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Plasma amino acids and oxylipins 
as potential multi‑biomarkers 
for predicting diabetic macular 
edema
Sang Youl Rhee1,7, Eun Sung Jung2,7, Dong Ho Suh3, Su Jin Jeong4, Kiyoung Kim5, Suk Chon1, 
Seung‑Young Yu5, Jeong‑Taek Woo1* & Choong Hwan Lee2,3,6*

To investigate the pathophysiologic characteristics of diabetic complications, we identified differences 
in plasma metabolites in subjects with type 2 diabetes (T2DM) with or without diabetic macular 
edema (DME) and a disease duration > 15 years. An cohort of older T2DM patients with prolonged 
disease duration was established, and clinical information and biospecimens were collected following 
the guidelines of the National Biobank of Korea. DME phenotypes were identified by ophthalmologic 
specialists. For metabolomics studies, propensity matched case and control samples were selected. 
To discover multi‑biomarkers in plasma, non‑targeted metabolite profiling and oxylipin profiling 
in the discovery cohort were validated in an extended cohort. From metabolomic studies, 5 amino 
acids (asparagine, aspartic acid, glutamic acid, cysteine, and lysine), 2 organic compounds (citric acid 
and uric acid) and 4 oxylipins (12‑oxoETE, 15‑oxoETE, 9‑oxoODE, 20‑carboxy leukotriene B4) were 
identified as candidate multi‑biomarkers which can guide DME diagnosis among non‑DME subjects. 
Receiver operating characteristic curves revealed high diagnostic value of the combined 5 amino acids 
and 2 organic compounds (AUC = 0.918), and of the 4 combined oxylipins (AUC = 0.957). Our study 
suggests that multi‑biomarkers may be useful for predicting DME in older T2DM patients.

As the prevalence and disease duration of people with diabetes mellitus (DM) increase, the clinical significance 
of diabetic complications is also  increasing1,2. In particular, diabetic retinopathy (DR) is specifically related 
to hyperglycemia, and is a very important complication that seriously impairs quality of  life3,4. Active screen-
ing and treatment of DR can improve clinical outcomes in people with DM and improve their quality of  life5. 
However, screening and appropriate treatment of DR has not been satisfactorily achieved compared to other 
 complications5–7.

DR is generally classified as mild, moderate, severe non-proliferative DR (NPDR), and proliferative DR 
(PDR) depending on the degree of the risk of progression to  neovascularization8,9. However, the most direct and 
important cause of visual impairment or blindness in people with DM is diabetic macular edema (DME)10. DME 
is a clinical manifestation characterized by retinal thickening and hard exudates that involve the  macula9. These 
changes are known to be caused by damage to the blood-retinal barrier, which is composed of tight junctions 
involving vascular endothelial cells, and exudation of plasma proteins.

Differences exist between previous studies, but the prevalence of DME in people with DM is estimated to be 
approximately 10%10. In general, as the stage of DR advances, the prevalence of DME also tends to increase. How-
ever, DME can occur at any stage of DR, and the severity of DR does not exactly match the severity of  DME9,11,12. 
Therefore, it is necessary to identify biomarkers that can screen for DME easily and accurately for effective clinical 
decision making. However, despite many efforts, studies in the field have not been very successful.
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Recently, we performed metabolomic studies of diabetic complications using a biorepository organized for 
older adult subjects with type 2 DM (T2DM). In a previous study, we identified the clinical viability of novel 
biomarkers for effective prediction of  DR13. Here, we conducted further such studies to identify novel DME-
specific biomarkers that directly affect diabetic people with decreased vision and blindness.

Research design and methods
Subjects. This study was performed as part of the National Biobank of Korea project, using the baseline data 
of a prospective cohort collected from September 2014 to July 2015. The subjects of this cohort were older adult 
individuals with T2DM, with a disease duration of ≥ 15 years. There were no specific age restrictions in the initial 
design of the study, but participation over the age of 60 was encouraged.

Clinical information concerning the subjects was registered based on standardized methods for multi-center 
clinical data registration as approved by the Korean Diabetes Association, and biospecimens were gathered in 
accordance with the guidelines of the National Biobank of  Korea13,14.

Ethics statement. This study was approved by the institutional review board of Kyung Hee University 
Hospital (IRB No. KMC IRB 1428-04). All methods used in this study were carried out in accordance with the 
relevant guidelines and regulations of the institution in which the researchers are affiliated and comply with the 
Declaration of Helsinki. In addition, informed consent was obtained from all participants.

Phenotyping of DME. The ophthalmologic status of each subject was evaluated through fundus photogra-
phy (FF 540 Plus; Carl Zeiss Meditech, Jena, Germany) and by optical coherence tomography (HD-OCT; Carl 
Zeiss Meditech, Dublin, CA, USA). The method of evaluating the ophthalomologic status of study subjects has 
been described in detail in previous  studies4,15.

Early Treatment Diabetic Retinopathy Study (ETDRS) criteria were used to diagnose DME, and one or more 
of the following were diagnosed as clinically significant macular edema; (1) Thickening of the retina ≤ 500 µm 
from the center of the macula, or (2) Hard exudates and adjacent retinal thickening ≤ 500 µm from the macular 
center, or (3) Zone of retinal thickening at least 1 disc area in size located ≤ 1 disc diameter from the center of 
the  macula8,9. Two or more ophthalmologists diagnosed DME based on the results of examinations. If there was 
discordance between the ophthalmologists, they re-evaluated the results and agreed on the final phenotyping. 
In this study, even if one eye of subjects satisfies DME, we diagnosed it as a DME case. And when determining 
the phenotype of DME, there was no consideration of other ophthalmic diseases other than DR.

Statistical analysis of clinical data. In this study, we evaluated and compared the clinical characteristics 
of subjects with and without DME, focusing on identifying the characteristics of subjects who did not have 
DME despite a long medical history of T2DM. Statistical analyses of the clinical characteristics were performed 
and compared between subjects with or without DME. After initial analysis, case and control sets were selected 
by propensity score matching (PSM) with similar clinical characteristics aside from DME, and corresponding 
samples were used for metabolomics studies. For PSM, variables such as age, sex, body mass index, blood pres-
sure, glycated hemoglobin, blood chemistry, and comorbidities including DR were used. SAS software (v9.3; SAS 
Institute Inc., Cary, NC, USA) was used for all statistical analyses.

Sample preparation for metabolomic studies. Metabolites were extracted from 200  μL of plasma. 
One milliliter of methanol containing an internal 2-chlorophenylalanine standard (1  mg/mL in water) was 
added to plasma samples and then homogenized using a mixer mill and sonicator for 10 min each, respectively. 
After homogenization, the suspension was held at 4 °C for 60 min, and then centrifuged at 20,000 × g and 4 °C 
for 10 min. The supernatant was filtered through a 0.2 μm polytetrafluoroethylene (PTFE) filter and dried using 
a speed vacuum concentrator (Modulspin 31; Biotron, Wonju, Korea). Dried samples were further oximated and 
silylated for gas chromatography time-of-flight mass spectrometry (GC–TOF–MS) analysis.

For extraction of oxylipins from plasma, Oasis-HLB cartridges were used. Prior to extraction, the cartridges 
were washed with ethyl acetate (2 mL), methanol (2 × 2 mL), and a solvent mixture (2 mL) of water and methanol 
(95:5 v/v) containing 0.1% acetic acid. After washing the cartridges, 200 μL of plasma was loaded onto the car-
tridges. After loading of samples, cartridges were washed with 1.5 mL of mixed solvent (water:methanol, 95:5 v/v, 
0.1% acetic acid) under high vacuum. Then, cartridges were dried under low vacuum for 20 min. Oxylipins were 
eluted from the cartridges by adding 0.5 mL of methanol followed by 2 mL of ethyl acetate to tubes containing 6 
μL of 30% glycerol in methanol as a trap solution. The solvents were dried using a speed vacuum concentrator. 
The extracts were reconstituted in methanol (10 mg/mL). After filtration, samples were analyzed using liquid 
chromatography (LC)-MS.

Instrument analysis and data analysis for metabolomics studies. For metabolite profiling, GC-
TOF–MS analysis was performed using an Agilent 7890 gas chromatography system (Agilent Technologies, Palo 
Alto, CA, USA) equipped with a Pegasus HT TOF MS (LECO Corp., St. Joseph, MI, USA) system. The detailed 
operational conditions for GC-TOF–MS analysis were identical to those described in our previous  study13.

For oxylipin profiling, LC-triple-quadrupole-MS analysis was performed on a Nexera2 LC system (Shimadzu 
Corp., Kyoto, Japan) combined with a triple-quadrupole MS equipped with an electrospray source (LC–MS 8040, 
Shimadzu). Five microliters were injected into a Kinetex C18 column (100 × 2.1 mm, 2.6 µm, Phenomenex, 
Torrance, CA, USA) with a mobile phase containing 0.1% formic acid (solvent A) and acetonitrile containing 
0.1% formic acid (solvent B) at a flow rate of 300 µL/min. The gradient was 5% solvent B for 1 min, and linearly 
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increased from 5 to 100% over 9 min, and then decreased to 5% for 1 min. The MS platform was operated under 
the following conditions: capillary voltage -3000 V, capillary temperature 350ºC, vaporizer temperature 300ºC, 
sheath gas 3 L/min, ion sweep gas 2.0 Arb, Aux gas 10 Arb, and drying gas 8 L/min. The subsequent multiple 
reaction monitoring transitions used are summarized in Table S1.

Raw data from GC–TOF–MS analysis were preprocessed using several software packages. Detail concerning 
the processes of file conversion, alignment, and multivariate statistical analysis were identical to those described 
in our previous  study13. Multivariate statistical analysis was performed by using SIMCA-P + (version 12.0; Umet-
rics, Umea, Sweden). The data were auto-scaled (unit variance scaling) and mean-centered in a column-wise 
fashion. Principal component analysis (PCA) and partial least squares–discriminant analysis (PLS–DA) were 
performed to compare each data set. The variables were selected based on variable importance to projection (VIP) 
values of the PLS–DA.  R2X(cum) and  R2Y(cum) are the cumulative modeled variation in X and Y matrix, respectively. 
 Q2

(cum) is the cumulative predicted variation in Y matrix. P is p value obtained from cross-validation ANOVA 
of PLS-DA. The  R2Y(cum) value describes how well the data in the training set are mathematically reproduced 
(0 < x < 1, 1 = model with a perfect fit) and  Q2

(cum) value indicates that x > 0.5, has a good predictive ability and 
x > 0.9, has excellent predictive ability. Significant differences were determined by student’s t-test using PASW 
Statistics 18 software (SPSS Inc., Chicago, IL, USA). Heat maps were rendered using the relative peak area of 
unique masses of metabolites by MeV software (http:// www. tm4. org). Receiver operating characteristic (ROC) 
curves and logistic regression statistics were generated using Medcalc software (version 14.8.1; Medcalc Software, 
Mariakerke, Belgium).

Results
Clinical characteristics of the subjects after PSM. Of the 220 subjects who participated in the study, 
clinical data and specimens were collected from 198. After the withdrawal of 15 subjects, a total of 183 com-
pleted full ophthalmologic examinations. The mean age of the subjects was 66.8 years, mean T2DM duration was 
22.6 years, and 50.3% were female. Of a total of 183 subjects who underwent ophthalmologic examinations, 124 
(67.8%) were diagnosed with DR; and 46 (25.1%) were diagnosed with DME. PSM was performed, and 30 pairs 
of cases and controls with no significant differences in terms of clinical characteristics, except for the presence 
or absence of DME, were selected (Table S2). In addition, validation of the results derived from the discovery set 
was performed using a validation set of 43 pairs.

Discovering multi‑biomarkers of DME in plasma. Based on metabolomics studies, we sought to dis-
cover multi-biomarkers in plasma which can help diagnose DME among DM subjects. A schematic diagram of 
the experimental processes involved is summarized in Fig. 1. First, we performed non-targeted metabolite and 
oxylipin profiling in the discovery cohort. Metabolites distinguishing subjects with and without DME were iden-

Figure 1.  Schematic representation of experimental procedures used for investigating multi-biomarkers of 
diabetic macular edema (DME) in study subjects.

http://www.tm4.org
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tified and selected as candidate metabolite biomarkers. The candidate metabolite biomarkers were confirmed in 
the extended cohort by comparing relative levels. Multi-biomarkers for discriminating DME and non-DME sub-
jects were finally selected with the following qualifications: 1. Statistically significant discriminating metabolites 
from both the discovery and extended cohorts. 2. Metabolites exhibiting good discriminatory power for DME 
versus non-DME subjects, with an area under the curve (AUC) > 0.7 from discovery cohort.

GC‑TOF–MS analysis‑based metabolite profiling and oxylipin analysis in plasma. GC–TOF–
MS analysis-based metabolite profiling was performed using plasma from discovery cohort subjects and multi-
variate statistical analysis (Fig. 2). In principal component analysis (PCA) score plots derived from metabolite 
profiling data sets using GC–TOF–MS analysis, the groups of DME and non-DME subjects were not clearly 
separated from each other. However, in the partial least squares–discriminant analysis (PLS-DA) model with 
supervised methods, these two groups were clearly distinguished from each other along with PLS1 (8.2%). The 
quality of the PLS-DA model was evaluated by  R2Y(cum) = 0.847,  Q2

(cum) = 0.546, and by cross-validation analysis 
(7.77e-7), which signify a valid model. To select the metabolites responsible for the group separation, variable 
importance in projection (VIP) values > 0.7 of PLS-DA were applied. A total of 49 metabolites, including 19 
amino acids, 14 organic compounds, 8 fatty acids and lipids, and 8 carbohydrates were identified as metabolites 
that differed between the DME and non-DME groups of subjects. In addition, a total of 60 oxylipins were identi-
fied by targeted analysis. Those included 36 arachidonic acid-, 9 docosahexaenoic acid (DHA)-, 6 eicosapentae-
noic acid (EPA)-, and 9 linoleic acid-derived oxylipins. The relative metabolite levels were normalized to average 
values and visualized with heat maps (Figure S1A).

Validation of plasma metabolite biomarkers for discriminating DME from non‑DME cases. To 
validate plasma metabolite biomarkers derived from the discovery cohort, we further performed multivari-
ate analysis and oxylipin profiling using the extended cohort. The PCA and orthogonal PLS-DA (OPLS-DA) 
score plots revealed similar tendencies to those of the discovery cohort (Figure S2). However, the OPLS-DA 
model values were  R2Y(cum) = 0.693 and  Q2

(cum) = 0.211, which indicated that the fitness and prediction accu-
racy of the model was lower than observed for the discovery cohort. The quality of the model was evaluated 
by cross-validation analysis (p-value = 0.0009). Metabolites distinguishing DME from non-DME subjects were 
selected according to the VIP value (> 0.7) of the extended cohort, and relative levels were visualized using 
heat maps (Figure S1B). By comparison of heat maps derived from the discovery and extended cohorts, rela-
tive metabolite levels between the groups of patients with DME and non-DME revealed similar tendencies. 
Multi-biomarkers for diagnosing DME patients were finally selected the following qualifications: 1. Statisti-
cally significant discriminant metabolites from both the discovery and extended cohorts. 2. Metabolites show-

Figure 2.  Principal component analysis (PCA) (A) and partial least squares discriminant analysis (PLS-DA) 
(B) score plots for candidate plasma markers in diabetic macular edema (DME) and non-DME subjects 
analyzed by GC–TOF–MS in discovery cohort. Black filled circle—non-DME group, red filled circle—DME 
group.
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ing good discriminatory power for DME versus non-DME subjects, with an AUC > 0.7 from discovery cohort. 
Among the assigned metabolites, glutamic acid, cysteine, asparagine, aspartic acid, lysine, uric acid, malic acid, 
citric acid, nonanoic acid, 15-oxo-eicosatetraenoic acid (oxoETE), 12-oxoETE, 20-carboxy leukotriene B4, and 
9-oxo-octadecaidenoic acid (oxoODE) exhibited statistically significant different levels between the groups of 
subjects with DME and non-DME in both the discovery and extended cohorts (Table S1, S3-S5). ROC curves 
were also generated for the 109 assigned metabolites using the relative metabolite levels of the experimental 
group in the discovery cohort (Table S1 and S3). Among them, metabolites which exhibited good discrimina-
tory power for diabetic versus DME cases with an AUC > 0.7 included glutamic acid (0.762), cysteine (0.733), 
asparagine (0.772), aspartic acid (0.715), lysine (0.726), uric acid (0.786), citric acid (0.796), phenylacetic acid 
(0.810), 15-keto prostaglandin F2α (0.750), 15-keto prostaglandin E2 (0.719), 15-oxoETE (0.812), 12-oxoETE 
(0.867), 20-carboxy leukotriene B4 (0.743), 9-oxoODE (0.755), and ( ±) 9-hydroxyoctadecadienoic acid (HODE) 
or ( ±) 13-HODE (0.743). Finally, multi-biomarkers selected for distinguishing DME patients from non-DME 
subjects for diagnosis were asparagine (0.729-fold change), aspartic acid (0.782-fold), glutamic acid (0.653-fold), 
cysteine (0.666-fold), lysine (0.849-fold), citric acid (0.741-fold), uric acid (0.707-fold), 12-oxoETE (1.526-fold), 
15-oxoETE (1.319-fold), 9-oxoODE (0.692-fold), and 20-carboxy leukotriene B4 (5.575-fold). A combination of 
these metabolites from GC-TOF–MS-based metabolite profiling, including asparagine, aspartic acid, glutamic 
acid, cysteine, lysine, citric acid, and uric acid, greatly improved the specificity of distinguishing DME subjects 
from non-DME cases, with a combined AUC value of 0.918 (Fig. 3). In addition, a combination of oxylipins, 
including 12-oxoETE, 15-oxoETE, 9-oxoODE, and 20-carboxy leukotriene B4, yielded a combined AUC value 
of 0.957, also demonstrating improved power in discriminating DME and non-DME subjects (Fig. 3). Multi-
biomarkers that showed high prediction power in the discovery cohort showed the following AUC values in the 
extended cohort: Asparagine (0.666), aspartic acid (0.676), glutamic acid (0.733), cysteine (0.566), lysine (0.686), 
citric acid (0.684), uric acid (0.738), 12-oxoETE (0.784), 15-oxoETE (0.715), 9-oxoODE (0.711), and 20-carboxy 
leukotriene B4 (0.755) (Table S4 and S5). In addition, the combined ROC model of those of 5 amino acids and 
2 organic acids, and 4 oxylipins were 0.852 and 0.877, respectively, which validated good predictive power in 
discriminating DME and non-DME subjects (Figure S3).

Figure 3.  Receiver operating characteristic (ROC) curve of potential metabolite biomarkers distinguishing 
diabetic macular edema (DME) versus non-DME subjects, and combined ROC curves of those multi-
biomarkers in discovery cohort. (A) 7 metabolites selected after GC–TOF–MS analysis-based metabolite 
profiling. (B) 4 oxylipins selected after lipid profiling analyzed by HPLC-triple-Q-MS. The ROC curves of each 
metabolite, and combined ROC curves, were overlain on single plots. The AUC values of each metabolite are 
shown inside the ROC curve.
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Differences in metabolism according to generation of DME. From plasma metabolome analysis 
of subjects with and without DME, various metabolites were selected as discriminatory factors, and we con-
structed a metabolic pathway to illustrate the relationships between metabolism and generation of DME (Fig. 4). 
In the pathway, carbohydrates, phenylalanine, alanine, aspartate, glutamate, arginine, and oxylipin metabolism 
(linoleate, eicosapentanoate, arachidonate and, docosahexaenoate metabolism) exhibited differences distin-
guishing patients with and without DME. In particular, metabolites such as serine, threonine, alanine, aspartate, 
and glutamate, and the tricarboxylic acid (TCA) metabolic cycle, were significantly decreased in subjects with 
DME compared with that in non-DME subjects. In the case of oxylipin metabolism, relative metabolite levels of 
oxylipin precursor fatty acids, such as linoleic, eicosapentanoic, arachidonic, and docosahexaenoic acids, were 
not significantly different between DME and non-DME subjects. However, the relative amounts of oxylipins 
produced from different precursor fatty acids did exhibit significant differences. Among them, most oxylipins 
involved in linoleate, EPA, and DHA metabolism showed relatively low metabolite levels in subjects with DME 
compared with that in non-DME subjects. In particular, in linoleate metabolism, oxylipins generated by lipoxy-
genase, peroxidase, and dehydrogenases such as (±) 9-HODE or (±) 13-HODE and 9-oxoODE were present at 
significantly lower levels in subjects with DME than in those without DME. In the case of arachidonate metabo-
lism, a variety of oxylipins displayed increased and decreased metabolism due to DME compared those in non-
DME subjects. Among these, levels of 20-carboxyleukotriene B4, 12-oxoETE, and 15-oxoETE, which are cata-
lyzed by various enzymes, including hydroxylase, carboxylase, lipoxygenase, peroxidase, and dehydrogenase, 
were significantly elevated in DME subjects compared with those in non-DME subjects. On the other hand, 
15-keto prostaglandin F2α, which is also generated by dehydrogenase activity, exhibited significantly decreased 
levels in subjects with DME.

Discussion
Metabolomics represent a valuable approach for studying the pathophysiology of diverse disease states, including 
 obesity16,  DM17, and diabetic  retinopathy13 by revealing differences in metabolic pathways according to disease 
status, and enabling the discovery of novel biomarkers for anticipating dysfunction and disease.

As reported in a previous  study13, large numbers of metabolites are altered according to disease state, and 
these have been suggested as potential biomarker metabolites that may guide diagnosis by clinical examination 
of diabetes-related  complications18. In particular, certain amino acids are known to have close relationships 
with insulin secretion by pancreatic β-cells in vivo. In this series of processes, various key enzymes and trans-
porters are involved in the control of insulin secretion, such as glutamate dehydrogenase, aspartate and alanine 
aminotransferases, and the malate-aspartate  shuttle19. According to metabolic pathway analysis of our results, 
amino acid metabolism related to the enzymes and transporters mentioned above were significantly altered with 
development of DME (Fig. 4). Those involved in amino acid metabolism, including alanine, aspartate, gluta-
mate serine, and threonine were significantly decreased in subjects with DME compared with that in non-DME 

Figure 4.  Schematic diagram of a proposed metabolic pathway using plasma metabolites derived from 
metabolite and lipid profiling of experimental groups including diabetic macular edema (DME) and non-DME 
subjects. Metabolites labelled with blue characters indicate that relative metabolite levels were lower in DME 
cases than in non-DME subjects. Metabolites labelled with red characters indicate that relative metabolite levels 
were higher in DME cases than in non-DME patients. Asterisks indicate statistically significant differences in 
levels of metabolites distinguishing DME and non-DME individuals (p < 0.05). The metabolic pathway was 
modified from the reported Kyoto Encyclopedia of Genes and Genomes pathway (KEGG, http:// www. genome. 
jp/ kegg/).

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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subjects (Figure S1A). Among these, cysteine and asparagine, aspartic, glutamic, and citric acids showed high 
(> 0.7) AUC values and were selected as plasma multi-biomarkers (Table S3). Various studies have reported 
relationships involving amino acids and diabetes. Zhou et al. reported that diabetes-related plasma amino acid 
alterations involving various amino acids, including serine, glutamine, aspartic acid, histidine, GABA, proline, 
lysine, leucine, and tryptophan, were significantly altered in subjects with DM compared with that in non-DM 
 subjects20. In addition, another research team has also revealed changes to amino acid levels in diabetic patients 
and in non-diabetic cases. In particular, in diabetics, the relative levels of arginine, asparagine, glycine, serine, 
and threonine were decreased, with increased levels of alanine, isoleucine, leucine, valine compared to non-
diabetics21. As is well known, various metabolites, including glucose, alanine, glutamine, leucine and arginine 
play important roles in insulin secretion. Glucose, alanine, and glutamine metabolism enhances the activity of 
the TCA cycle and generates metabolic secretion coupling factors such as ATP,  Ca2+, and  glutamate22. Overall, 
our results suggested that amino acid-related metabolism, among other factors affected by diabetes, may influ-
ence the development of DME.

Recently, a number of studies have suggested a close association between diabetes and diabetes-related com-
plications, and polyunsaturated fatty acids (PUFAs)  metabolism23–25. For these reasons, the importance of lipid 
profiling has emerged. However, only a small number of studies have investigated metabolic biomarkers for 
anticipating DME in DM subjects. In particular, correlations involving DME and oxylipins in DM subjects 
remain unknown.

Oxylipins are oxygenated lipids which are synthesized via metabolism of PUFAs, including linoleic, alpha-
linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acids by various enzymatic reactions such as 
lipoxygenase (LOX), cyclooxygenase (COX), and cytochrome p450s (CYPs). In particular, long chain PUFAs 
are abundant in  retina25. In addition, ω-3 PUFAs and ω-6 PUFAs can exert anti- and pro-inflammatory effects 
in humans,  respectively26. Based on our results, 4 oxylipins, including 12-oxoETE, 15-oxoETE, 9-oxoODE, and 
20-carboxy leukotriene B4 derived from ω-6 PUFAs (arachidonic acid and linoleic acid), were selected as plasma 
multi-biomarkers (Fig. 3). Among these, 12-oxoETE, 15-oxoETE, and 20-carboxy leukotriene B4 derived from 
arachidonic acid via the LOX pathway, and their relative metabolic levels were significantly increased in subjects 
with DME compared with that in non-DME subjects (Fig. 4). In the case of 9-oxoODE, which is derived from the 
metabolism of linoleic acid via the LOX pathway, 9-oxoODE levels were significantly diminished in subjects with 
DME compared with that in non-DME subjects. Intriguingly, previous researchers have described the expres-
sion of LOX and its relationship with diabetes in that 12-LOX and 15-LOX play critical roles in the modulation 
of inflammation at multiple checkpoints during diabetes  development23. In addition, the 5-LOX leukotriene 
biosynthesis pathway is enhanced in inflammatory states in white adipose tissue in T2DM  women24. Hence, we 
propose that increased levels of oxylipins, which are metabolites produced by LOX catalytic activity, may be the 
result or cause of development of DME.

The key findings of the present study were the identification and suggestion of plasma multi-biomarker 
metabolites distinguishing subjects with DME from those with DM. In a previous study, we identified novel 
biomarkers for the effective prediction of diabetic retinopathy, and their value as biomarkers was effectively 
supported by the AUC value of the ROC  curves13. In the current study of discovery cohort, the combined AUCs 
of the 5 amino acids and 2 organic acids, and 4 oxylipins were 0.918 and 0.957, respectively (Fig. 3). Considering 
the predictive power of the ROC model, a combination of these multiple biomarkers could enable the distinction 
of DME patients from diabetic controls. Good predictive power of the ROC model also validated in extended 
cohort that the combined AUCs of the 5 amino acids and 2 organic acids, and 4 oxylipins were 0.852 and 0.877, 
respectively (Figure S3). Indeed, many research teams have conducted clinical trials involving the disease using 
a combination of metabolites, and have confirmed positive efficacy. Several studies have been reported regarding 
the ingestion of protein hydrolysates and amino acid mixtures with carbohydrates improves insulin secretion and 
plasma glucose disposal in T2DM  patients27,28. In addition, long term (60 weeks) dietary supplementation with 
amino acid mixtures, including leucine, lysine, isoleucine, valine, threonine, cysteine, histidine, phenylalanine, 
methionine, tyrosine, and tryptophan, significantly improve insulin sensitivity in poorly controlled older adult 
subjects with  T2DM29. Most recent, the importance of stabilization of epoxygenated fatty acids is emerged in 
therapeutic relevance in eye disease. Those epoxygenated fatty acids were derived from ω-3 PUFAs via CYP path-
way and known to have anti-inflammatory and anti-angiogenic  effects30. Capozzi et al. revealed that of elevation 
of epoxygenated fatty acid levels, such as 11,12-epoxyeicosatienoic acid (EET) and 19,20-epoxydocosapentaenoic 
acid (EDP) by exogenous addition, inhibits VCAM-1 and ICAM-1 expression and protein levels, and induces 
leukostasis in a mouse model of acute retinal inflammation, which may be related to TNF-α-induced inflam-
mation in retinal vascular  diseases31. In addition, Chistyakov et al. established the baseline patterns of oxylipins 
in aqueous humor and tear fluid for used as reference in ocular inflammation  studies32. Through these, it could 
be suggested that it is important to control the metabolism of oxylipin, and delivering important metabolites or 
regulating compounds through eye drops may be effective. Since the multi-biomarkers identified in this study 
may also have the effect of improving DME, additional studies to confirm their efficacy in animal and clinical 
studies are needed.

In conclusion, in this study, we undertook a comprehensive metabolomics approach to discover candidate 
metabolic multi-biomarkers for diagnosis of DME from non-DME patients and performed metabolic pathway 
analysis to examine mechanisms related to the development of DME. We revealed that certain plasma amino 
acids (asparagine, aspartic acid, glutamic acid, cysteine, and lysine), organic compounds (citric acid and uric 
acid), and oxylipins (12-oxoETE, 15-oxo-ETE, 9-oxoODE, and 20-carboxy leukotriene B4) could be used as 
indicators for establishing a means of long-term prognosis associated with DME in long-standing T2DM patients.
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