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Automatic 3D dense phenotyping 
provides reliable and accurate 
shape quantification of the human 
mandible
Pieter‑Jan Verhelst1,2*, H. Matthews3,4,5, L. Verstraete1,2, F. Van der Cruyssen1,2, D. Mulier1,2, 
T. M. Croonenborghs1,2, O. Da Costa1,2, M. Smeets1,2, S. Fieuws6, E. Shaheen1,2, R. Jacobs1,2,7, 
P. Claes3,4,5,8, C. Politis1,2 & H. Peeters3,9

Automatic craniomaxillofacial (CMF) three dimensional (3D) dense phenotyping promises 
quantification of the complete CMF shape compared to the limiting use of sparse landmarks in 
classical phenotyping. This study assesses the accuracy and reliability of this new approach on the 
human mandible. Classic and automatic phenotyping techniques were applied on 30 unaltered 
and 20 operated human mandibles. Seven observers indicated 26 anatomical landmarks on each 
mandible three times. All mandibles were subjected to three rounds of automatic phenotyping using 
Meshmonk. The toolbox performed non-rigid surface registration of a template mandibular mesh 
consisting of 17,415 quasi landmarks on each target mandible and the quasi landmarks corresponding 
to the 26 anatomical locations of interest were identified. Repeated-measures reliability was assessed 
using root mean square (RMS) distances of repeated landmark indications to their centroid. Automatic 
phenotyping showed very low RMS distances confirming excellent repeated-measures reliability. The 
average Euclidean distance between manual and corresponding automatic landmarks was 1.40 mm 
for the unaltered and 1.76 mm for the operated sample. Centroid sizes from the automatic and 
manual shape configurations were highly similar with intraclass correlation coefficients (ICC) of > 0.99. 
Reproducibility coefficients for centroid size were < 2 mm, accounting for < 1% of the total variability 
of the centroid size of the mandibles in this sample. ICC’s for the multivariate set of 325 interlandmark 
distances were all > 0.90 indicating again high similarity between shapes quantified by classic or 
automatic phenotyping. Combined, these findings established high accuracy and repeated-measures 
reliability of the automatic approach. 3D dense CMF phenotyping of the human mandible using the 
Meshmonk toolbox introduces a novel improvement in quantifying CMF shape.

Phenotyping is the complement of genotyping. Just as genotyping extracts the genetic code from DNA, pheno-
typing extracts quantifiable data from observable characteristics of an organism of interest. Craniomaxillofacial 
(CMF) phenotyping applies this process to the human face by studying the aspects of facial shape determined 
by its bony and soft tissue envelope1,2.  Phenotyping is widely used in biology and anthropology but is also prac-
tised in medical and dental specialities. Clinicians assessing craniofacial dysmorphism and diagnosing patients 
is essentially phenotyping. The results of extensive phenotyping studies on non-pathological humans are also 
used as a reference for surgical and non-surgical correction of CMF deformation. In these cases, the facial shape 
is corrected towards ‘normal’ values3,4.

In clinical practice, phenotyping still uses rather rudimentary techniques. Facial assessment is based on 
subjective impressions or multiple univariate measurements between specific predefined anatomical landmarks 
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on the face5–7. Classic anthropometric assessment of the soft tissue component has a radiological counterpart 
named cephalometric assessment. Here, the landmarks are identified on radiological data8. The distances and 
angles between these identified anatomical landmarks are used to quantify facial shape.

There are two important limitations to these techniques. First of all, anthropometric and cephalometric 
assessment rely on the identification of predefined anatomical landmarks by the assessor. This leaves room for 
variation and error in the identification of the landmarks: is the assessor capable of identifying the landmarks 
correctly and if so, are they consistent in locating the landmark? Inconsistency is one of the major pitfalls of 
manual identification of landmarks8–10. Furthermore, only a limited set of landmarks are used for the quantifi-
cation of shape, underusing the rich nature of the available data in shape1,11. This also means that the division 
between what is normal and abnormal is based on a fraction of the available data.

Automatic 3D dense phenotyping is an alternative approach in quantifying facial shape. It requires capturing 
and constructing a 3D model of a face or bony structure. For the soft tissues this can be done by 3D photography12 
and for the skeletal structures, segmentation techniques can extract 3D skeletal surface models out of (cone beam) 
computed tomography ((CB)CT) data13. Next, non-rigid surface registration algorithms are used to automati-
cally wrap a dense configuration of thousands of points, a mapping template, across the entire surface of the 
structure of interest11,14. These thousands of points are called quasi-landmarks, and they replace the sparse set of 
anatomical landmarks used in the classic phenotyping approach. Whenever this technique is applied to a sample 
of multiple subjects, all quasi-landmarks of the mapping template are dispersed over the structure’s surface, and 
they are in anatomical correspondence across those multiple subjects (Fig. 1). As an example, quasi-landmark 
333 will always be located on the lateral pole of the left mandibular condyle and quasi-landmark 777 will always 
be located on the center of the right tuberculum mentale. This will be the case for each 3D model of a specific 
anatomical structure that is subjected to this procedure, no matter if it is derived from different patients or from 
multiple CBCT scans of the same patient.

3D dense phenotyping was introduced in the early years of 200015  and since then has seen an increase in 
robustness and its ability to automatically handle large-scale datasets1,11,16. The main application of the technique 
has mostly been the soft tissue facial envelope. This resulted in the development of an open-source automatic 3D 
dense large-scale phenotyping toolbox called Meshmonk. The toolbox has so far only been tested and validated 
on facial soft tissue shape where it has  proven to be reliable and accurate11. The question remains how the same 
techniques perform when  they are applied on the underlying complex bony structures of the face. Proper assess-
ment of the reliability and accuracy of automatic 3D dense CMF phenotyping  of 3D models of bony structures 
is required before it is applied in a clinical or research environment. This study aimed to validate automatic 3D 
dense CMF phenotyping of the human mandible using a spatially-dense non-rigid surface registration technique. 
The repeated-measurement (RM) reliability and accuracy will be evaluated with classic phenotyping, using 
manual landmarks, as a reference. The robustness of the technique will be assessed by applying it on a ‘normal 
shape’ (unaltered mandibles) and a ‘complex shape’ (operated mandibles) sample.

Figure 1.   Illustration of the 3D dense CMF phenotyping process. A target 3D mandibular model (A) is 
selected. The Meshmonk toolbox uses a non-rigid surface registration of a template mandibular mesh (B) onto 
the target mandible. The red dots are the 26 anatomical landmarks used in this study and are illustrated more 
clearly in Fig. 3. The result is a mapped target mandible (C) in which all landmarks are always in anatomical 
correspondence across multiple subjects.
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Materials and methods
Study sample.  For this study, we used two samples of human mandibles. The first sample contained 30 
anonymized mandibular 3D surface models, constructed out CBCT-scans taken for the virtual planning of 
orthognathic surgery. This sample was labelled as the unaltered sample as the shape of the mandible is not 
surgically altered. The second sample contained  20 anonymized operated mandibles that were constructed out 
of 6-month follow-up CBCT scans. This sample was labelled as the operated sample due to its altered shape in 
which the teeth bearing part of the mandible is displaced resulting in a more challenging and complex shape 
for the non-rigid registration technique to process (Fig. 2). All scans were taken with a NewTom Vgi Evo CBCT 
device (QR Verona, Verona, Italy) with the following imaging parameters FOV 24 × 19 cm, voxel size 0.3 mm3, 
110 kVp and 4.3 mA. 3D surface models were constructed using a standardised and validated semi-automatic 
segmentation technique17. All scans were taken for clinical purposes and ethical approval to use these scans for 
research was obtained (LORTHOG Register, Department of Oral and Maxillofacial Surgery, University Hospital 
Leuven, Belgium, Ethical committee approval UZ Leuven B322201526790). All methods were carried out in 
accordance with relevant guidelines and regulations and informed consent was obtained from all subjects.

Phenotyping.  All 3D models of the mandibles were subjected to classic phenotyping by seven oral and 
maxillofacial residents, well versed in CMF anatomy and cephalometric assessment. After a calibration ses-
sion where the landmarks of interested and the landmarking tool were introduced, they identified 26 anatomi-
cal landmarks on the models using a custom-built network in MeVisLab (available: http://​www.​mevis​lab.​de/) 
(Fig.  3). Each resident performed the manual landmarking three times with an interval of 48  h. Automatic 
phenotyping was performed using a template mandibular mesh in the Meshmonk toolbox. The template man-
dibular mesh was constructed out of 3D models derived from high resolution CT scanning of 151 dry cadaver 
mandibles (MANATOMY register, Department of Oral and Maxillofacial Surgery, University Hospital Leuven, 
Belgium, NH019 2019-09-03). This data was non-rigidly registered with a pre-existing mandibular template 
derived from cone-beam CT of adolescents18. The resulting meshes were co-aligned and scaled to a common size 
with generalised Procrustes analysis. Averaging the co-ordinates across all 3D models resulted in the template 
mesh seen in Fig. 1. The Meshmonk toolbox performs a non-rigid surface registration of the template mandibu-
lar mesh onto a target mandible after initialisation by a two-step scaled-rigid transformation of the template 
onto the target as seen in Fig. 1. Firstly, it used five crudely indicated positioning landmarks (left and right lateral 
condylar poles, left and right gonion and the center of the protuberans mentale) indicated on both template and 
target to estimate the scaled-rigid transformation. This was further refined using a rigid iterative closest point 
registration of the template onto the target also implemented in the Meshmonk toolbox. Subsequently, the non-
rigid registration is performed which alters the shape of the mapping template to match the shape of the target 
mandible. The mapping template is a closed mesh consisting of 17,415 quasi-landmarks. The automatic 3D CMF 
phenotyping procedure is intended to match each of those quasi-landmarks to the corresponding anatomical 
position on the target mandible.

Before an accuracy assessment could be performed, the 26 anatomical landmarks used in the classic pheno-
typing approach needed to be identified in the set of 17,415 quasi-landmarks of the mapping template. For each 
manual landmark (ML) identified on specific mandible by a specific observer, we identified the corresponding 
automatic landmark (CAL). The mandible of interest was labelled as the target mandible, and the remaining 
mandibles in the sample functioned as a training set. This leave-one-out approach was preferred to avoid train-
ing bias and resulted in a CAL for every ML identified by an observer. After each of the training mandibles had 
been mapped using Meshmonk, the manually indicated landmarks on the original surface were transferred to 
the mapped surface. To achieve this, a weighted sum of the three closest points on the mesh (barycentric coor-
dinates) was calculated. These barycentric coordinates were then transformed back to Cartesian coordinates to 
pinpoint the location of the landmark on the mapping template. As this was done for all training mandibles, all 
landmark locations were subsequently averaged, resulting in them not always ending up on the surface of the 

Figure 2.   Illustration of mandibles from both samples. The unaltered mandible (A) provides a clear-cut 
anatomical shape. The surgically altered mandible (B) has a more irregular outline caused by healed bone cuts 
and titanium plates.

http://www.mevislab.de/
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mapping template. This was solved by closest point surface projection in which the landmark was projected on 
the surface using the shortest distance to that surface and so resulting in the identification of the corresponding 
quasi-landmark. This method was slightly adapted to establish CAL for the RM reliability assessment as there is 
direct comparison with the manual method, as there is in the accuracy assessment. The leave-one-out approach 
was therefore omitted and all manually identified landmarks were used to train the algorithm in finding the 26 
CAL among the 17,415 quasi-landmarks on the mapping template, independently for both samples.

Repeated‑measurement reliability assessment.  For the validation of automatic 3D dense CMF phe-
notyping, its RM reliability was compared with the inter- and intra-observer RM reliability of classic phenotyp-
ing. Although an automated software is evidently self-consistent, the meshmonk toolbox requires identifying 5 
initialisation landmarks which initiates the registration. It is this initialisation phase which still provides some 
variation in automatic landmarking. Therefore, reliability of the automatic phenotyping was assessed in com-
parison to classic phenotyping. The root mean square (RMS) distance of a set of indications to the centroid of 
that set was used as error statistic. The centroid is the mean position of all the points in a specific set of points. 
RMS distance to the centroid was calculated as the root square of the mean of the squared Euclidean distances 
of each repeated indication to the centroid of a set of indications. The smaller the RMS distance, the more 
consistent a (quasi)-landmark was indicated.. Intra-observer reliability of classic phenotyping was assessed for 
each of the seven observers who produced three sets of 26 landmark indications. The inter-observer reliability 
of classic phenotyping was tested over the seven observers and used the averaged (n = 3) indications of the 26 
landmarks by each observer. For the RM reliability assessment of automatic phenotyping, the coordinate values 
of the 17,415 quasi-landmarks identified by three rounds of automatic phenotyping were used. However, to be 
able to make a fair comparison between both methods, RMS distances were also calculated for the 3 sets of CAL, 
as derived by the three initialisation rounds. Descriptive statistics (mean, standard deviation, minimum and 
maximum RMS distance) were compared between the classic and automatic method.

Accuracy assessment.  Accuracy assessment was done using the average (n = 3) ML and CAL coordi-
nate values. Three assessment approaches were used. First, for each of the 26 landmarks the Euclidean distance 
between the MLs and CALs was calculated. This straightforward approach gives a good overview of how far 
away MLs and CALs are located from each other. Further, we compared shape and size measurements derived 
from the ML and CAL configurations. The similarity of the centroid sizes of the landmark configurations was 
assessed19. Centroid size is a measure of size in geometric morphometrics and is the square root of the sum of 
squared distances of all the landmarks of an object from their centroid20. A Bland–Altman plot was given to 
visualize the agreement between centroid sizes averaged over all observers. A linear mixed model with random 
effects of mandible (n = 30 or n = 20) and observer (n = 7) was used to compute the contributions of mandible, 

Figure 3.   Overview of the 26 manually identified landmarks.
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observer and method to the total variance of the centroid sizes. Note that the error variance in this model refers 
to the contribution of method. Mixed models were fitted using PROC MIXED in SAS version 9.4. (SAS Institute 
Inc., Cary, NC, USA) using restricted maximum likelihood estimation (REML). These variance components 
were used to calculate the intra-class correlation coefficient (ICC), the standard error of measurement (SEM) 
and the reproducibility coefficient (RC), the latter being 2.77 times the standard error of measurement (SEM). 
The RC is the value below which 95% of the differences between both methods lie. Finally, the full set of inter-
landmark distances can be regarded as a very comprehensive representation of the shape of the given landmark 
configuration21. For each landmarked mandible, a set of 325 distances represent the specific shape of that mandi-
ble. So, to check if the automatic and classic phenotyping achieved similar shape configurations, a generalisation 
of the classic ICC for multivariate data was used on these interlandmark distances22.

Results
Repeated‑measures reliability.  Table 1 shows the error statistics for evaluating automatic and classic 
phenotyping RM reliability averaged over all landmarks (26 ML and 26 CAL). Intra- and inter-observer error 
statistics for each of the 26 MLs are shown in Supplementary Materials 1 and 2. The repeated-measure RMS 
statistics for the 26 CAL’s are found in Supplementary Material 3. Automatic phenotyping had very low RMS dis-
tances of 0.0067 mm (unaltered sample) and 0.0077 mm (operated sample) averaged over the 26 CAL, indicative 
of high consistency. The condylar region stood out as one of the most reliably mapped regions of the mandible 
(Supplementary Material 4). Inter- and intra-observer error for classic phenotyping was much higher. The intra-
observer averaged (n = 26) RMS distances ranged from 0.75 to 1.17 mm in the unaltered sample and was slightly 
higher in the operated sample (0.84–1.20 mm). The inter-observer averaged (n = 26) RMS distance was 1.18 mm 
in the unaltered sample and 1.40 in the operated sample. The principal axes of intra- and inter-observer variation 
for MLs were calculated as well (Supplementary Materials 5–8). These results showed that some of the condylar 
landmarks as well as the gonial angle and chin landmarks had been susceptible to high variation when they are 
manually indicated.

Accuracy.  Euclidean distances.  The Euclidean distance (ED) between MLs and CALs was evaluated as the 
first measure of accuracy (Table 2). The average ED over all 26 landmarks was 1.40 mm for the unaltered sample 
(n = 30) and 1.76 mm for the operated sample (n = 20). The most considerable differences between MLs and 
CALs were found for the antegonial notches, the center of the mental foramina and the superior pole of the con-
dyle. The operated sample showed higher mean ED when compared to the unaltered sample with EDs mainly 
increasing in the operated region of the mandible. The principal axes of variation between ML and CAL loca-
tions were calculated for each landmark and are shown in Supplementary Materials 9 and 10.

Centroid size comparison.  Bland–Altman plots (Fig. 4) show a mean difference in centroid sizes of 0.22 mm for 
the unaltered sample (n = 30, 30 mandibles, averaged centroids over observers) and 0.16 mm for the operated 
sample (n = 20, 20 mandibles, averaged centroids over observers). Table 3 shows the variance components for 
centroid size of the mandible (random), observer (random) and method (fixed). SAS software syntax for this 
analysis can be found in Supplementary Material 11. These components were used to calculate the given ICC’s, 
SEMs and RC’s in Table 3. Excellent ICC’s of > 0.99 showed an insignificant role for the method of phenotyping 
(automatic vs classic). The difference in ICC between unaltered and operated mandibles was non-significant 
(p = 0.5075). Reproducibility coefficients were very low, e.g. < 2 mm which is < 1% of the mean centroid size of 
the mandibles in these two samples.

Shape similarity.  Table 4 shows the resulting ICC for multivariate data applied on the set of 325 interlandmark 
distances for each observer as well as the averaged ICC over those observers. The averaged ICC for the unal-

Table 1.   RMS distances (mm) of repeated landmark indications to the centroid of that set of indications. 
Averaged over n = 26 corresponding automatic landmarks for automatic phenotyping and n = 26 manual 
landmarks for classic phenotyping. CI confidence interval, Std standard deviation, Min minimum, Max 
maximum.

Unaltered sample Operated sample

Mean 95% CI mean Std Min Max Mean 95% CI mean Std Min Max

Automated 0.0067 0.0043–0.0092 0.0061 0.0019 0.0217 0.0077 0.0045–0.0109 0.0079 0.0012 0.0318

Inter-operator 1.1778 0.9808–1.3748 0.4878 0.4880 2.1179 1.4046 1.1216–1.6876 0.7007 0.4807 3.4909

Intra-operator 1 0.9952 0.846–1.1444 0.3695 0.4767 1.9480 1.1175 0.8482–1.3868 0.6667 0.3282 3.3394

Intra-operator 2 1.0411 0.8751–1.2070 0.4109 0.4214 1.8050 1.0963 0.8677–1.3249 0.5659 0.4584 3.1026

Intra-operator 3 0.9125 0.7582–1.0668 0.3821 0.3348 1.9277 1.0171 0.8323–1.2019 0.4575 0.3196 2.3343

Intra-operator 4 1.1702 0.9858–1.3545 0.4565 0.5609 2.2880 1.1751 0.9038–1.4464 0.6717 0.4617 3.8427

Intra-operator 5 1.0861 0.8791–1.2931 0.5125 0.3343 2.5097 1.1996 0.9495–1.4497 0.6193 0.3510 2.5434

Intra-operator 6 0.7510 0.6609–0.8411 0.2230 0.3040 1.2313 0.8404 0.6420–1.0388 0.4913 0.2801 2.5899

Intra-operator 7 0.7669 0.6283–0.7327 0.3431 0.2929 1.9652 0.8702 0.6694–1.0710 0.4971 0.3634 2.3483
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tered mandibles was 0.949 with a slightly lower 0.915 for the operated mandibles. The ICC’s for all observers 
were > 0.90 in the unaltered as well as in the altered sample, indicating high similarity between shapes quantified 
by classic or automatic phenotyping.

Discussion
CMF phenotyping remains an essential tool in fundamental sciences, patient diagnosis and patient follow-up. The 
classic anthropometric and cephalometric approach on capturing CMF shape both have their limitations: they 
are time-consuming, prone for observer error and only capture a fraction of the available shape data. Automatic 
3D dense CMF phenotyping using the Meshmonk toolbox overcomes these problems. In this study, we validate 
the use of this technique on meshes of human mandibles derived from CBCT.

This study assessed the RM reliability of automatic 3D phenotyping trying to answer the question: does a spe-
cific quasi-landmark always end up on the same position of the mandibular surface when the process is repeated? 
Although this is to be expected by the deterministic algorithms used, the initialisation phase of the mapping by 
identifying the five initialisation landmarks could introduce some variation in the mapping. The results showed 
very low RMS values, especially in comparison to the manual method (> ~ 100 decrease), rendering the variation 
of the mapping clinically insignificant.

Automatic phenotyping also showed good accuracy when compared to the classic approach, which still serves 
as the golden standard in practice. A mean ED of 1.40 mm and 1.76 mm was found between MLs and CALs 
which is in line with results from other studies on soft tissue targets11,14,23–25. The assessment of shape similar-
ity between classic and automatic landmark configurations also showed promising results through high ICC’s 
(> 0.90) for centroid size and interlandmark distances.

This study was limited by two main factors. First of all, the absence of a robust golden standard for identify-
ing anatomical landmarks makes it hard to illustrate the accuracy of automatic phenotyping. The results of the 
accuracy assessment in this study should therefore be interpreted with care as they only give insights in how 
automatic phenotyping compares to classic phenotyping. Secondly, we opted for 2 separate samples to assess 
how the automatic phenotyping performed on a more complex shape. This however resulted in smaller sample 
sizes of both groups (n = 30 and n = 20).

Table 2.   Descriptive statistics for the Euclidean distance between the 26 MLs and CALs (mm) in the unaltered 
and operated sample. Std standard deviation, Min minimum, Max maximum.

Unaltered sample (n = 30) Operated sample (n = 20)

Mean Std Min Max Mean Std Min Max

Right—condylar superior pole 1.85 1.02 0.14 5.20 1.81 1.12 0.13 5.32

Right—condylar medial pole 0.76 0.40 0.15 2.49 0.93 0.62 0.19 4.27

Right—condylar lateral pole 0.81 0.45 0.09 2.74 0.93 0.60 0.22 3.07

Right—condylar most posterior point 1.66 0.94 0.06 4.83 1.81 1.15 0.17 6.52

Right—condylar fovea pterygoidea center point 0.82 0.42 0.08 2.41 0.82 0.52 0.12 3.41

Right—lowest point of the incisura 1.32 1.08 0.07 5.06 0.96 0.78 0.06 3.52

Right—most superior point of the proc. coronoideus 0.67 0.41 0.10 2.18 0.86 0.70 0.08 3.58

Right—most superior point of the lingula (spix) 1.23 0.68 0.09 3.87 2.31 1.33 0.43 6.45

Right—gonion 1.46 1.17 0.08 7.07 1.64 1.21 0.20 6.51

Right—deepest point of the antegonial notch 2.19 1.56 0.15 7.99 3.18 2.23 0.31 13.07

Right—center of foramen mentale 2.13 0.93 0.23 5.78 3.24 1.96 0.61 10.50

Right—center of Tuberculum mentale 1.68 1.25 0.12 7.91 2.11 1.63 0.15 11.94

Center—protuberans mentale 1.02 0.65 0.08 3.82 1.27 0.85 0.18 4.99

Center—center point of spina mentalis 1.34 0.86 0.14 4.99 1.58 1.13 0.09 6.21

Left—center of tuberculum mentale 1.32 0.88 0.18 4.98 1.74 1.29 0.14 12.30

Left—center foramen mentale 2.41 1.03 0.56 6.24 2.47 1.22 0.64 6.80

Left—deepest point of the antegonial notch 2.11 1.51 0.13 7.97 4.39 2.93 0.16 15.49

Left—gonion 1.69 1.06 0.22 4.97 2.32 1.40 0.07 6.04

Left—most superior point of the lingula (spix) 1.22 0.70 0.23 3.88 3.32 1.82 0.39 9.34

Left—most superior point of the proc. coronoideus 0.72 0.76 0.07 7.20 0.76 0.68 0.11 3.73

Left—lowest point of the incisura 1.42 1.24 0.12 7.92 1.18 0.96 0.13 4.50

Left—condylar fovea pterygoidea center point 1.07 0.64 0.07 3.95 0.95 0.56 0.19 4.16

Left—condylar most posterior point 1.49 0.77 0.20 4.09 1.44 0.87 0.10 4.79

Left—condylar lateral pole 0.89 0.58 0.16 3.28 0.92 0.55 0.13 2.55

Left—condylar medial pole 0.91 0.57 0.11 3.22 0.79 0.40 0.14 2.14

Left—condylar superior pole 2.12 1.35 0.13 7.56 2.01 1.13 0.16 5.14

Averaged (n = 26) 1.40 0.88 0.14 5.06 1.76 1.14 0.20 6.40
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Figure 4.   Bland–Altman plots evaluating accuracy of automatic phenotyping by assessing agreement between 
centroid sizes averaged over all observers resulting from landmark configurations of both methods. Left: 
unaltered sample. Right: operated sample.

Table 3.   Variance components from a linear mixed model on centroid sizes from automatic and classic 
phenotyping. Resulting variance components of method (fixed effect), jaw (random effect) and operator 
(random effect) were used to calculate ICC, SEM and RC. ICC intra-class correlation, SEM standard error 
of measurement, RC reproducibility, CI 95% confidence interval. For the ICC, the CI is based on the Fishers 
transformation of the ICC. P-values are given for the comparison of the SEM and the ICC (both based on a Z 
test).

Unaltered sample Operated sample Comparison

Variance components

Jaw 144.28 168.35

Observer 0.8278 0.6861

Method 0.284 0.4401

Statistics

SEM (95% CI) 0.533 (0.498–0.573) 0.663 (0.61–0.727) p = 0.0004

RC (95% CI) 1.476 (1.379–1.588) 1.838 (1.691–2.013)

ICC (95% CI) 0.998 (0.997–0.999) 0.997 (0.995–0.999) p = 0.5075

Table 4.   ICC for the multivariate dataset of 325 interlandmark distances.

Observer

Unaltered sample Operated sample

ICC (95% CI) ICC (95% CI)

1 0.946 (0.923–0.955) 0.905 (0.861–0.931)

2 0.955 (0.938–0.962) 0.923 (0.887–0.943)

3 0.958 (0.941–0.964) 0.923 (0.887–0.943)

4 0.935 (0.913–0.945) 0.907 (0.867–0.934)

5 0.945 (0.921–0.953) 0.909 (0.857–0.938)

6 0.957 (0.940–0.965) 0.93 (0.896–0.948)

7 0.95 (0.928–0.958) 0.908 (0.861–0.934)

Mean 0.949 (0.929–0.957) 0.915 (0.874–0.939)
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Despite of these limitations, high RM reliability and good accuracy in comparison to the current clinical 
standard, validate the use of automatic 3D dense CMF phenotyping on the mandible. This opens the doors for 
further adaptation of this approach in science and clinical practice. Patient diagnosis and follow-up could be 
facing a leap forward when this approach replaces anthropometric and cephalometric assessment. First of all, 
it allows an update on the epidemiological studies to determine what a normal shape is16. This data can then 
be used for enhanced patient diagnosis in which the CMF soft tissue and skeletal shape of a specific pathologi-
cal patient are compared to the norm. Only this time, the assessment is not based on a fraction of the available 

Figure 5.   Analysis of condylar remodeling using anatomical correspondence. Heat maps are displayed on the 
6-month postoperative condyles of two different patients. Blue surfaces mark bone resorption and red surfaces 
bone apposition with a scale in mm. Left we see a front (A.1) and lateral (A.2) view of a normal condylar 
remodeling case. Right (B.1 and B.2) we see a case of condylar resorption with evident vertical bone loss marked 
by the blue surface on the superior aspect of the condyle. Panel C illustrates the difference between closest point 
analysis (black) and correspondent point analysis (blue) between the preoperative and postoperative condyle of 
patient B for three landmarks (red dots).
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shape information, but the complete shape. Patient follow-up will also be benefit from this new approach by 
establishing anatomical correspondence on 3D representations of the same or different patients26. This makes it 
possible to assess surgical outcomes in CMF surgery or CMF bone remodelling. Nowadays, when comparing two 
3D representations of a patient, closest point analysis is mostly used. This approach identifies the closest points 
between two surfaces and interprets the distance between the points as the shape difference. It is, however, not 
a given fact that the closest point is the anatomical correspondent point. 3D CMF phenotyping provides a tool 
to identify anatomical correspondence on 3D models and overcome this issue.

This is showcased in Fig. 5 where we analyse remodelling of the mandibular condyle after orthognathic 
surgery. After corrective surgery of the mandible, physiological remodelling of the condyle can be expected. 
Sometimes, this process exceeds its physiological capacity, and a pathological volume loss of the condyles is 
observed. This is accompanied by the lower jaw that falls back, reoccurrence of malocclusion and sometimes pain 
in the temporomandibular joint. 3D CMF phenotyping allows for the identification of anatomical correspondent 
points and allows subsequent correct quantification of how the condyle remodelled over time.

Conclusions
This study validated automatic 3D dense CMF phenotyping of the human mandible using the Meshmonk tool-
box. Excellent repeated-measures reliability and good accuracy were achieved. When combined with soft tissue 
phenotyping, this approach introduces an essential improvement in quantifying CMF shape. This new application 
of 3D dense automatic phenotyping will propel patient diagnosis and follow-up forward when implemented in 
diagnostic and virtual surgical planning tools.

Data availability
The Meshmonk toolbox is implemented in C++ through MATLAB and the code and tutorials are available at 
https://​github.​com/​TheWe​bMonks/​meshm​onk.
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