal variability of runoff may be influenced by various anthropogenic activities (e.g., irrigation, 
land-use change, reservoir operation), which were not considered in this study. This study aimed to provide 
overall and regional trends of the UYRB under a specific model, scenario, and method, rather than make accurate 
projections for a specific location.
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