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Phylogenetic molecular evolution
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of complete genome of human
parechovirus in Thailand

Thaweesak Chieochansin®2*, Jiratchaya Puenpa® & Yong Poovorawan?

Human parechovirus (HPeV), which is a member of the Picornavirus group of viruses, is a pathogen
that is reported to be associated with manifestations that include respiratory tract involvement,
gastroenteritis, sepsis-like symptom, and central nervous system complication. Until now, nineteen
genotypes have been identified. The lack of proofreading property of viral RNA-dependent RNA
polymerase (RdRp) together with recombination among the intra- and inter-genotypes of the virus
results in high diversity. However, data specific to the molecular evolutionary perspective of the
complete genome of HPeV remains limited. This study aimed to analyze the phylogenetic, molecular
evolution, and recombination characteristics of the complete genome of HPeV strains isolated in
Thailand during 2009-2012. Fifty-eight samples that were previously confirmed to be HPeV positive
and then evaluated for genotyping were subjected to complete genome amplification to generate
ten overlapping PCR fragments using a set of in-house designed primers. The same position of the
viral genome was read in triplicate using direct Sanger sequencing. All samples were classified into
the same previously defined genotypes in both whole-genome and VP1 phylogenic tree. However,
sample B1091/HPeV14/2011 exhibited discordant grouping between whole-genome and VP1 on the
phylogenetic tree. Bootscan analysis revealed that B1091/HPeV14/2011 inherited from two genotypic
viruses, including VP1 from HPeV14, and the rest of the genome from HPeV1B. The results of this
study provide important insights into the molecular evolution of and recombination in the viral
genome of HPeV that will improve and accelerate our ability to develop treatment and prophylactic
strategies in the future.

Human parechoviruses (HPeVs) belong to the Picornaviridea family, Parechovirus genus, Parechovirus A spe-
cies previously described as echoviruses 22 and 23'~*. Until now, nineteen genotypes have been classified by the
genomic diversity of viral protein (VP) 1, which is assigned as HPeV1-19'~? (http://www.picornastudygroup.com/
types/parechovirus/hpev.html). The common manifestation of HPeV's infection is associated with modulated
symptoms in the respiratory'® and gastrointestinal tract'"!?, and this virus is mainly found in children'?. During
the past few years, HPeV's have attracted added attention because these viruses were reported to be pathogens
that can cause sepsis-like illness and central nervous system (CNS) infection'. The epidemiology and clinical
manifestations vary according to the genotype of the virus. HPeV1 and HPeV6 were commonly associated with
gastroenteritis'>'°, whereas HPeV3 and HPeV5 were related to more severe manifestations, such as sepsis-like
illness!’%. Therefore, the molecular epidemiology of these viruses, which leads to genotype identification, is
important to investigate.

HPeVs are a nonenveloped virus that exhibit as an icosahedral virion. The virus genome is positive-sense
single-stranded RNA (ssRNA), which are approximately 7,300 nucleotides in length. The genome is divided
into three parts, including 5" untranslated region (UTR); polyproteins (P), which consist of P1, P2, and P3; and,
3'UTR. The viral genome translates into a single polyprotein. This translated protein is subsequently cleaved
by host protease into three structural proteins, including VPO, VP3, and VPI; and, into seven non-structural
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proteins, including 2A-C and 3A-D. RNA-dependent RNA polymerase (RdRp), which is encoded from the 3D
gene, is responsive for viral genome replication?"?%. The lack of proofreading property of viral RdRp together
with the recombination among intra- and inter-genotypes of the virus leads to high viral genome diversity. The
recombination breakpoint hotspots were reported to be around 5UTR and P1, and P2 and P3 junction®-%".
However, the molecular evolutionary perspective of the complete genome of HPeV is limited. Therefore, this
study aimed to analyze the phylogenetic, molecular evolution, and recombination of the complete genome of
HPeVs isolated in Thailand. Together with the reference sequences deposited in the GenBank database, the
previously identified viruses from our center during January 2009 to January 20122 were subjected to complete
genome amplification to retrieve complete coding sequences and to evaluate their phylogenetic, evolutionary
relation recombination event. This study has provided an insightful understanding of molecular evolution and
recombination in the viral genome that will pave the way for controlling this virus and for investigating a cura-
tive strategy in the future.

Materials and methods

Samples and viral genome extraction. All fifty-eight HPeV positive samples were selected during
2009-2012, based on the previous study?. Two hundred microliters of 46 fecal samples and 12 nasopharyngeal
swab samples were subjected to viral RNA extraction. Extraction was performed using the conventional GTC-
phenol-chloroform method®. The extracted RNA was finally dissolved in 20 pl of diethylpyrocarbonate (DEPC)
water and stored at—70 °C until further use.

Complete genome amplification and direct Sanger sequencing. Semi-nested one-step reverse
transcription polymerase chain reaction (RT-PCR) was used for amplification. Degenerated primers were
designed for ten overlapping PCR fragments based on the GenBank database indicated in Supplementary
Table 1. All primers and expected PCR products are shown in Supplementary Table 2. Two microliters of RNA
were added to SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA Polymerase (Invitrogen
Corporation, Carlsbad, CA, USA) for the 1** RT-PCR reaction. Then, two pl of 1* PCR products were used for
the second round of semi-nested PCR. PerfectTaq Plus MasterMix (5 PRIME, Darmstadt, Germany) was used
as the amplification mixture. The expected PCR products mentioned in Supplementary Table 2 were visualized
under ultra-violet light after 2% agarose gel electrophoresis with Tris-Borate-EDTA (TBE) buffer and staining
with ethidium bromide. All PCR positive amplicons were purified using Agarose Gelextract Mini Kit (5 PRIME,
Darmstadt, Germany). Direct Sanger sequencing was performed by 1 BASE DNA Sequencing Services (1st
BASE Laboratories, Selangor, Malaysia). Sequencing results were firstly quality check by Chromas Lite (http://
www.technelysium.com.au/chromas_lite.html). The contigs with clear chromatogram were then subjected to
assembly using SeqMan™ II software (DNASTAR, Madison, WI, USA). Seventy percentage of the sliding win-
dow of 100 basepairs were set as the minimal match for assembly parameter. The assembly sequences were fur-
ther annotated with Basic Local Alignment Search Tool (BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The
HPeV complete genome’s alignment was completed with BioEdit version 7.0.4.1 (Informer Technologies, Inc.,
Los Angeles, CA, Inc.)®.

Molecular evolution analysis.  All study sequences were submitted to the GenBank database. The acces-
sion numbers included in this study are shown in Supplementary Table 1. Phylogenetic tree, the nucleotide
substitution rate, and the most recent common ancestor (tMRCA) were achieved using Bayesian Evolutionary
Analysis by Sampling Trees (BEAST) software version 1.10 (University of California, Los Angeles, CA, USA)*'.
The relaxed clock-uncorrelated exponential with 10 million chains was run in the Genetic Testing Registry
(GTR) with a gamma distribution substitution model. The data from BEAST were analyzed using the TACER
program (http://beast.bio.ed.ac.uk/Tacer). The phylogenetic tree was annotated and analyzed using Figtree ver-
sion 1.4.4 (http://tree.bio.ed.ac.uk/).

Recombination analysis. The recombination events were initially analyzed using phylogenetics and
genetic distances, after which they were analyzed using the RDP4 software package (http://web.cbio.uct.ac.za/
~darren/rdp.html)*’. The recombination region count matrix, modularity matrix, and recombination break-
point matrix were generated using RDP4 software in which the default algorithm setting was used. Potential
recombination events were also identified by BootScan within RDP4 using a sliding window of 200 nucleotides.

Ethical consideration. All samples included in this study were sent for routine diagnosis at the Center of
Excellence in Clinical Virology of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. Per-
sonal data, such as name and hospital number, did not appear in any document relating to this study, including
the final manuscript. All samples were taken with permission from the Director of Chulalongkorn King Memo-
rial Hospital, Bangkok, Thailand. Moreover, this study was conducted after receiving approval from the Ethics
Committee of the Faculty of Medicine, Chulalongkorn University (IRB approval no.086/53). The Institutional
Review Board of the Ethics Committee for Human Research waived the need to obtain written informed consent
because all samples were anonymous. All methods were performed in accordance with the relevant guidelines
and regulations.
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Genome of HPeV | tMRCA (AD) | 95% HPD interval of tMRCA (AD) | Clock rate (substitution/site/year)
Whole genome 1767 1729-1882 1.68x107
VP1 1505 1400-1601 1.56x107
P1 1614 1566-1663 1.86x 1073
P2 1774 1732-1812 2.21x10°3
P3 1818 1782-1847 1.96x107

Table 1. The molecular evolution of the HPeV genome. HPeV human parechovirus, tMRCA the most recent
common ancestor, HPD highest posterior density, AD Anno Domini.

Results

Phylogenetic analysis of VP1 and the complete genome of HPeV. The viral genome of fifty-eight
samples previously identified as HPeV positive®® was subjected to complete genome amplification. A set of con-
sensus primers were in-house designed for use in the overlapping semi-nested PCR (Supplementary Table 1).
Direct Sanger sequencing revealed the nucleotide sequence of the viral genome after amplification. Each posi-
tion of a nucleotide was read in at least triplicate with a different direction of sequencing. After assembly and
annotation, the complete genomes of HPeVs from this study were evaluated for their genetic correlation with
other HPeV strains publicly available in the GenBank database by BEAST program. The sequences from this
study were deposited in the GenBank database as accession numbers MW476080 to MW476137. The genotype
of viruses classified from this study in the whole-genome phylogenetic tree (Fig. 1) corresponded to the VP1
region (Supplementary Figure S1). However, sample B1091/HPeV14/2011 was classified as genotype 14 from the
VP1 sequence (Supplementary Figure S1). In contrast, this sample was grouped with genotype 1B in the whole-
genome phylogenetic tree (Fig. 1). This discordant genotype grouping may indicate a recombination event in
the virus genome. The year of sample collection was defined as the tip of each taxon. The estimated time to the
most recent common ancestor (tMRCA) of the complete genome of the virus indicated as AD 1767 (95% high-
est posterior density [HPD] interval: 1729-1882) (Table 1). Whereas the tMRCA of VP1 was AD 1505 (95%
HPD interval: 1400-1601) (Table 1). The clock rate of VP1 was 1.56 x 10~ substitutions/site/year, whereas the
complete genome was 1.68 x 10~ substitution/site/year (Table 1). These clock rates corresponded with the high
evolutionary rate in the VP1 region compared with the complete genome.

Phylogenetic analysis of P1 region of HPeV. The phylogenetic tree of P1 is presented in Fig. 3. Since
VP1 is one of the genes incorporated in this region, the genotypes of HPeV defined in P1 were also in concord-
ance with VP1 (Fig. 2A) and the whole-genome phylogenetic tree (Fig. 1). The tMRCA of P1 was AD 1614 (95%
HPD interval: 1566-1663), and the clock rate was 1.86 x 10~ substitution/site/year (Table 1). From the phyloge-
netic tree, three distinct clades were illustrated (Fig. 2A). The first clade comprised five genotypes, including 1A,
1B, 2, 6, and 8. Whereas genotypes 4, 5, and 17 were incorporated into the second clade. Finally, the remaining
genotypes (3, 7, 14, and 19) were designated as the third clade (Fig. 2A). tMRCA appraised as AD 1671, 1710,
and 1708 in the first, second, and third clade, respectively (Fig. 2A).

Phylogenetic analysis of P2 and P3 region of HPeV. P2 region of HPeV consists of non-structural
proteins 2A, 2B, 2C, and 2D, which are suspected of playing a crucial role in pre-replication and post-transla-
tional modification*’. In comparison, P3 consists of 3A, 3B, 3C, and 3D, which function in the viral replication
process?. The phylogenetic tree of these two regions of the virus did not group as a genotype as P1 or VP1
region. All genotypes of the virus were unintentionally distributed along the tree of P2 (Fig. 2B) and P3 (Fig. 2C).
As previously described by Calvert J., et al. (2010), the minimum of 0.155 nucleotide sequence divergence was
the suitable threshold corresponding to a naturally occurring minimum value in the distribution of pairwise
distances among 3D sequences®’. Therefore in this study, the substitution rate over 0.155 was used as the cutoff
for classifying the phylogenetic tree of P2 and P3 into different clads. Regarding P2 from this study, six clades of
the phylogenetic tree could be defined, including clade I, II, II1, IV, V, and VI (Fig. 2B). Interestingly, all samples
in this study were members of clade V (the darkened circle in Fig. 2B). tMRCA of P2 was AD 1774 (95% HPD
interval: 1732-1812), and the clock rate was 1.56 x 10~ substitutions/site/year (Table 1). In the meantime, the
phylogenetic tree of P3 could also be defined into six clades (Fig. 2C). Moreover, all samples from this study were
distributed all along with clade I of the tree. It should be noted that only B1187/HPeV4/2011 appeared in clade I
(Fig. 2C). tMRCA of P3 was AD 1818 (95% HPD interval: 1782-1847), and the clock rate was 1.96 x 10~ substi-
tution/site/year (Table 1). These results indicate that P2 and P3 occupied less evolutionarily driven rate than the
P1 region. All samples isolated from this study were distributed into the same clade, which suggests the regional
distribution of P2 and P3 of the virus.

Recombination investigation in HPeV genome. The recombination analysis of the viral genome was
performed using the RDP4 program, after which a consensus event was visualized as a matrix. A recombina-
tion event was usually detected in the genome of the viruses included in this study, which indicated in the hot
spectrum of recombination region count matrix (upper matrix of Fig. 3A). The result showed that 5UTR and
P1 were inherited from lineage different from that of P2, P3, and 3'UTR. Moreover, the genetic diversity of P1
was also higher than the least of the viral genome, which shows as hot spectrum in the modularity matrix (lower
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«Figure 1. Phylogenetic tree of the complete genome of HPeV. The tree was constructed using the BEAST
program under the relaxed clock-uncorrelated exponential with 10 million chains, and was run in the Genetic
Testing Registry (GTR) with a gamma distribution substitution model. Each branch is labeled as GenBank
accession number/genotype/strain name/origin country/year of collection. The genotype was classified based
on the cluster on the VP3/VP1 gene. The samples from this study are indicated with a darkened circle. The most
recent common ancestors (tMRCAs) are defined at the tree node, and the highest posterior density (HPD) is
indicated at each tree branch.

matrix of Fig. 3A). The consensus sequences indicated two hotspots for recombination in the viral genome of
our samples. Those breakpoint hotspots appeared in the junction between VP3 and VP1, and between 2C and
3A (upper matrix of Fig. 3B). It may not correspond with the breakpoint in the reference sequences published
in the database, which showed only one hotspot between the VP1 and 2A junction (lower matrix of Fig. 3B).

In this study, one of the samples (B1091/HPeV14/2011) is suspected of recombination events from the phy-
logenetic tree analysis (Figs. 2, 3). This genome of the virus seems to be mixed between genotypes 1B and 14.
The VPI region was clustering with genotype 14, whereas the rest of the genome was related to genotype 1B.
Therefore, BootScan analysis was applied for suspected recombination examination. The result indicated two
breakpoints (BPs) in the genome of B1091/HPeV14/2011 (Fig. 4). BP1 and BP2 were the junctions between
VP3 and VP1, and between VP1 and 2A, respectively. The VP1 of the virus was closely related to genotype 14,
represented by MG58109/HPeV14/3C/V.E./2015. Meanwhile, the rest of the viral genome was inherited from
genotype 1B, represented by GQ183023/HPeV1B/K150-93/NL/1993 (Fig. 4).

Discussion

HPeV is a member of the Piconavirudae family, which was recently reported to be a pathogen related to the
respiratory tract, gastrointestinal''%, and central nervous system (CNS) involvement'. The lack of proofreading
activity of RdRp results in high genetic diversity, which was found in the entire viral genome. Nineteen genotypes
have been identified (http://www.picornastudygroup.com/types/parechovirus/hpev.html). The different geno-
types of viruses relate to human pathogenesis?’. By way of example, genotype 3 was closely related to sepsis-like
complications'’~2°. Moreover, genetic recombination plays a crucial role in Picornavirus’s evolutionary dynamic
and diversity. However, this intent analysis in the HPeV genome is very limited. Despite the phylogenetic,
molecular evolution, and recombination analysis, it mainly focuses on this study.

Fifty-eight samples previously identified as HPeV positive and that were evaluated for genotyping were
subjected to complete genome amplification. Ten overlapping PCR fragments were performed using a set of
in-house designed primers. The exact position of the viral genome was read in triplicate with direct Sanger
sequencing. After assembly and annotation, the evolutionary dynamic was revealed with Bayesian’s algorithm
in BEAST software. Then, the relationship among the different HPeV genotypes from this study was visualized
as a phylogenetic tree. All samples were classified into the identical previously defined genotypes in both whole-
genome and VP1 phylogenic tree. However, sample B1091/HPeV14/2011 exhibited discordant grouping between
whole-genome and VP1 on the phylogenetic tree. Bootscan analysis revealed that B1091/HPeV14/2011 inherited
from two genotypic viruses (Fig. 4), including VP1 from HPeV14 (Supplementary Figure S1), and the rest of
the genome from HPeV1B (Fig. 1). Inter-genotypic recombination was also reported by Zhao X, et al. (2017),
who demonstrated that the virus from fecal isolation (CH-ZXY1) recombined genotypes 1 and 5. Most studies
reported that the junction between P1 and P2 was frequency responsiveness for the breakpoint of the HPeV
genome* (lower panel of Fig. 3A), and this corresponds with our finding (upper panel of Fig. 3A).

Interestingly, the junction of VP3 and VP1 was another breakpoint indicated in our samples (upper panel
of Fig. 3A). Direct Sanger sequencing with triplicate reads was performed to confirm those recombination
breakpoints (Fig. 4B). This finding suggested that VP3 and VP1 were other potential points for recombination
in the HPeV genome.

HPeV shows dynamic diversity along the genome. High diversity was indicated in the P1 region, which
translated into viral structural protein VP1-VP3 (Fig. 2A). In contrast, P2 and P3 of the viral genome exhibited
less variation showing in the cold spectrum in Fig. 3. Because the viral structural protein is generally exposed to
the environment and is responsive to trigger host immunity, it may be an evolutionarily driven force to increase
their variation in the P1 region more than the other viral genes. When we incorporated our samples with the
genome in the database, the molecular clock rate of VP1 and P1 was defined as 1.56 x 1073 and 1.68 x 103 substitu-
tions/site/year, respectively. These rates were slightly lower than those from a previous report by Faria NR., et al.
(2009), who reported the substitution rate in VP1 and P1 to be 2.30 x 10~ and 2.03 x 103 substitutions/site/year,
respectively. However, the clock rate of the P3 region, which was 1.96 x 1073 substitutions/ site/year (Table 1), was
comparable to other reports®. Our first report of the evolutionary rate of P2, which was 2.21 x 10~ substitutions/
site/year, suggests different evolutionarily driven forces among the HPeV genome.
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«Figure 2. Phylogenetic tree of the P1 (A), P2 (B), and P3 (C) of HPeV. The tree was constructed using the
BEAST program under the relaxed clock-uncorrelated exponential with 10 million chains, and was run in
the Genetic Testing Registry (GTR) with a gamma distribution substitution model. Each branch is labeled as
GenBank accession number/genotype/strain name/origin country/year of collection. The samples from this
study are indicated with a darkened circle. The most recent common ancestors (tMRCAs) are defined at the tree
node, and the highest posterior density (HPD) is indicated at each tree branch.

We also analyzed the complete genome from our isolation with the genome retrieved from the GenBank
database, which indicated the root of complete genome sequences as AD 1767 (95% HPD: 1729-1882). This
tMRCA was in concordance with the P2 and P3 regions of the virus (Table 1). However, P1 shows as being a bit
older than those two regions, indicated as AD 1614 with 95% HPD: 1566-1663, and VP1 was AD 1505 with 95%
HPD: 1400-1601. The tMRCAs of P1 and VP1 were comparable to the Faria NR., et al. study, which rooted as
AD 1581 with 95% HPD: 1334-1733, and AD 1553 with 95% HPD: 1412-1673, respectively*. The overlapping
amplification by ten separated PCR to reveal the virus’s complete sequence may be the limitation of this study.
Only a majority of viral genotypes will be amplified by this method. Next-generation sequencing would be more
suitable for complete genome analysis. Unfortunately, in this study, the volume of samples was limited; therefore,
we could not subject our samples to the next-generation sequencing process.

Conclusion

This study successfully retrieved the complete genome of fifty-eight HPeV samples previously isolated from the
Thai population?. It was clear that one sample (B1091/HPeV14/2011) exhibited a recombination event in which
the VP1 gene was inherited from genotype 14, and the rest of the genomes were closely related to HPeV1B. The
phylogenetic tree analysis and molecular evolutionary study indicated high diversity at the whole genome level,
especially in the P1 region. However, the mechanism of the observed recombination remains unclear and is
worthy of further intensive investigation.
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Figure 3. The matrix revealed a recombination event and genetic diversity of the human parechovirus (HPeV)
genome. The hot spectrum of recombination region count matrix (upper part of A) indicated discordance of
inheritance along the entire genome. High genetic diversity has been typically found in the virus’s structural
protein (hot spectrum of the lower part of A). The breakpoint hotspots for recombination in this study appeared
in the junctions between VP3 and VP1, and between 2C and 3A (upper matrix of B). In comparison, the
breakpoint hotspots in the reference sequences that are published in the database are shown between VP1 and

2A (lower matrix of B).
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Figure 4. Recombination analysis of B1091/HPeV14/TH/2011. The Bootscan analysis (A) was performed using
the RDP4 recombination detection program with a sliding window of 200 nucleotides. The result indicated two
breakpoints (BPs) between the junctions of VP3 and VP1, and between VP1 and 2A region of the viral genome.
These two BPs were confirmed using direct Sanger sequencing (B).
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